JP4502475B2 - Hard coating, wear-resistant member and method for producing the same - Google Patents

Hard coating, wear-resistant member and method for producing the same Download PDF

Info

Publication number
JP4502475B2
JP4502475B2 JP2000237443A JP2000237443A JP4502475B2 JP 4502475 B2 JP4502475 B2 JP 4502475B2 JP 2000237443 A JP2000237443 A JP 2000237443A JP 2000237443 A JP2000237443 A JP 2000237443A JP 4502475 B2 JP4502475 B2 JP 4502475B2
Authority
JP
Japan
Prior art keywords
film
oxide film
corundum
wear
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000237443A
Other languages
Japanese (ja)
Other versions
JP2002053946A (en
Inventor
恭臣 森川
俊樹 佐藤
博文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000237443A priority Critical patent/JP4502475B2/en
Publication of JP2002053946A publication Critical patent/JP2002053946A/en
Application granted granted Critical
Publication of JP4502475B2 publication Critical patent/JP4502475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具、摺動部材、金型の如き耐摩耗部材に適用される耐摩耗性及び耐熱性に優れた硬質皮膜に関するものであり、詳細には、この様に耐摩耗性および耐熱性に優れた硬質皮膜を、上記切削工具や摺動部材等の基材の特性を損なうことのない低温条件で形成することのできる有用な硬質皮膜とその形成方法に関するものである。
【0002】
尚、本発明の対象となる硬質皮膜は、上記した様々な用途に適用できるが、以下では代表例として切削工具に適用する場合を中心に説明を進める。
【0003】
【従来の技術】
一般に、優れた耐摩耗性や摺動特性が求められる切削工具や摺動部材等においては、高速度鋼や超硬合金等の基材表面に、物理蒸着法(以下、PVD法という)や化学蒸着法(以下、CVD法という)等の方法で、チタン窒化物やチタンアルミニウム窒化物等の硬質皮膜を形成する方法が採用されているが、切削工具等の刃先は切削時に1000℃以上の高温となる場合があるため、特に、硬質皮膜として酸化アルミニウムを形成して耐熱性を確保することが多い。
【0004】
上記酸化アルミニウムは、温度によって様々な結晶構造をとるが、いずれも熱的に準安定状態にある。しかし、切削工具の如く切削時における刃先の温度が、常温から1000℃以上にわたる広範囲で著しく変動する場合、上記酸化アルミニウムの結晶構造が変化して、皮膜に亀裂が生じたり剥離する等の問題を生じる。ところが、CVD法を採用して基材温度を1000℃以上に高めることによって生成されるコランダム構造の酸化アルミニウムだけは、一旦形成されると、以後、温度に関係なく熱的に安定な構造を維持する。したがって、切削工具等に耐熱性を付与するには、コランダム構造の酸化アルミニウムで被覆することが非常に有効な手段とされている。
【0005】
しかしながら、上述の通りコランダム構造の酸化アルミニウムは、基材を1000℃以上にまで加熱しなければ形成できないため、適用できる基材が限られてくる。即ち、基材の種類によっては、1000℃以上の高温にさらされると軟質化し、耐摩耗部材用基材としての適性が失われることがあるからである。
【0006】
この様な問題に対し、特開平5−208326号公報では、高硬度の(Al,Cr)23混合結晶を500℃以下で得たことが報告されている。しかしながら、被削材が鉄を主成分とするものである場合、前記混合結晶皮膜の表面に存在するCrが、切削時に切削面で鉄と化学反応を起こし易いため、皮膜の消耗が激しく寿命を縮める原因となる。
【0007】
また、O.Zywitzki,G.Hoetzschらは、高出力(11−17kW)のパルス電源を用いて反応性スパッタリングを行うことで、750℃以上でコランダム構造の酸化アルミニウム皮膜が形成されることを報告している(Surf.Coat.Technol.,86-87 (1996) 640-647)。しかし、この方法でコランダム構造の酸化アルミニウムを得るには、パルス電源の大型化が避けられず、また、製造にあたっては基材温度を750℃以上に高めねばならないため、切削工具等の基材として一般的に使用される高速度鋼が軟質化する等、基材特性が損なわれるといった問題が生じる。
【0008】
現在、汎用されている切削工具では、耐摩耗性等を付与するため、基材表面にチタンの窒化物や炭化物、炭窒化物等からなる皮膜を形成し、該皮膜上に前記コランダム構造の酸化アルミニウムを形成している。さらに近年では、チタンとアルミニウムの複合窒化皮膜(以下、TiAlNと記す)が、より優れた耐摩耗性を示すことから、前記チタンの窒化物や炭化物、炭窒化物等からなる皮膜に代わって切削工具等に適用されつつある。
【0009】
しかしながら、前記TiAlN皮膜は、PVD法の一種であるアークイオンプレーディング法(以下、AIP法という)でしか形成することができず、一方、前記コランダム構造の酸化アルミニウムはCVD法でしか形成できないため、積層皮膜を得るには、CVD用装置とPVD用装置を用いて各々の皮膜を順次形成しなければならず、生産効率が非常に悪い。従って、前記コランダム構造の酸化アルミニウム、及び前記TiAlN皮膜、更にその他の有用な皮膜等を、連続プロセスで効率よく形成し得るような技術の確立が望まれている。
【0010】
【発明が解決しようとする課題】
本発明は、上記の様な事情に鑑みてなされたものであって、その目的は、耐熱性、耐摩耗性等に優れた硬質皮膜を、基材の特性を損なわない低温で効率よく製造することのできる有用な方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明に係る硬質皮膜とは、格子定数が4.779Å以上5.000Å以下で膜厚が少なくとも0.005μmであるコランダム構造の酸化物皮膜の一方の面に、コランダム構造の酸化アルミニウム皮膜が形成されていることを要旨とするものである。
【0012】
前記酸化物皮膜の成分は、Cr23、(Fe,Cr)23又は(Al,Cr)23のいずれかであることが望ましく、該酸化物皮膜が、前記(Fe,Cr)23である場合には(Fex,Cr(1-x))23(ただし、xは0≦x≦0.54)であることが好ましく、また前記(Al,Cr)23である場合には(Aly,Cr(1-y))23(ただし、yは0≦y≦0.90)であることが好ましい。
