JP2001335917A - Method for producing crystalline alumina thin film at low temperature - Google Patents

Method for producing crystalline alumina thin film at low temperature

Info

Publication number
JP2001335917A
JP2001335917A JP2000161877A JP2000161877A JP2001335917A JP 2001335917 A JP2001335917 A JP 2001335917A JP 2000161877 A JP2000161877 A JP 2000161877A JP 2000161877 A JP2000161877 A JP 2000161877A JP 2001335917 A JP2001335917 A JP 2001335917A
Authority
JP
Japan
Prior art keywords
thin film
alumina
temperature
producing
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000161877A
Other languages
Japanese (ja)
Inventor
Taira Kin
平 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2000161877A priority Critical patent/JP2001335917A/en
Publication of JP2001335917A publication Critical patent/JP2001335917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for producing a crystalline alumina thin film at a low temperature by a sputtering method. SOLUTION: This invention is a method for producing an alumina crystalline thin film at low temperature, in which a chromium oxide crystalline thin film is previously deposited on a substrate or a base material by a sputtering method, and then, an alumina thin film is deposited thereon and particularly is the method for producing an alumina thin film of an α phase most stable and also most excellent in characteristics among alumina crystalline phases at low temperature. An alumina crystalline thin film, particularly, the alumina thin film of an α phase can be deposited at a temperature lower than that in the conventional method. By the lowering of the temperature of the deposition temperature, the kinds of substrates and base materials to be selected are remarkably made widen, and application to the industrial field such as the provision of alumina hard coatings with wear resistance and protection in the machine industry, the semiconductor industry or the like as purposes or inexpensive alumina substrates of high quality can be expected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミナ結晶質薄
膜の低温製法に関するものであり、さらに詳しくは、機
械産業、半導体産業などにおける耐摩耗、保護を目的と
するアルミナハードコーティング、又は安価で且つ高質
のアルミナ基板を提供するためのアルミナ結晶質薄膜の
低温形成技術に関するものであり、特に、最も特性が優
れ、且つ安定性のよいα相アルミナ薄膜の低温形成技術
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alumina crystalline thin film at a low temperature. More specifically, the present invention relates to an alumina hard coating for abrasion resistance and protection in a machine industry, a semiconductor industry, etc. The present invention relates to a low-temperature formation technique of an alumina crystalline thin film for providing a high-quality alumina substrate, and particularly to a low-temperature formation technique of an α-phase alumina thin film having the most excellent characteristics and stability.

【0002】[0002]

【従来の技術】従来、CVD法(化学蒸気堆積法)によ
るα相アルミナ薄膜の形成には、通常、基板を1000
℃程度の高温にする必要があるため、被膜される母材の
種類が大きく限られていた。近年、アルミナ薄膜の形成
温度を下げるために幾つかのPVD法(物理蒸気堆積
法)が開発されているが、たとえ、工業化に適切である
パルス直流マグネトロンスパッタ法によるα相アルミナ
薄膜形成においても、最低760℃の基板温度が不可欠
である〔 1)O. Zywitzky,G.Hoets
ch,F.Fietzke,and K.Goedic
ke:Surface and Coatings T
echnology,Vol.82,(1995)16
9 〕。これと類似な方法として、低温形成を目的に開
発されたイオン化マグネトロンスパッタ法によるアルミ
ナ結晶質薄膜の形成について、基板温度が500℃まで
下がったと報告されているが、形成物の結晶相は、α相
ではなく、準安定相であるκ相アルミナである〔 2)
J.Schneider,W.Sproul,A.Vo
evodin,and A.Matthews:J.V
ac.Sci.Technol.,A15,(199
7)1 〕。上記のように、従来、CVD法によるα相
アルミナ薄膜の形成に1000℃、また、PVDスパッ
タ法によるα相アルミナ薄膜形成に760℃という高温
が必要とされているため、アルミナ結晶質薄膜の応用範
囲が大きく限られていた。
2. Description of the Related Art Conventionally, in forming an α-phase alumina thin film by a CVD method (chemical vapor deposition method), a substrate is usually 1000
Since the temperature must be as high as about ° C, the types of base materials to be coated have been greatly limited. In recent years, several PVD methods (physical vapor deposition methods) have been developed to lower the formation temperature of alumina thin films. For example, even in the formation of α-phase alumina thin films by pulsed DC magnetron sputtering, which is suitable for industrialization, A substrate temperature of at least 760 ° C. is essential [1] O. Zywitzky, G. et al. Hoets
ch. Fietzke, and K.S. Goedic
ke: Surface and Coatings T
technology, Vol. 82, (1995) 16
9]. As a similar method, it has been reported that the substrate temperature was lowered to 500 ° C. in the formation of an alumina crystalline thin film by an ionized magnetron sputtering method developed for low-temperature formation, but the crystal phase of the formed product was α. It is a κ-phase alumina that is not a phase but a metastable phase [2]
J. Schneider, W .; Sproul, A .; Vo
evodin, and A.E. Matthews: J. V
ac. Sci. Technol. , A15, (199
7) 1). As described above, conventionally, a high temperature of 1000 ° C. is required for forming an α-phase alumina thin film by a CVD method, and 760 ° C. is required for forming an α-phase alumina thin film by a PVD sputtering method. The range was largely limited.