【0013】
更に、前記コランダム構造の酸化物皮膜の他方の面には、中間層を介し又は介さずに、Ti、Cr、Vよりなる群から選択される1種以上の元素とAlとの複合窒化皮膜が形成され、前記中間層としては(Alz,Cr(1-z))N(ただし、zは0≦z≦0.90)からなる皮膜が形成されていることが好ましい。
【0014】
また本発明には、上記いずれかの硬質皮膜を、前記コランダム構造の酸化アルミニウムを表面側として基材上に形成した耐摩耗部材が包含される。
【0015】
本発明で規定する耐摩耗部材の製法とは、前記コランダム構造の酸化アルミニウム、酸化物皮膜、複合窒化皮膜および必要に応じて形成される中間層を、物理蒸着法で形成する工程を含むところに要旨を有するものである。また、この製法を実施するに当たり、前記(Aly,Cr(1-y)23(ただし、yは0≦y≦0.90)皮膜を形成するには、中間層として前記(Alz,Cr(1-z))N(ただし、zは0≦z≦0.90)皮膜を形成した後、その表層側の少なくとも一部を酸化して酸化物に変えることによって形成することが好ましく、この場合の酸化は、酸素雰囲気下で基材温度を450℃以上に保持して行うことが望ましい。更に、前記コランダム構造の酸化アルミニウム皮膜の形成は、基材温度300℃以上で行うことが好ましい。
【0016】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で、コランダム構造の酸化アルミニウムを、被覆すべき基材の特性を損ねない低温で形成することのできる方法について鋭意研究を進めた。その結果、結晶構造が酸化アルミニウムと同じコランダム構造であり且つ特定の格子定数を有する物質を、酸化物皮膜として予め形成しておけば、低温条件下であっても、該酸化物皮膜上にコランダム構造の酸化アルミニウムを容易に形成できることを見出した。以下、本発明のポイントである上記酸化物皮膜、および優れた特性を付与する他の有用な皮膜について詳細に説明する。
【0017】
<酸化物皮膜>
被覆する酸化アルミニウムと同じコランダム結晶構造を有し、かつ格子定数が酸化アルミニウムに近い物質として、Cr23、Fe23、(Fe,Cr)23、(Cr,Al)23が挙げられる。そこで、これら種々の酸化物皮膜上に酸化アルミニウムを形成したところ、該酸化物の格子定数が、4.779〜5.000Åの範囲内にある場合には、比較的低い温度条件(例えば300℃〜700℃)でもコランダム構造の酸化アルミニウムが形成されるのに対し、コランダム構造の酸化物皮膜であっても、格子定数が上記範囲を外れる場合は、コランダム構造の酸化アルミニウムが形成されないことが分かった。
【0018】
即ち、酸化物皮膜の格子定数が5.000Åを超える場合には、被覆する酸化アルミニウムの格子定数とのずれが大きくなるため、コランダム構造の酸化アルミニウムが形成されにくく、立方晶構造等の如きコランダム構造以外の構造が形成される。従って酸化物皮膜の格子定数は、5.000Å以下に抑える必要があり、4.982Å以下にすることが好ましい。
【0019】
尚、酸化物皮膜としてFeとCrの複合酸化物を用いる場合、Feの組成比が0.54を超えると、上記複合酸化物の格子定数が5.000Åを超え、該酸化物皮膜上にコランダム構造のみからなる酸化アルミニウムを形成できなくなる。従って、酸化物皮膜としてFeとCrの複合酸化物を用いる場合には、組成式(Fex,Cr(1-x)23において、xを0≦x≦0.54、より好ましくは0≦x≦0.30の範囲とすべきである。
【0020】
次に、酸化物皮膜の格子定数の下限を4.779Åに規定した理由について述べる。
【0021】
Cr23とFe23の格子定数は、共にAl23の格子定数よりも大きいため、Al23の格子定数に近い格子定数のより小さな酸化物皮膜を得るには、CrとAlの複合酸化物またはFeとAlの複合酸化物とすればよい。しかしながら、FeとAlの複合酸化物は、スピネル構造となって純粋なコランダム構造が形成されないため、本発明の酸化物皮膜には適さない。
【0022】
またCrとAlの複合酸化物の場合、上述の通りAlの組成比が増加するにつれて格子定数は小さくなるが、Alの組成比が0.90を超えると、コランダム構造の酸化物皮膜が高温でしか生成されなくなり、低温ではコランダム構造以外の結晶構造が生成して純粋なコランダム構造の酸化物皮膜が得られない。従って、(Al0.9,Cr0.123の格子定数である4.779Åを酸化物皮膜の格子定数の下限値とし、また、酸化物皮膜としてCrとAlの複合酸化物を用いる場合には、組成式(Aly,Cr(1-y))23において、yを好ましくは0≦y≦0.90とすることとした。
【0023】
本発明では、前記酸化物皮膜の膜厚を少なくとも0.005μmとする必要がある。この酸化物皮膜の膜厚が0.005μmより小さくなると、緻密な酸化物皮膜が形成されず、コランダム構造のみからなる酸化アルミニウムが形成されにくいためである。好ましくは0.01μm以上であり、より好ましくは0.02μm以上である。また上記膜厚が厚すぎると、切削中に皮膜に亀裂または剥離が生じ易くなるため、10μm以下とすることが好ましく、より好ましくは5μm以下、更に好ましくは3μm以下である。
【0024】
<複合窒化皮膜>
本発明では、切削工具等として使用する際の耐摩耗性を一層高めるため、前記酸化物皮膜が、Ti、Cr、Vよりなる群から選択される1種以上の元素とAlとの複合窒化皮膜の上に形成されていることが望ましい。
【0025】
尚、該複合窒化皮膜の膜厚は、薄すぎると上記効果が発揮されないため、0.5μm以上とすることが好ましく、より好ましくは1μm以上である。また、膜厚が厚すぎると、切削時において膜に亀裂が生じるため、20μm以下とすることが好ましく、より好ましくは10μm以下である。
【0026】
<中間層>
更に、基材と上記酸化物皮膜の間に、中間層としてAlとCrの窒化物層を設けることによって、皮膜の密着性向上を図ることも有効である。尚、後述するように中間層の表層部を酸化処理して、コランダム構造のAlとCrの複合酸化物[(Aly,Cr(1-y)23(ただし、yは0≦y≦0.90)]皮膜を形成する場合には、前記AlとCrの窒化物層は、組成式(Alz,Cr(1-z))Nにおいて、zを0≦z≦0.90とすることが好ましく、より好ましくは0≦z≦0.75である。
【0027】
<酸化アルミニウム皮膜>
コランダム構造の酸化アルミニウムの膜厚は、0.1〜20μmであることが好ましい。前記酸化アルミニウムの膜厚が0.1μm未満の場合には、例えば切削工具に適用した場合に早期に摩耗してしまい、酸化アルミニウムの耐熱性等の効果を発揮させることができないためであり、より好ましくは、0.5μm以上、更に好ましくは1μm以上である。また、20μmを超えると、皮膜中に内部応力等が生じて亀裂等が発生し易くなるためであり、より好ましくは10μm以下、更に好ましくは5μm以下である。
【0028】
<皮膜形成方法>
本発明の硬質皮膜は、例えば次の様な方法で形成することができる。即ち、AIP法とアンバランスドマグネトロンスパッタ法(以下、UBMS法という)を組み合わせたPVD装置を使用し、AIP用固体状ターゲットとしてTi−Al合金ターゲット、UBMS法用固体状スパッタターゲットとしてCrターゲットおよびAlターゲットを用い、順次各々の蒸発源を作動させることによって、一連の成膜プロセスで、TiとAlの複合窒化皮膜、酸化物皮膜として酸化クロム皮膜、およびコランダム構造の酸化アルミニウム皮膜を基材表面に順次層状に形成することができる。