【0003】[0003]

【発明が解決しようとする課題】このような状況の中
で、本発明者は、アルミナ薄膜の低温製法を開発するこ
とを目標として、工業生産に適切であるスパッタ法を用
いて鋭意研究を積み重ねた結果、酸化クロム結晶質薄膜
をあらかじめ基板や被膜される母材に形成し、その上に
アルミナ結晶質薄膜を形成することにより所期の目的を
達成し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は、アルミナ結晶質薄膜のスパッタ法
による新規低温製法を提供することを目的とする。
Under such circumstances, the present inventors have conducted intensive studies using a sputtering method which is suitable for industrial production with the aim of developing a low-temperature manufacturing method of an alumina thin film. As a result, it has been found that the intended purpose can be achieved by previously forming a chromium oxide crystalline thin film on a substrate or a base material to be coated, and then forming an alumina crystalline thin film thereon, thereby completing the present invention. Reached.
That is, an object of the present invention is to provide a novel low-temperature production method by sputtering an alumina crystalline thin film.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、以下のような構成が採用される。 (1)アルミナ結晶質薄膜の低温製法であって、スパッ
タ法によりあらかじめ酸化クロム下地薄膜を多結晶ある
いは単結晶基板や母材に室温から800℃の範囲で形成
し、その上にスパッタ法によりアルミナ(Al23
結晶質薄膜を当該温度範囲で形成することを特徴とする
アルミナ結晶質薄膜の低温製法。 (2)酸化クロムターゲット、及びアルミナ(Al2
3 )ターゲットを不活性ガス中にスパッタすることを特
徴とする前記(1)記載のアルミナ結晶質薄膜の低温製
法。 (3)クロム(Cr)金属ターゲット、及びアルミニウ
ム(Al)金属ターゲットを酸素を含む放電ガス中に反
応性スパッタすることを特徴とする前記(1)記載のア
ルミナ結晶質薄膜の低温製法。 (4)アルミナ結晶質薄膜が、α相アルミナ薄膜であ
る、前記(1)、(2)又は(3)記載のアルミナ結晶
薄膜の低温製法。
In order to solve the above-mentioned problems, the present invention employs the following configuration. (1) A low-temperature manufacturing method of an alumina crystalline thin film, in which a chromium oxide base thin film is previously formed on a polycrystalline or single-crystal substrate or a base material by sputtering at a temperature in the range of room temperature to 800 ° C., and alumina is formed thereon by sputtering. (Al 2 O 3 )
A low-temperature manufacturing method of an alumina crystalline thin film, wherein the crystalline thin film is formed in the temperature range. (2) Chromium oxide target and alumina (Al 2 O
3 ) The method for producing an alumina crystalline thin film at a low temperature according to the above (1), wherein the target is sputtered in an inert gas. (3) The method for producing an alumina crystalline thin film at a low temperature according to the above (1), wherein a chromium (Cr) metal target and an aluminum (Al) metal target are reactively sputtered into a discharge gas containing oxygen. (4) The method for producing an alumina crystal thin film at a low temperature according to the above (1), (2) or (3), wherein the alumina crystalline thin film is an α-phase alumina thin film.

【0005】[0005]

【発明の実施の形態】続いて、本発明についてさらに詳
細に説明する。本発明は、前記のように、酸化クロム結
晶質薄膜をあらかじめ基板や被膜される母材に形成し、
その上にアルミナ結晶質薄膜を低温で製造する方法に関
するものである。また、本発明は、酸化クロム及びアル
ミナのような化合物ターゲットを用いて、不活性ガスの
みでスパッタすること、あるいはクロム(Cr)及びア
ルミニウム(Al)金属ターゲットを用いて酸素を含む
不活性ガス中に反応性スパッタすることによりアルミナ
結晶質薄膜を低温で製造する方法に関するものである。
さらに、本発明は、上述の方法により、アルミナ結晶相
の中で、最も安定で、且つ特性の最も優れるα相アルミ
ナ薄膜を製造する方法に関するものである。
Next, the present invention will be described in more detail. The present invention, as described above, a chromium oxide crystalline thin film is formed in advance on a substrate or a base material to be coated,
The present invention also relates to a method for producing an alumina crystalline thin film at a low temperature. In addition, the present invention provides a method of sputtering using an inert gas alone using a compound target such as chromium oxide and alumina, or a method using an inert gas containing oxygen using a chromium (Cr) and aluminum (Al) metal target. To produce an alumina crystalline thin film at a low temperature by reactive sputtering.
Further, the present invention relates to a method for producing an α-phase alumina thin film having the most stable and most excellent properties among the alumina crystal phases by the above-mentioned method.

【0006】上記のスパッタ方法により、酸化クロム
(例えば、Cr23 )結晶相薄膜が室温から800℃
の範囲で形成される。下地薄膜としてのCr23 結晶
は、αアルミナと同じ結晶構造を持ち、かつ格子常数の
差がわずか数パーセントであることから、酸化クロム下
地薄膜を基板や母材に形成することにより、結晶学的に
はその上にアルミナ結晶質薄膜、特にα相アルミナ薄膜
の形成が容易になるという効果が得られる。また、酸化
クロム結晶は、硬度、耐摩耗特性などの機械的特性がア
ルミナと類似していることや、下地薄膜としてわずかの
厚さしかないことから、アルミナ結晶質薄膜の全体的特
性に大きな影響がない利点がある。
By the above-mentioned sputtering method, a chromium oxide (for example, Cr 2 O 3 ) crystal phase thin film is heated from room temperature to 800 ° C.
Formed in the range. Since the Cr 2 O 3 crystal as the base thin film has the same crystal structure as α-alumina and the difference in lattice constant is only a few percent, the chromium oxide base thin film is formed on a substrate or base material to form a crystal. Technically, there is obtained an effect that the formation of an alumina crystalline thin film, particularly an α-phase alumina thin film, is facilitated thereon. In addition, the mechanical properties such as hardness and abrasion resistance of chromium oxide crystals are similar to those of alumina, and they have only a small thickness as the underlying thin film, which greatly affects the overall properties of the alumina crystalline thin film. There are no advantages.