【0029】
また、上記Crターゲットの代わりに、スパッタターゲットとしてCr−Fe合金ターゲットまたはCr−Al合金ターゲットを用いれば、酸化物皮膜として、CrとFeの複合酸化物皮膜またはCrとAlの複合酸化物皮膜を得ることができる。
【0030】
更に前記中間層は、前記複合窒化皮膜を形成した後に、例えばAIP法やUBMS法等のPVD法で、Al−Cr合金をターゲットに用いて窒素雰囲気下で放電させることによって形成できる。
【0031】
中間層として(Alz,Cr(1-z))N(ただし、zは0≦z≦0.90)皮膜を形成した後、該中間層上に、酸化物皮膜として(Aly,Cr(1-y))23(ただし、yは0≦y≦0.90)皮膜を形成する場合には、酸素雰囲気下で基材温度を450℃以上に昇温して前記中間層の表面を酸化することで、上記(Al,Cr)23層を、中間層表層部に容易に形成することができる。前記基材温度は、好ましくは490℃以上である。尚、基材が高速度鋼の場合には、基材温度が高すぎると基材硬度が低下するため、前記酸化は500℃以下で行うことが好ましい。
【0032】
本発明では、上述の様にして予め酸化物皮膜を形成しておくことによって、基材温度を好ましくは300℃以上にすれば、コランダム構造の酸化アルミニウムを該酸化物皮膜上に形成することができるのであり、上記基材温度は、より好ましくは400℃以上であり、更に好ましくは450℃以上である。
【0033】
また、上記基材温度が高すぎると、基材が高速度鋼の場合に軟質化する等、基材の特性を損ねることとなるので、基材温度500℃以下で酸化アルミニウム皮膜を形成することが好ましい。
【0034】
尚、前記酸化物皮膜等の成膜方法として示したAIP法やUBMS法は、PVD法の一例であって、本発明の硬質皮膜は、上記AIP法やUBMS法に限らず、PVD法として広く行われているいずれの方法によっても形成され得るものである。
【0035】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0036】
(1)以下に示す方法で、基材上に硬質皮膜を形成した。尚、コランダム構造の酸化アルミニウムは、それぞれ表1に示す基材温度にて形成した。
【0037】
▲1▼表1に示すNo.1〜29および31〜44では、図1に概略例示するようなPVD成膜装置にて硬質皮膜を形成した。即ち、AIP用ターゲットとしてTi−Al合金ターゲット6、UBMS用ターゲットとしてCrターゲット4およびAlターゲット5をセットし、試料保持台3上に、基材2として超硬合金チップ(SNGN120408)または高速度鋼チップをセットし、チャンバ1内の排気8を行って真空状態にした後、以下の各皮膜の形成を各々のガス7を導入して行った。
【0038】
即ち、チャンバ1内を窒素ガス雰囲気とし、Ti−Al合金ターゲット6を用いて、AIP法で膜厚3μmの窒化チタンアルミニウム硬質皮膜を形成し、続いてCrターゲット4を用い、アルゴンと酸素の混合ガス雰囲気下にてUBMS法で酸化クロム皮膜を形成した。更に、Alターゲット5を用い、アルゴンと酸素の混合ガス雰囲気下にてUBMS法で酸化アルミニウム膜を形成した。
【0039】
尚、酸化物皮膜として(Al,Cr)23皮膜や(Fe,Cr)23皮膜を形成する場合には、Crターゲット4に代えて、Al−Cr合金ターゲット、Fe−Cr合金ターゲットを用いた。
【0040】
また、No.33、34および39では、複合窒化皮膜(窒化チタンアルミニウム硬質皮膜)を設けず、基材表面に直接、酸化物皮膜を形成した。
【0041】
▲2▼表1に示すNo.30、45、46、48および49では、図2に概略例示するようなPVD成膜装置にて硬質皮膜を形成した。即ち、AIP用ターゲットとして、Ti−Al合金ターゲット6およびCr−Al合金ターゲット9、UBMS用ターゲットとしてAlターゲット5をセットし、試料保持台3上に、基材2として超硬合金チップ(SNGN120408)または高速度鋼チップをセットし、チャンバ1内の排気8を行って真空状態にした後、以下の各皮膜の形成を各々のガス7を導入して行った。
【0042】
即ち、チャンバ1内を窒素ガス雰囲気とし、Ti−Al合金ターゲット6を用いて、AIP法で膜厚3μmの窒化チタンアルミニウム硬質皮膜を形成し、続いてCr−Al合金ターゲット9を用い、窒素雰囲気下にてAIP法で窒化クロムアルミニウム膜を形成した。その後、前記皮膜の形成された基材を装置内に保ったまま、酸素雰囲気下にて450℃で酸化してAlとCrの複合酸化物皮膜を形成した。次に、アルゴンと酸素の混合ガス雰囲気下Alターゲット5を用い、UBMS法で酸化アルミニウム皮膜を形成した。尚、上記窒化クロムアルミニウム膜の膜厚は、いずれも0.5μmであった。
【0043】
また、No.47では、図2に例示すような装置のチャンバ1内に、更にFe−Cr合金ターゲットを設け、上記と同様にして窒化チタンアルミニウム硬質皮膜および窒化クロムアルミニウム皮膜を形成した後、アルゴンと酸素の混合ガス雰囲気下にて、UBMS法で鉄とクロムの複合酸化物皮膜を形成し、その後上記と同様にして酸化アルミニウム皮膜を形成した。
【0044】
この様にして得られた酸化アルミニウム皮膜の結晶構造および酸化物皮膜の格子定数を薄膜X線回折装置または透過電子顕微鏡にて同定した。また酸化アルミニウム皮膜および酸化物皮膜の膜厚は、走査型電子顕微鏡または透過電子顕微鏡を用いて測定した。更に皮膜中の成分は、X線光電子分光法による深さ方向分析にて測定した。その結果を表1に示す。
【0045】
【表1】

Figure 0004502475
【0046】
【表2】
Figure 0004502475
【0047】
表1および表2より、No.1〜13、15〜20、23、25〜27、30〜34、37〜39、41〜43および45〜47は、本発明の要件を満たしているため、結晶構造がコランダム構造のみからなる酸化アルミニウム皮膜を得ることができた。
【0048】
これに対して、No.14、21、22、24、28、29、35、36、40、44、48および49では、コランダム構造のみからなる酸化アルミニウム皮膜が得られなかった。即ち、No.21、22、28、40及び44は、酸化物皮膜の格子定数が本発明で規定する範囲を外れているため、またNo.14、24、35及び48は、酸化物皮膜の膜厚が薄すぎるため、生成した酸化アルミニウム皮膜において、コランダム構造以外に立方晶構造も形成される結果となった。
【0049】
上述の通り、酸化物皮膜の膜厚が薄すぎるNo.14、24、35及び48では、形成された酸化アルミニウムが、コランダム構造と立方晶構造の混合結晶となったが、これを透過電子顕微鏡にて断面観察したところ、基材が十分に酸化物皮膜で覆われておらず、基材表面が露出している部分に、立方晶構造の酸化アルミニウムが形成していることがわかった。
【0050】
更にNo.29、36および49は、酸化アルミニウム皮膜の形成を、いずれも本発明で好ましいとする温度よりも低温で行ったため、コランダム構造以外の結晶構造が形成されたものと考えられる。
【0051】
(2)更に、No.5〜10、14および29で得られたチップを用いて、以下に示す条件で丸棒(S50C)の旋削試験を行い、旋削によってチップに生じたクレーター摩耗の深さを表面粗さ計を用いて測定した。その結果を表3に示す。
被削材:S50C
切削速度:200m/min.
送り速度:0.2mm/sec.