【0007】上記の方法の中で、酸化クロム及びアルミ
ナ化合物ターゲットを用いて不活性ガスのみでRFスパ
ッタする方法の場合は、操作は極めて簡単である上、形
成された薄膜は、ターゲット組成とほとんど一致したス
トイキオメトリックな酸化クロム及びアルミナとなる。
ただし、化合物ターゲットを用いたRFスパッタでは、
成膜率がやや低いということがある。それをより改善す
るために、クロム及びアルミニウム金属ターゲットを用
いて酸素を含む不活性ガス中に反応性直流あるいはRF
スパッタする方法が採用される。この方法では、Cr2
3 結晶及びアルミナ結晶を形成できるようにプロセス
を最適化する必要があり、特に酸素と不活性ガスの比率
を精密に制御することが、所望の薄膜材料を製造する上
で最も重要である。本発明の方法において、多結晶ある
いは単結晶基板、その他の母材が使用されるが、それら
の種類は特に制限されない。
[0007] Among the above-mentioned methods, in the case of a method of performing RF sputtering only with an inert gas using a chromium oxide and alumina compound target, the operation is extremely simple, and the formed thin film is almost identical to the target composition. The result is a matched stoichiometric chromium oxide and alumina.
However, in RF sputtering using a compound target,
The film formation rate may be slightly lower. In order to improve it further, a reactive direct current or RF in an inert gas containing oxygen using a chromium and aluminum metal target is used.
A method of sputtering is adopted. In this method, Cr 2
The process must be optimized to form O 3 and alumina crystals, and precise control of the oxygen to inert gas ratio is of utmost importance in producing the desired thin film material. In the method of the present invention, a polycrystalline or single-crystal substrate and other base materials are used, but their types are not particularly limited.

【0008】上記の薄膜作製には、汎用のスパッタ装置
が用いられるが、本発明で最も重要なポイントは、酸化
クロムを下地薄膜としたアルミナ結晶質薄膜の低温製法
であって、上記の方法が実施できる装置であれば、その
種類を問わず使用することが可能であり、装置について
は、特に限定されるものではない。
A general-purpose sputtering apparatus is used for producing the thin film. The most important point of the present invention is a low-temperature production method of an alumina crystalline thin film using chromium oxide as a base thin film. Any device can be used as long as it can be implemented, and the device is not particularly limited.

【0009】上記の薄膜作製には、酸化クロム下地薄膜
として、例えば、結晶形態のCr2O3 が用いられる
が、その他、CrO、Cr34 、CrO2 、Cr2
5 、CrO3 などを用いることが可能であり、本発明に
おいて、酸化クロム下地薄膜は、いかなる酸化クロム化
合物であってもよく、その種類は、特に限定されるもの
ではない。また、上記の薄膜作製には、下地化合物ター
ゲットに、例えば、Cr2 3 が使われるが、その他、
CrO、Cr34 、CrO2 、Cr2 5 、CrO3
などを用いることが可能であり、本発明において、下地
化合物ターゲットは、酸化クロム化合物ターゲットであ
ればよく、その種類は、特に限定されるものではない。
さらに、上記の薄膜作製には、金属ターゲットに、例え
ば、純粋なクロム(Cr)金属が使われるが、他の金属
(例えば、アルミニウム)と合金化されたものを用いる
ことが可能であり、本発明において、クロム金属ターゲ
ットは、純粋なクロム金属だけでなく、クロムを主成分
とするいかなる合金ターゲットであってもよく、その種
類は特に限定されるものではない。
In the above-mentioned thin film production, for example, a crystalline form of Cr 2 O 3 is used as a chromium oxide base thin film, but in addition, CrO, Cr 3 O 4 , CrO 2 , Cr 2 O
5 , CrO 3 or the like can be used. In the present invention, the chromium oxide base thin film may be any chromium oxide compound, and the type thereof is not particularly limited. In the above thin film production, for example, Cr 2 O 3 is used as a base compound target.
CrO, Cr 3 O 4, CrO 2, Cr 2 O 5, CrO 3
In the present invention, the underlayer compound target may be a chromium oxide compound target, and the type thereof is not particularly limited.
Further, in the above-mentioned thin film production, for example, pure chromium (Cr) metal is used as a metal target, but a metal alloyed with another metal (eg, aluminum) can be used. In the present invention, the chromium metal target may be not only pure chromium metal but also any alloy target containing chromium as a main component, and the type thereof is not particularly limited.

【0010】上記方法によるアルミナ結晶質薄膜の低温
製法は、次のような特徴を有する。 (1)約200℃の基板温度付近からα相アルミナ薄膜
の形成が認められる。 (2)緻密な構造を持つα相アルミナ薄膜が形成され
る。
The low-temperature method for producing an alumina crystalline thin film by the above method has the following characteristics. (1) The formation of an α-phase alumina thin film is observed around a substrate temperature of about 200 ° C. (2) An α-phase alumina thin film having a dense structure is formed.

【0011】[0011]

【実施例】続いて、本発明を実施例に基づいて具体的に
説明する。 実施例1 (1)方法 本実施例では、薄膜作製に汎用型マグネトロンスパッタ
装置を用いた。当該装置には、カソード3基まで配置で
き、それぞれに高周波電源又は直流電源で任意に電力制
御ができる。基板が回転でき、基板温度が室温から80
0℃まで精密に設定される。カソードの一基に市販の酸
化クロムターゲット(Cr23 、φ50mm、純度9
9.9%)、もう一基に市販のアルミナターゲット(A
23 、φ50mm、純度99.99%)を設置し
た。真空系を2.5x10-6Pa以下に排気した後、ア
ルゴンガスのみを導入して、全圧0.1Paで30分プ
レスパッタ後、成膜を行った。基板温度を室温から80
0℃までの範囲に設定し、基板としてガラス、シリコン
単結晶、サファイア、などを使用した。
EXAMPLES Next, the present invention will be specifically described based on Examples.
explain. Example 1 (1) Method In this example, a general-purpose magnetron sputtering method was used for forming a thin film.
The device was used. The device has up to three cathodes
Arbitrarily power controlled by high frequency power supply or DC power supply
I can do it. The substrate can be rotated and the substrate temperature can be adjusted from room temperature to 80
Precisely set to 0 ° C. Commercially available acid as part of the cathode
Chromium chloride target (CrTwo OThree, Φ50mm, purity 9
9.9%) and another commercially available alumina target (A
lTwo OThree , Φ50mm, purity 99.99%)
Was. 2.5x10 vacuum system-6After exhausting to below Pa,
Introduce only Lugon gas and pressurize for 30 minutes at a total pressure of 0.1 Pa
After resputtering, a film was formed. Substrate temperature from room temperature to 80
Set up to 0 ° C, glass, silicon as substrate
Single crystal, sapphire, or the like was used.

【0012】すなわち、まず酸化クロムターゲットに高
周波電力150Wを加えて厚さ約200nmのCr2
3 薄膜を基板上に形成した。X線回折法によって各温度
で形成された酸化クロム薄膜を分析した。
That is, first, a high-frequency power of 150 W is applied to a chromium oxide target to obtain a Cr 2 O having a thickness of about 200 nm.
Three thin films were formed on the substrate. The chromium oxide thin film formed at each temperature was analyzed by X-ray diffraction.

【0013】さらに、酸化クロム結晶質薄膜をあらかじ
め200nm程度コーティングしてから、アルミナター
ゲットに同じく150Wの高周波電力を加えてスパッタ
を行い、アルミナ薄膜を厚さ300nm程度形成した。
形成された多層構造を持つ薄膜をX線回折法により結晶
相の同定を行った。
Further, a chromium oxide crystalline thin film was previously coated to a thickness of about 200 nm, and then a high-frequency power of 150 W was applied to the alumina target to perform sputtering to form an alumina thin film having a thickness of about 300 nm.
The crystal phase of the formed thin film having a multilayer structure was identified by an X-ray diffraction method.