切り込み:2mm
乾式(エアーブローのみ)
切削時間 10分
【0052】
【表3】
Figure 0004502475
【0053】
表3より、No.5〜10は、コランダム構造の酸化アルミニウムが形成されているため、摩耗量は小さく耐摩耗性に優れていることが分かる。これに対して、酸化アルミニウムの構造がコランダム構造以外であるNo.14および29では、摩耗量が大きくなり、耐摩耗性に劣る結果となった。
【0054】
【発明の効果】
本発明は以上の様に構成されており、コランダム構造の酸化アルミニウムを積層する前に、コランダム構造であり且つ本発明で規定する格子定数の酸化物皮膜を予め形成しておくことで、耐熱性、耐摩耗性等に優れたコランダム構造の酸化アルミニウムを低温条件下で形成することができることとなった。そして、この様な硬質皮膜の形成方法の実現によって、多様な基材に対して、コランダム構造の酸化アルミニウムを形成し、優れた耐熱性、耐摩耗性等を付与できることとなった。
【図面の簡単な説明】
【図1】本発明に係る硬質皮膜の形成に用いるPVD成膜装置を例示する概略断面説明図である。
【図2】本発明に係る硬質皮膜の形成に用いる別のPVD成膜装置を例示する概略断面説明図である。
【符号の説明】
1 チャンバ
2 基材
3 試料保持台
4 Crターゲット(UBMS用)
5 Alターゲット(UBMS用)
6 Ti−Al合金ターゲット(AIP用)
7 導入ガス(窒素、酸素、アルゴン)
8 排気
9 CrターゲットまたはCr−Al合金ターゲット(AIP用)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hard film excellent in wear resistance and heat resistance applied to wear-resistant members such as cutting tools, sliding members and molds. The present invention relates to a useful hard film capable of forming a hard film having excellent properties under low temperature conditions without impairing the characteristics of the base material such as the cutting tool and the sliding member, and a method for forming the hard film.
[0002]
In addition, although the hard film | membrane used as the object of this invention is applicable to the above-mentioned various uses, below, description is advanced centering on the case where it applies to a cutting tool as a representative example.
[0003]
[Prior art]
In general, for cutting tools and sliding members that require excellent wear resistance and sliding properties, physical vapor deposition (hereinafter referred to as PVD method) or chemicals are applied to the surface of a substrate such as high-speed steel or cemented carbide. A method of forming a hard film such as titanium nitride or titanium aluminum nitride is employed by a method such as a vapor deposition method (hereinafter referred to as a CVD method), but the cutting edge of a cutting tool or the like has a high temperature of 1000 ° C. or higher during cutting. In particular, heat resistance is often ensured by forming aluminum oxide as a hard film.
[0004]
The aluminum oxide has various crystal structures depending on the temperature, and all of them are thermally metastable. However, when the temperature of the cutting edge during cutting, such as a cutting tool, fluctuates significantly over a wide range from room temperature to 1000 ° C. or more, the crystal structure of the aluminum oxide changes, causing problems such as cracking or peeling of the film. Arise. However, only the corundum-structured aluminum oxide produced by increasing the substrate temperature to 1000 ° C. or higher by adopting the CVD method, once maintained, maintains a thermally stable structure regardless of the temperature. To do. Therefore, in order to impart heat resistance to a cutting tool or the like, coating with aluminum oxide having a corundum structure is a very effective means.
[0005]
However, as described above, corundum-structured aluminum oxide cannot be formed unless the substrate is heated to 1000 ° C. or higher, and therefore, applicable substrates are limited. That is, depending on the type of the base material, when it is exposed to a high temperature of 1000 ° C. or higher, it becomes soft and loses its suitability as a base material for wear-resistant members.
[0006]
In response to such a problem, Japanese Patent Application Laid-Open No. 5-208326 reports that a high hardness (Al, Cr) 2 O 3 mixed crystal was obtained at 500 ° C. or lower. However, when the work material is composed mainly of iron, Cr present on the surface of the mixed crystal film tends to cause a chemical reaction with iron on the cutting surface during cutting. Causes to shrink.
[0007]
Also, O.Zywitzki, G.Hoetzsch et al. Report that a corundum aluminum oxide film is formed at 750 ° C. or higher by reactive sputtering using a high power (11-17 kW) pulse power source. (Surf. Coat. Technol., 86-87 (1996) 640-647). However, in order to obtain aluminum oxide having a corundum structure by this method, it is inevitable to increase the size of the pulse power source, and the base material temperature must be increased to 750 ° C. or higher in the production. There arises a problem that base material properties are impaired, such as softening of a high-speed steel generally used.
[0008]
In order to provide wear resistance and the like with cutting tools that are currently widely used, a coating made of titanium nitride, carbide, carbonitride, or the like is formed on the surface of the substrate, and the corundum structure is oxidized on the coating. Aluminum is formed. Furthermore, in recent years, a composite nitride film of titanium and aluminum (hereinafter referred to as TiAlN) exhibits superior wear resistance, so that it is cut instead of a film made of nitride, carbide, carbonitride, or the like of titanium. It is being applied to tools.
[0009]
However, the TiAlN film can be formed only by an arc ion plating method (hereinafter referred to as AIP method), which is a kind of PVD method, while the aluminum oxide having the corundum structure can be formed only by a CVD method. In order to obtain a laminated film, it is necessary to sequentially form each film using a CVD apparatus and a PVD apparatus, and the production efficiency is very poor. Therefore, it is desired to establish a technique that can efficiently form the aluminum oxide having the corundum structure, the TiAlN film, and other useful films by a continuous process.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the circumstances as described above, and its purpose is to efficiently produce a hard film excellent in heat resistance, wear resistance and the like at a low temperature without impairing the properties of the substrate. It is to provide a useful method that can.
[0011]
[Means for Solving the Problems]
The hard film according to the present invention is a corundum-structured aluminum oxide film formed on one surface of a corundum-structured oxide film having a lattice constant of 4.779 mm or more and 5.000 mm or less and a film thickness of at least 0.005 μm. It is the gist of what is being done.
[0012]
The component of the oxide film is preferably Cr 2 O 3 , (Fe, Cr) 2 O 3 or (Al, Cr) 2 O 3 , and the oxide film is formed of the (Fe, Cr). ) 2 O 3, it is preferable that (Fe x , Cr (1-x) ) 2 O 3 (where x is 0 ≦ x ≦ 0.54), and (Al, Cr) 2 In the case of O 3, it is preferable that (Al y , Cr (1-y) ) 2 O 3 (where y is 0 ≦ y ≦ 0.90).
[0013]
Furthermore, on the other surface of the oxide film having the corundum structure, a composite nitride film of Al and one or more elements selected from the group consisting of Ti, Cr, and V, with or without an intermediate layer, is formed. It is preferable that a film made of (Al z , Cr (1-z) ) N (where z is 0 ≦ z ≦ 0.90) is formed as the intermediate layer.
[0014]
Further, the present invention includes an abrasion-resistant member in which any one of the above hard films is formed on a base material with the aluminum oxide having the corundum structure as a surface side.
[0015]
The method for producing a wear-resistant member defined in the present invention includes a step of forming the corundum-structured aluminum oxide, oxide film, composite nitride film, and intermediate layer formed as necessary by physical vapor deposition. It has a gist. In carrying out this manufacturing method, in order to form the (Al y , Cr (1-y) ) 2 O 3 (where y is 0 ≦ y ≦ 0.90) film, the (Al z 1 , Cr (1-z) ) N (where z is 0 ≦ z ≦ 0.90) After forming a film, at least part of the surface layer side is oxidized to be converted into an oxide. Preferably, the oxidation in this case is desirably performed while maintaining the substrate temperature at 450 ° C. or higher in an oxygen atmosphere. Further, the aluminum oxide film having the corundum structure is preferably formed at a substrate temperature of 300 ° C. or higher.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the inventors of the present invention have made extensive studies on a method that can form a corundum-structured aluminum oxide at a low temperature that does not impair the properties of the substrate to be coated. As a result, if a substance having a crystal structure of the same corundum structure as that of aluminum oxide and having a specific lattice constant is formed in advance as an oxide film, the corundum is formed on the oxide film even under low temperature conditions. It has been found that aluminum oxide having a structure can be easily formed. Hereinafter, the oxide film, which is the point of the present invention, and other useful films imparting excellent properties will be described in detail.
[0017]
<Oxide film>
As a material having the same corundum crystal structure as that of the aluminum oxide to be coated and having a lattice constant close to that of aluminum oxide, Cr 2 O 3 , Fe 2 O 3 , (Fe, Cr) 2 O 3 , (Cr, Al) 2 O 3 is mentioned. Therefore, when aluminum oxide is formed on these various oxide films, when the lattice constant of the oxide is in the range of 4.779-5.000Å, relatively low temperature conditions (for example, 300 ° C.) Corundum-structured aluminum oxide is formed even at ~ 700 ° C), but even in the case of a corundum-structured oxide film, if the lattice constant is outside the above range, it is found that corundum-structured aluminum oxide is not formed. It was.
[0018]
That is, when the lattice constant of the oxide film exceeds 5.000 mm, the deviation from the lattice constant of the aluminum oxide to be coated becomes large, so that it is difficult to form a corundum-structured aluminum oxide, and a corundum such as a cubic structure is formed. A structure other than the structure is formed. Therefore, the lattice constant of the oxide film must be suppressed to 5.000 mm or less, and is preferably 4.982 mm or less.
[0019]
When a composite oxide of Fe and Cr is used as the oxide film, if the Fe composition ratio exceeds 0.54, the lattice constant of the composite oxide exceeds 5.000Å, and corundum is formed on the oxide film. It becomes impossible to form aluminum oxide having only a structure. Therefore, in the case of using a composite oxide of Fe and Cr as an oxide film, the composition formula (Fe x, Cr (1- x)) 2 O 3, 0 ≦ x ≦ 0.54 and x, more preferably It should be in the range of 0 ≦ x ≦ 0.30.
[0020]
Next, the reason why the lower limit of the lattice constant of the oxide film is specified to 4.779 mm will be described.
[0021]
The lattice constant of Cr 2 O 3 and Fe 2 O 3, since both larger than the lattice constant of Al 2 O 3, to obtain a smaller oxide film of lattice constant close to of Al 2 O 3 is, Cr A composite oxide of Al and Al or a composite oxide of Fe and Al may be used. However, since the complex oxide of Fe and Al has a spinel structure and a pure corundum structure is not formed, it is not suitable for the oxide film of the present invention.
[0022]
In the case of a complex oxide of Cr and Al, the lattice constant decreases as the Al composition ratio increases as described above. However, when the Al composition ratio exceeds 0.90, the corundum-structured oxide film becomes hot. However, at a low temperature, a crystal structure other than the corundum structure is generated, and an oxide film having a pure corundum structure cannot be obtained. Therefore, when the lattice constant of (Al 0.9 , Cr 0.1 ) 2 O 3 is 4.779%, which is the lower limit of the lattice constant of the oxide film, and a composite oxide of Cr and Al is used as the oxide film, In the composition formula (Al y , Cr (1-y) ) 2 O 3 , y is preferably 0 ≦ y ≦ 0.90.
[0023]
In the present invention, the thickness of the oxide film needs to be at least 0.005 μm. This is because when the thickness of the oxide film is smaller than 0.005 μm, a dense oxide film is not formed, and aluminum oxide having only a corundum structure is difficult to be formed. Preferably it is 0.01 micrometer or more, More preferably, it is 0.02 micrometer or more. Further, if the film thickness is too thick, cracking or peeling is likely to occur in the film during cutting. Therefore, the thickness is preferably 10 μm or less, more preferably 5 μm or less, and further preferably 3 μm or less.
[0024]
<Composite nitride film>
In the present invention, in order to further improve the wear resistance when used as a cutting tool or the like, the oxide film is a composite nitride film of one or more elements selected from the group consisting of Ti, Cr and V and Al It is desirable to be formed on the top.
[0025]
In addition, since the said effect is not exhibited when the film thickness of this composite nitride film is too thin, it is preferable to set it as 0.5 micrometer or more, More preferably, it is 1 micrometer or more. Moreover, since a film | membrane will crack at the time of cutting when a film thickness is too thick, it is preferable to set it as 20 micrometers or less, More preferably, it is 10 micrometers or less.
[0026]
<Intermediate layer>
It is also effective to improve the adhesion of the film by providing an Al and Cr nitride layer as an intermediate layer between the base material and the oxide film. As will be described later, the surface layer part of the intermediate layer is oxidized to produce a complex oxide of Al and Cr having a corundum structure [(Al y , Cr (1-y) ) 2 O 3 (where y is 0 ≦ y ≦ 0.90)] When a film is formed, the nitride layer of Al and Cr has a composition formula (Al z , Cr (1-z) ) N, and z is 0 ≦ z ≦ 0.90. Preferably, 0 ≦ z ≦ 0.75.
[0027]
<Aluminum oxide film>
The film thickness of the aluminum oxide having a corundum structure is preferably 0.1 to 20 μm. If the film thickness of the aluminum oxide is less than 0.1 μm, for example, when it is applied to a cutting tool, it wears out early, and the effects such as heat resistance of the aluminum oxide cannot be exhibited. Preferably, it is 0.5 μm or more, more preferably 1 μm or more. On the other hand, when the thickness exceeds 20 μm, internal stress or the like is generated in the film, and cracks or the like are likely to occur.
[0028]
<Film formation method>
The hard film of the present invention can be formed, for example, by the following method. That is, using a PVD apparatus that combines an AIP method and an unbalanced magnetron sputtering method (hereinafter referred to as UBMS method), a Ti-Al alloy target as a solid target for AIP, a Cr target as a solid sputtering target for UBMS method, and By using an Al target and sequentially operating each evaporation source, a composite nitride film of Ti and Al, a chromium oxide film as an oxide film, and an aluminum oxide film with a corundum structure are formed on the substrate surface in a series of film formation processes. Can be sequentially formed into layers.
[0029]
In addition, if a Cr—Fe alloy target or a Cr—Al alloy target is used as the sputter target instead of the Cr target, a complex oxide film of Cr and Fe or a complex oxide film of Cr and Al is used as the oxide film. Obtainable.
[0030]
Further, the intermediate layer can be formed by forming the composite nitride film and then discharging it under a nitrogen atmosphere using an Al-Cr alloy as a target by a PVD method such as an AIP method or a UBMS method.
[0031]
After forming an (Al z , Cr (1-z) ) N film (where z is 0 ≦ z ≦ 0.90) as an intermediate layer, an oxide film (Al y , Cr ( 1-y) ) 2 O 3 (where y is 0 ≦ y ≦ 0.90) When forming a film, the surface of the intermediate layer is raised by raising the substrate temperature to 450 ° C. or higher in an oxygen atmosphere. By oxidizing the above, the (Al, Cr) 2 O 3 layer can be easily formed on the surface layer portion of the intermediate layer. The substrate temperature is preferably 490 ° C. or higher. When the base material is high-speed steel, the base material hardness is lowered when the base material temperature is too high. Therefore, the oxidation is preferably performed at 500 ° C. or lower.
[0032]
In the present invention, by forming the oxide film in advance as described above, the aluminum oxide having a corundum structure can be formed on the oxide film if the substrate temperature is preferably 300 ° C. or higher. The substrate temperature is more preferably 400 ° C. or higher, and further preferably 450 ° C. or higher.
[0033]
Also, if the substrate temperature is too high, the properties of the substrate will be impaired, such as softening when the substrate is high speed steel, so an aluminum oxide film should be formed at a substrate temperature of 500 ° C. or lower. Is preferred.
[0034]
The AIP method and the UBMS method shown as the method for forming the oxide film and the like are examples of the PVD method, and the hard film of the present invention is not limited to the AIP method and the UBMS method, and is widely used as the PVD method. It can be formed by any method used.