【0014】(2)結果 上記の方法によりシリコン基板上に形成された酸化クロ
ム薄膜のX線回折パターンを図1に示す。室温から60
0℃までCr23 結晶質薄膜の形成が確認された。ま
た、上記の方法でシリコン基板上に作成された酸化クロ
ム/アルミナ多層薄膜のX線回折パターンを図2に示
す。図1と比べるとわかるように、200℃程度から酸
化クロム以外の回折ピークがみられ、JCPDS標準と
照合した結果から、生成物は、αアルミナ薄膜であるこ
とが明らかである。また、クロム金属ターゲット及びア
ルミニウム金属ターゲットを酸素を含む不活性ガス中に
反応性スパッタして、同様に分析した結果、同様の結果
が得られた。
(2) Results FIG. 1 shows an X-ray diffraction pattern of the chromium oxide thin film formed on the silicon substrate by the above method. Room temperature to 60
The formation of a Cr 2 O 3 crystalline thin film was confirmed up to 0 ° C. FIG. 2 shows an X-ray diffraction pattern of the chromium oxide / alumina multilayer thin film formed on the silicon substrate by the above method. As can be seen from comparison with FIG. 1, diffraction peaks other than chromium oxide are observed at about 200 ° C., and the result of comparison with the JCPDS standard clearly shows that the product is an α-alumina thin film. In addition, the chromium metal target and the aluminum metal target were reactively sputtered into an inert gas containing oxygen, and analyzed in the same manner. As a result, similar results were obtained.

【0015】比較例1 上記実施例1において、酸化クロム下地薄膜を使わず
に、アルミナターゲットに同じく150Wの高周波電力
を加えて直接にシリコン基板上にアルミナ薄膜を厚さ3
00nm程度形成した。室温から700℃まで各温度で
形成されたアルミナ薄膜のX線回折パターンを図3に示
す。いずれも鮮明な回折ピークが見られず、700℃ま
でアルミナ結晶相の形成が見られなかった。
COMPARATIVE EXAMPLE 1 In Example 1 described above, without using a chromium oxide base thin film, a high-frequency power of 150 W was also applied to an alumina target to directly deposit an alumina thin film having a thickness of 3 on a silicon substrate.
It was formed to a thickness of about 00 nm. FIG. 3 shows an X-ray diffraction pattern of the alumina thin film formed at each temperature from room temperature to 700 ° C. In each case, no clear diffraction peak was observed, and formation of an alumina crystal phase was not observed up to 700 ° C.

【0016】以上、本発明を実施例に基づいて説明した
が、本発明は前記した実施例に限定されるものではな
く、特許請求の範囲に記載した構成を変更しない限りど
のようにでも実施することができる。
As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and can be implemented in any manner unless the configuration described in the claims is changed. be able to.

【0017】[0017]

【発明の効果】以上詳述したように、本発明は、室温か
ら結晶相が形成でき、且つアルミナ結晶と極めて類似な
結晶構造を持つ酸化クロムをあらかじめ基板上に被膜
し、その上にアルミナ薄膜を形成するアルミナ結晶質薄
膜の新規低温製法に係るものであり、本発明により、
1)従来の方法よりもはるかに低温でアルミナ結晶質薄
膜、特に一番安定で且つ特性の優れたα相アルミナ薄膜
が形成できる、2)形成温度の低温下により、選択でき
る基板や母材の種類は大きく広がる、3)それにより、
機械産業、半導体産業などにおける耐摩耗、保護を目的
とするアルミナハードコーティング、又は安価で、且つ
高質のアルミナ基板を提供するなど、産業界への応用が
大きく期待される、という効果が奏される。
As described in detail above, the present invention provides a method in which a crystal phase can be formed at room temperature and chromium oxide having a crystal structure very similar to alumina crystal is previously coated on a substrate, and an alumina thin film is formed thereon. The present invention relates to a novel low-temperature manufacturing method of an alumina crystalline thin film forming
1) An alumina crystalline thin film, particularly an α-phase alumina thin film having the most stable and excellent characteristics, can be formed at a much lower temperature than the conventional method. 2) A substrate or base material that can be selected at a lower formation temperature. The types greatly expand 3) Thereby,
In the machine industry, semiconductor industry, etc., there is an effect that application to the industrial world is greatly expected, such as providing an alumina hard coating for wear resistance and protection, or providing an inexpensive and high quality alumina substrate. You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シリコン基板上に各温度で形成された酸化クロ
ム薄膜のX線回折パターンを示す。
FIG. 1 shows X-ray diffraction patterns of a chromium oxide thin film formed on a silicon substrate at various temperatures.

【図2】シリコン基板上に各温度で形成された酸化クロ
ム/アルミナ多層薄膜のX線回折パターンを示す。
FIG. 2 shows an X-ray diffraction pattern of a chromium oxide / alumina multilayer thin film formed at various temperatures on a silicon substrate.

【図3】シリコン基板上に各温度で形成されたアルミナ
薄膜のX線回折パターンを示す。
FIG. 3 shows an X-ray diffraction pattern of an alumina thin film formed on a silicon substrate at each temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 41/89 C04B 41/89 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 41/89 C04B 41/89 Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ結晶質薄膜の低温製法であっ
て、スパッタ法によりあらかじめ酸化クロム下地薄膜を
多結晶あるいは単結晶基板や母材に室温から800℃の
範囲で形成し、その上にスパッタ法によりアルミナ(A
23 )結晶質薄膜を当該温度範囲で形成することを
特徴とするアルミナ結晶質薄膜の低温製法。
1. A low-temperature process for producing an alumina crystalline thin film, wherein a chromium oxide base thin film is previously formed on a polycrystalline or single-crystal substrate or a base material by sputtering at a temperature in the range of room temperature to 800 ° C. Alumina (A
(l 2 O 3 ) A low-temperature process for producing an alumina crystalline thin film, wherein the crystalline thin film is formed in the temperature range.
【請求項2】 酸化クロムターゲット、及びアルミナ
(Al23 )ターゲットを不活性ガス中にスパッタす
ることを特徴とする請求項1記載のアルミナ結晶質薄膜
の低温製法。
2. The method for producing an alumina crystalline thin film at a low temperature according to claim 1, wherein a chromium oxide target and an alumina (Al 2 O 3 ) target are sputtered in an inert gas.
【請求項3】 クロム(Cr)金属ターゲット、及びア
ルミニウム(Al)金属ターゲットを酸素を含む放電ガ
ス中に反応性スパッタすることを特徴とする請求項1記
載のアルミナ結晶質薄膜の低温製法。
3. The method according to claim 1, wherein a chromium (Cr) metal target and an aluminum (Al) metal target are reactively sputtered into a discharge gas containing oxygen.
【請求項4】 アルミナ結晶質薄膜が、α相アルミナ薄
膜である、請求項1、請求項2,又は請求項3記載のア
ルミナ結晶薄膜の低温製法。
4. The method according to claim 1, wherein the alumina crystalline thin film is an α-phase alumina thin film.
JP2000161877A 2000-05-31 2000-05-31 Method for producing crystalline alumina thin film at low temperature Pending JP2001335917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161877A JP2001335917A (en) 2000-05-31 2000-05-31 Method for producing crystalline alumina thin film at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161877A JP2001335917A (en) 2000-05-31 2000-05-31 Method for producing crystalline alumina thin film at low temperature

Publications (1)

Publication Number Publication Date
JP2001335917A true JP2001335917A (en) 2001-12-07

Family

ID=18665830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161877A Pending JP2001335917A (en) 2000-05-31 2000-05-31 Method for producing crystalline alumina thin film at low temperature

Country Status (1)