[0035]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0036]
(1) A hard film was formed on a substrate by the method described below. The aluminum oxide having a corundum structure was formed at the substrate temperature shown in Table 1, respectively.
[0037]
(1) No. shown in Table 1 In 1-29 and 31-44, a hard film was formed by a PVD film forming apparatus as schematically illustrated in FIG. That is, a Ti-Al alloy target 6 is set as an AIP target, a Cr target 4 and an Al target 5 are set as a UBMS target, and a cemented carbide chip (SNGN120408) or high-speed steel is used as a base material 2 on a sample holder 3. After the chip was set and the inside of the chamber 1 was evacuated 8 to be in a vacuum state, the following respective films were formed by introducing each gas 7.
[0038]
That is, the inside of the chamber 1 is made a nitrogen gas atmosphere, a Ti-Al alloy target 6 is used to form a titanium aluminum nitride hard film having a film thickness of 3 μm by the AIP method, and then a Cr target 4 is used to mix argon and oxygen. A chromium oxide film was formed by a UBMS method in a gas atmosphere. Furthermore, an aluminum oxide film was formed by an UBMS method using an Al target 5 in a mixed gas atmosphere of argon and oxygen.
[0039]
When forming an (Al, Cr) 2 O 3 film or (Fe, Cr) 2 O 3 film as an oxide film, instead of the Cr target 4, an Al—Cr alloy target or an Fe—Cr alloy target is used. Was used.
[0040]
No. In Nos. 33, 34 and 39, a composite nitride film (titanium nitride aluminum hard film) was not provided, and an oxide film was formed directly on the substrate surface.
[0041]
(2) No. shown in Table 1 In 30, 45, 46, 48 and 49, a hard film was formed by a PVD film forming apparatus as schematically illustrated in FIG. That is, a Ti—Al alloy target 6 and a Cr—Al alloy target 9 as AIP targets, and an Al target 5 as a UBMS target are set, and a cemented carbide chip (SNGN120408) as a substrate 2 on the sample holder 3. Alternatively, after setting a high-speed steel chip and evacuating the chamber 1 to make a vacuum, the following respective films were formed by introducing each gas 7.
[0042]
That is, the inside of the chamber 1 is made a nitrogen gas atmosphere, a Ti—Al alloy target 6 is used to form a hard titanium aluminum nitride film having a thickness of 3 μm by the AIP method, and then a Cr—Al alloy target 9 is used to form a nitrogen atmosphere. Below, a chromium aluminum nitride film was formed by the AIP method. Thereafter, the substrate on which the film was formed was kept in the apparatus, and oxidized at 450 ° C. in an oxygen atmosphere to form a composite oxide film of Al and Cr. Next, an aluminum oxide film was formed by the UBMS method using the Al target 5 in a mixed gas atmosphere of argon and oxygen. The film thickness of the chromium aluminum nitride film was 0.5 μm.
[0043]
No. 47, an Fe—Cr alloy target is further provided in the chamber 1 of the apparatus as shown in FIG. 2 and a titanium aluminum nitride hard film and a chromium aluminum nitride film are formed in the same manner as described above. In a mixed gas atmosphere, a complex oxide film of iron and chromium was formed by the UBMS method, and then an aluminum oxide film was formed in the same manner as described above.
[0044]
The crystal structure of the aluminum oxide film thus obtained and the lattice constant of the oxide film were identified by a thin film X-ray diffractometer or a transmission electron microscope. The film thicknesses of the aluminum oxide film and the oxide film were measured using a scanning electron microscope or a transmission electron microscope. Furthermore, the components in the film were measured by depth direction analysis by X-ray photoelectron spectroscopy. The results are shown in Table 1.
[0045]
[Table 1]
Figure 0004502475
[0046]
[Table 2]
Figure 0004502475
[0047]
From Table 1 and Table 2, No. 1 to 13, 15 to 20, 23, 25 to 27, 30 to 34, 37 to 39, 41 to 43, and 45 to 47 satisfy the requirements of the present invention, so that the crystal structure is composed of only a corundum structure. An aluminum film could be obtained.
[0048]
In contrast, no. In 14, 21, 22, 24, 28, 29, 35, 36, 40, 44, 48 and 49, an aluminum oxide film consisting only of a corundum structure was not obtained. That is, no. Nos. 21, 22, 28, 40, and 44 are different in that the lattice constant of the oxide film is outside the range defined in the present invention. Nos. 14, 24, 35, and 48 resulted in the formation of a cubic structure in addition to the corundum structure in the produced aluminum oxide film because the oxide film was too thin.
[0049]
As described above, the oxide film is too thin. In 14, 24, 35 and 48, the formed aluminum oxide was a mixed crystal of a corundum structure and a cubic structure. When this was observed in a cross section with a transmission electron microscope, the substrate was sufficiently oxidized film It was found that aluminum oxide having a cubic structure was formed in the portion where the surface of the base material was exposed without being covered with.
[0050]
Furthermore, no. In Nos. 29, 36 and 49, since the aluminum oxide film was formed at a temperature lower than the temperature preferred in the present invention, it is considered that a crystal structure other than the corundum structure was formed.
[0051]
(2) Further, no. Using the chips obtained in 5-10, 14 and 29, a round bar (S50C) was subjected to a turning test under the following conditions, and the depth of crater wear generated on the chips by turning was measured using a surface roughness meter. Measured. The results are shown in Table 3.
Work material: S50C
Cutting speed: 200 m / min.
Feed rate: 0.2 mm / sec.
Cutting depth: 2mm
Dry type (Air blow only)
Cutting time 10 minutes 【0052】
[Table 3]
Figure 0004502475
[0053]
From Table 3, No. It can be seen that Nos. 5 to 10 have a small wear amount and excellent wear resistance because corundum-structured aluminum oxide is formed. On the other hand, no. In Nos. 14 and 29, the amount of wear increased, resulting in poor wear resistance.
[0054]
【The invention's effect】
The present invention is configured as described above, and before the aluminum oxide having a corundum structure is laminated, an oxide film having a corundum structure and having a lattice constant defined by the present invention is formed in advance, thereby providing heat resistance. Thus, it was possible to form aluminum oxide having a corundum structure excellent in wear resistance and the like under low temperature conditions. By realizing such a method for forming a hard film, it was possible to form corundum-structured aluminum oxide on various substrates and to impart excellent heat resistance, wear resistance, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional explanatory view illustrating a PVD film forming apparatus used for forming a hard film according to the present invention.
FIG. 2 is a schematic cross-sectional explanatory view illustrating another PVD film forming apparatus used for forming a hard film according to the present invention.
[Explanation of symbols]
1 Chamber 2 Base 3 Sample holder 4 Cr target (for UBMS)
5 Al target (for UBMS)
6 Ti-Al alloy target (for AIP)
7 Introduction gas (nitrogen, oxygen, argon)
8 Exhaust 9 Cr target or Cr-Al alloy target (for AIP)

Claims (11)

格子定数が4.779Å以上5.000Å以下で、膜厚が少なくとも0.005μmであるコランダム構造の酸化物皮膜の一方の面に、コランダム構造の酸化アルミニウム皮膜が形成されており、
前記酸化物皮膜の成分が(Fe x ,Cr (1-x) 2 3 (ただし、xは0<x≦0.54)又は(Al y ,Cr (1-y) 2 3 (ただし、yは0<y≦0.90)であることを特徴とする硬質皮膜。
A corundum-structured aluminum oxide film is formed on one surface of a corundum-structured oxide film having a lattice constant of 4.779 mm or more and 5.000 mm or less and a film thickness of at least 0.005 μm .
The components of the oxide film is (Fe x, Cr (1- x)) 2 O 3 ( here, x is 0 <x ≦ 0.54) or (Al y, Cr (1- y)) 2 O 3 ( Wherein y is 0 <y ≦ 0.90) .
前記コランダム構造の酸化物皮膜の他方の面に、中間層を介し又は介さずに、Ti、Cr、Vよりなる群から選択される1種以上の元素とAlとの複合窒化皮膜が形成されている請求項に記載の硬質皮膜。A composite nitride film of one or more elements selected from the group consisting of Ti, Cr and V and Al is formed on the other surface of the oxide film having the corundum structure with or without an intermediate layer. The hard film according to claim 1 . 前記複合窒化皮膜が前記中間層を介して形成されており、前記中間層が(Alz,Cr(1-z))N(ただし、zは0≦z≦0.90)皮膜である請求項に記載の硬質皮膜。 The composite nitride film is formed through the intermediate layer, and the intermediate layer is an (Al z , Cr (1-z) ) N (where z is 0 ≦ z ≦ 0.90) film. 2. Hard coating according to 2 . 請求項1〜のいずれかの硬質皮膜が、前記コランダム構造の酸化アルミニウム皮膜を表面側として基材上に形成されていることを特徴とする耐摩耗部材。The wear-resistant member, wherein the hard coating film according to any one of claims 1 to 3 is formed on a substrate with the corundum-structured aluminum oxide film as a surface side. 請求項2に記載の硬質皮膜が、前記コランダム構造の酸化アルミニウム皮膜を表面側として基材上に形成されている耐摩耗部材を製造する方法であって、前記コランダム構造の酸化アルミニウム、酸化物皮膜、複合窒化皮膜および必要に応じて形成される中間層を、物理蒸着法で形成する工程を含むことを特徴とする耐摩耗部材の製造方法。 3. The method for producing a wear-resistant member , wherein the hard coating according to claim 2 is formed on a substrate with the aluminum oxide coating having the corundum structure as a surface side, the aluminum coating having the corundum structure and the oxide coating. A method for producing a wear-resistant member, comprising a step of forming a composite nitride film and, if necessary, an intermediate layer formed by physical vapor deposition. 請求項3に記載の硬質皮膜であって前記酸化物皮膜の成分が(Al y ,Cr (1-y) 2 3 (ただし、yは0<y≦0.90)である硬質皮膜が、前記コランダム構造の酸化アルミニウム皮膜を表面側として基材上に形成されている耐摩耗部材を製造する方法であって、前記(Alz,Cr(1-z))N(ただし、zは0<z≦0.90)皮膜を形成した後、その表面を酸化して前記(Aly,Cr(1-y)23(ただし、yは0<y≦0.90)からなる前記酸化物皮膜を形成する工程を含むことを特徴とする耐摩耗部材の製造方法。 Component of the oxide film to a hard coating according to claim 3 (Al y, Cr (1 -y)) 2 O 3 ( however, y is 0 <y ≦ 0.90) is a hard film is A method for producing a wear-resistant member formed on a base material with the aluminum oxide film having the corundum structure as a surface side , wherein (Al z , Cr (1-z) ) N (where z is 0) <after forming the z ≦ 0.90) film, wherein the oxidation of the surface of (Al y, Cr (1- y)) 2 O 3 ( however, y is comprised from 0 <y ≦ 0.90) the method for producing a wear-resistant member characterized by comprising the step of forming an oxide film. 前記(Alz,Cr(1-z))N(ただし、zは0<z≦0.90)皮膜表面の酸化を、酸素雰囲気下にて基材温度450℃以上で行う請求項に記載の耐摩耗部材の製造方法。The (Al z, Cr (1- z)) N ( provided that, z is 0 <z ≦ 0.90) oxidation of the film surface, according to claim 6 carried out at a substrate temperature of 450 ° C. or higher under an oxygen atmosphere A method for manufacturing a wear-resistant member. 前記コランダム構造の酸化アルミニウム皮膜を基材温度300℃以上で形成する請求項5〜7のいずれかに記載の耐摩耗部材の製造方法。The method for producing a wear-resistant member according to any one of claims 5 to 7, wherein the aluminum oxide film having a corundum structure is formed at a substrate temperature of 300 ° C or higher. 格子定数が4.779Å以上5.000Å以下で、膜厚が少なくとも0.005μmであるコランダム構造の酸化物皮膜の一方の面に、コランダム構造の酸化アルミニウム皮膜が形成されており、A corundum-structured aluminum oxide film is formed on one surface of a corundum-structured oxide film having a lattice constant of 4.779 mm or more and 5.000 mm or less and a film thickness of at least 0.005 μm.
前記酸化物皮膜の成分がCrThe oxide film component is Cr 22 O 3Three であり、And
前記コランダム構造の酸化物皮膜の他方の面に、中間層を介し又は介さずに、Ti、Cr、Vよりなる群から選択される1種以上の元素とAlとの複合窒化皮膜が形成されていることを特徴とする硬質皮膜。A composite nitride film of one or more elements selected from the group consisting of Ti, Cr, and V and Al is formed on the other surface of the oxide film having the corundum structure with or without an intermediate layer. Hard film characterized by having
格子定数が4.779Å以上5.000Å以下で、膜厚が少なくとも0.005μmであるコランダム構造の酸化物皮膜の一方の面に、コランダム構造の酸化アルミニウム皮膜が形成されており、且つ前記酸化物皮膜の成分が(AlA corundum-structured aluminum oxide film is formed on one surface of a corundum-structured oxide film having a lattice constant of 4.779 mm or more and 5.000 mm or less and a film thickness of at least 0.005 μm, and the oxide The component of the film is (Al yy ,Cr, Cr (1-y)(1-y) ) 22 O 3Three (ただし、yは0≦y≦0.90)である硬質皮膜が、前記コランダム構造の酸化アルミニウム皮膜を表面側として基材上に形成されていると共に、前記基材と前記酸化物皮膜との間に(Al(Where y is 0 ≦ y ≦ 0.90) is formed on the base material with the aluminum oxide film having the corundum structure as the surface side, and the hard film is formed of the base material and the oxide film. In between (Al zz ,Cr, Cr (1-z)(1-z) )N(ただし、zは0≦z≦0.90)皮膜からなる中間層が設けられた耐摩耗部材を製造する方法であって、) N (where z is 0 ≦ z ≦ 0.90) a method for producing a wear-resistant member provided with an intermediate layer comprising a film,
前記(AlSaid (Al zz ,Cr, Cr (1-z)(1-z) )N(ただし、zは0≦z≦0.90)皮膜を形成した後、その表面を酸化して前記(Al) N (where z is 0 ≦ z ≦ 0.90) After forming the film, the surface is oxidized to form the (Al yy ,Cr, Cr (1-y)(1-y) ) 22 O 3Three (ただし、yは0≦y≦0.90)からなる酸化物皮膜を形成する工程を含むことを特徴とする耐摩耗部材の製造方法。(Wherein y is 0 ≦ y ≦ 0.90), and includes a step of forming an oxide film.
前記耐摩耗部材は、前記コランダム構造の酸化物皮膜の他方の面に、中間層を介して、Ti、Cr、Vよりなる群から選択される1種以上の元素とAlとの複合窒化皮膜が形成されている請求項10に記載の耐摩耗部材の製造方法。The wear resistant member has a composite nitride film of Al and one or more elements selected from the group consisting of Ti, Cr, and V via an intermediate layer on the other surface of the oxide film having the corundum structure. The manufacturing method of the wear-resistant member according to claim 10 formed.