Country Link
JP (1) JP2001335917A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053946A (en) * 2000-08-04 2002-02-19 Kobe Steel Ltd Hard film and wear resistant member, and manufacturing method thereof
WO2004015162A1 (en) * 2002-08-09 2004-02-19 Kabushiki Kaisha Kobe Seiko Sho METHOD FOR PREPARING ALUMNA COATING FILM HAVING α-TYPE CRYSTAL STRUCTURE AS PRIMARY STRUCTURE
WO2004097062A1 (en) * 2003-04-30 2004-11-11 Kabushiki Kaisha Kobe Seiko Sho Alumina protective coating film and method for formation thereof
EP2848712A1 (en) 2002-08-08 2015-03-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053946A (en) * 2000-08-04 2002-02-19 Kobe Steel Ltd Hard film and wear resistant member, and manufacturing method thereof
JP4502475B2 (en) * 2000-08-04 2010-07-14 株式会社神戸製鋼所 Hard coating, wear-resistant member and method for producing the same
EP2848712A1 (en) 2002-08-08 2015-03-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus
EP2865784A1 (en) 2002-08-08 2015-04-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing alumina coating composed mainly of alpha-type crystal structure
WO2004015162A1 (en) * 2002-08-09 2004-02-19 Kabushiki Kaisha Kobe Seiko Sho METHOD FOR PREPARING ALUMNA COATING FILM HAVING α-TYPE CRYSTAL STRUCTURE AS PRIMARY STRUCTURE
US7967957B2 (en) 2002-08-09 2011-06-28 Kobe Steel, Ltd. Method for preparing alumna coating film having alpha-type crystal structure as primary structure
US9260776B2 (en) 2002-08-09 2016-02-16 Kobe Steel, Ltd. Method of producing α crystal structure-based alumina films
WO2004097062A1 (en) * 2003-04-30 2004-11-11 Kabushiki Kaisha Kobe Seiko Sho Alumina protective coating film and method for formation thereof
US7955722B2 (en) 2003-04-30 2011-06-07 Kobe Steel, Ltd. Protective alumina film and production method thereof
US8309236B2 (en) 2003-04-30 2012-11-13 Kobe Steel, Ltd. Protective alumina film and production method thereof
DE112004003138B4 (en) * 2003-04-30 2019-10-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum oxide protective layer and method of production thereof

Similar Documents

Publication Publication Date Title
Alami et al. High power pulsed magnetron sputtering: Fundamentals and applications
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
CN107620033A (en) A kind of preparation method of high-purity strong fine and close MAX phases coating
KR20100017702A (en) Method for producing pvd coatings
KR20150053959A (en) Method for manufacturing a metal-borocarbide layer on a substrate
Zhou et al. Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering
KR910009840B1 (en) Corrosion-resistant and heat-resistant amorphous aluminum -based alloy thin film and process for producing the same
JP2003158307A (en) Method for producing superconducting material
SE520716C2 (en) A process for manufacturing a cutting tool coated with alumina
JP2001335917A (en) Method for producing crystalline alumina thin film at low temperature
CN108823544A (en) Based on nitridation titanium compound film and preparation method thereof
Kuhr et al. Deposition of cubic boron nitride with an inductively coupled plasma
CN1924084A (en) Preparation method of TiN/AlON nano multilayer coating reaction magnetron sputtering for cutting tool
US20120202028A1 (en) Ceramic member and manufacturing thereof
Figueroa et al. Production of AlN films: ion nitriding versus PVD coating
CN112553580B (en) Diboride composite coating and preparation method and application thereof
WO2002070776A1 (en) Deposition process
CN108149198A (en) A kind of WC hard alloy film and its gradient layer technology room temperature preparation method
JP2741814B2 (en) Method for producing tantalum metal thin film
Matsuda et al. Effect of inductively-coupled plasma assist on the crystal orientation of magnesium oxide thin films produced by reactive sputtering
CN108193178B (en) A kind of crystalline state WC hard alloy film and its buffer layer technique room temperature growth method
CN102373411A (en) Silver-white film structure and plating method thereof
CN102211437A (en) Colored multilayer film structure and film coating method of same
TWI493060B (en) Silvery white film structure and method manufacturing same
Yue et al. Structure of nanometer-size crystalline Ti film