JP2000237443A 2000-08-04 2000-08-04 Hard coating, wear-resistant member and method for producing the same Expired - Lifetime JP4502475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237443A JP4502475B2 (en) 2000-08-04 2000-08-04 Hard coating, wear-resistant member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237443A JP4502475B2 (en) 2000-08-04 2000-08-04 Hard coating, wear-resistant member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002053946A JP2002053946A (en) 2002-02-19
JP4502475B2 true JP4502475B2 (en) 2010-07-14

Family

ID=18729303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237443A Expired - Lifetime JP4502475B2 (en) 2000-08-04 2000-08-04 Hard coating, wear-resistant member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4502475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323320B2 (en) 2008-04-24 2019-06-18 Oerlikon Surface Solutions Ag, Pfäffikon Method for producing metal oxide layers of predetermined structure through arc vaporization

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848712B1 (en) 2002-08-08 2018-05-30 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus
US7967957B2 (en) 2002-08-09 2011-06-28 Kobe Steel, Ltd. Method for preparing alumna coating film having alpha-type crystal structure as primary structure
JP4427271B2 (en) * 2003-04-30 2010-03-03 株式会社神戸製鋼所 Alumina protective film and method for producing the same
JP4123051B2 (en) * 2003-05-19 2008-07-23 三菱マテリアル株式会社 Method for producing composite film-coated member
SE526567C2 (en) * 2003-07-16 2005-10-11 Sandvik Intellectual Property Support bar for long hole drill with wear surface in different color
JP4205546B2 (en) 2003-09-16 2009-01-07 株式会社神戸製鋼所 Method for producing a laminated film having excellent wear resistance, heat resistance and adhesion to a substrate
JPWO2006001225A1 (en) * 2004-06-28 2008-04-17 大日本印刷株式会社 Corundum crystal former
JP2006028600A (en) 2004-07-16 2006-02-02 Kobe Steel Ltd Stacked film having excellent wear resistance and heat resistance
JP4780513B2 (en) * 2005-01-21 2011-09-28 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP4770387B2 (en) * 2005-10-21 2011-09-14 三菱マテリアル株式会社 Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting
JP4970886B2 (en) * 2006-03-24 2012-07-11 住友電気工業株式会社 Surface coated cutting tool
EP2077172B1 (en) * 2006-10-02 2020-05-06 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool
NZ576185A (en) * 2006-10-10 2012-10-26 Oerlikon Trading Ag A PVD layer system for coating workpieces with a mixed crystal layer of a polyoxide
US7939181B2 (en) 2006-10-11 2011-05-10 Oerlikon Trading Ag, Trubbach Layer system with at least one mixed crystal layer of a multi-oxide
US9605338B2 (en) 2006-10-11 2017-03-28 Oerlikon Surface Solutions Ag, Pfaffikon Method for depositing electrically insulating layers
US8129040B2 (en) * 2007-05-16 2012-03-06 Oerlikon Trading Ag, Truebbach Cutting tool
DE102007030734A1 (en) * 2007-07-02 2009-01-08 Walter Ag Coated tool
DE102007030735A1 (en) * 2007-07-02 2009-01-08 Walter Ag Tool with multilayer metal oxide coating
SE531933C2 (en) * 2007-12-14 2009-09-08 Seco Tools Ab Coated cemented carbide inserts for machining steel and stainless steel
SE532050C2 (en) * 2008-03-07 2009-10-13 Seco Tools Ab Oxide coated cutting tool cutter for chip separating machining of steel
SE532049C2 (en) * 2008-03-07 2009-10-13 Seco Tools Ab Oxide coated cutting tool cutter for chip separating machining of steel
SE532048C2 (en) * 2008-03-07 2009-10-13 Seco Tools Ab Oxide coated cutting tool cutter for chip separating machining of steel
SE532047C2 (en) 2008-03-07 2009-10-13 Seco Tools Ab Oxide coated cutting tool cutter for chip separating machining of cast iron
JP5435326B2 (en) * 2008-09-02 2014-03-05 日立金属株式会社 Die-casting coating mold and manufacturing method thereof
MX2011003838A (en) * 2008-10-10 2011-05-25 Oerlikon Trading Ag Non gamma - phase cubic alcro.
DE102009044927A1 (en) * 2009-09-23 2011-04-07 Walter Ag tool coating
TW201135817A (en) * 2010-04-09 2011-10-16 Hon Hai Prec Ind Co Ltd Colourful multi-layer film structure and the method manufacturing the same
DE102010028558A1 (en) * 2010-05-04 2011-11-10 Walter Ag PVD hybrid process for the deposition of mixed crystal layers
JP5617933B2 (en) * 2011-01-14 2014-11-05 日立ツール株式会社 Hard film coated tool and manufacturing method thereof
DE102011053372A1 (en) * 2011-09-07 2013-03-07 Walter Ag Tool with chromium-containing functional layer
EP2940178A4 (en) * 2012-12-26 2016-08-17 Wu Shanghua Method for preparing al2o2 coating on surface of silicon -nitride -cutting tool by using pvd,and composite coating method
EP3406751A1 (en) * 2017-05-24 2018-11-28 Walter Ag A coated cutting tool and a method for its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335917A (en) * 2000-05-31 2001-12-07 Agency Of Ind Science & Technol Method for producing crystalline alumina thin film at low temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335917A (en) * 2000-05-31 2001-12-07 Agency Of Ind Science & Technol Method for producing crystalline alumina thin film at low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323320B2 (en) 2008-04-24 2019-06-18 Oerlikon Surface Solutions Ag, Pfäffikon Method for producing metal oxide layers of predetermined structure through arc vaporization

Also Published As

Publication number Publication date
JP2002053946A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
JP4502475B2 (en) Hard coating, wear-resistant member and method for producing the same
US6767627B2 (en) Hard film, wear-resistant object and method of manufacturing wear-resistant object
KR100610298B1 (en) Multilayered film having excellent wear resistance, heat resistance and adhesion to substrate and method for producing the same
US7169485B2 (en) Multilayer coating excellent in wear resistance and heat resistance
JP3621943B2 (en) High wear resistance and high hardness coating
JP2793772B2 (en) Hard film coated tools and hard film coated members with excellent adhesion
JP3488526B2 (en) Hard coatings and hard coatings with excellent wear resistance
JP4427271B2 (en) Alumina protective film and method for producing the same
JP2010001547A (en) Hard film-coated member and tool for molding
GB2425780A (en) PVD carbonitride coating
JP5435326B2 (en) Die-casting coating mold and manufacturing method thereof
JP3963354B2 (en) Coated cutting tool
JP3697221B2 (en) High wear and hardness coating with excellent high temperature oxidation resistance
JP3971293B2 (en) Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance
JP2002337006A (en) Coated cutting tool
JPH10317123A (en) Crystalline oriented hard coated member
JP3971337B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
JP3358696B2 (en) High strength coating
JP3822655B2 (en) Hard film and hard film coated member with excellent wear resistance
JP2009191370A (en) Oxide coating film, material coated with oxide coating film, and method for forming oxide coating film
KR20070105614A (en) Coating materials with excellent oxidation resistance for surface covering for using at high temperature
JP2009035784A (en) Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film
JP2004211136A (en) Hard coating superior in adhesiveness, and manufacturing method therefor
JP2002254228A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP3971339B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4502475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

EXPY Cancellation because of completion of term