JP3971293B2 - Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance - Google Patents

Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance Download PDF

Info

Publication number
JP3971293B2
JP3971293B2 JP2002357210A JP2002357210A JP3971293B2 JP 3971293 B2 JP3971293 B2 JP 3971293B2 JP 2002357210 A JP2002357210 A JP 2002357210A JP 2002357210 A JP2002357210 A JP 2002357210A JP 3971293 B2 JP3971293 B2 JP 3971293B2
Authority
JP
Japan
Prior art keywords
film
alumina
oxide
hard
containing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002357210A
Other languages
Japanese (ja)
Other versions
JP2004124246A (en
Inventor
利光 小原
賀充 碇
浩 玉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002357210A priority Critical patent/JP3971293B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to US10/523,931 priority patent/US7531212B2/en
Priority to PCT/JP2003/010114 priority patent/WO2004015170A1/en
Priority to EP20140169853 priority patent/EP2865784A1/en
Priority to EP14169851.4A priority patent/EP2848712B1/en
Priority to AU2003254888A priority patent/AU2003254888A1/en
Priority to CNB038189275A priority patent/CN100413998C/en
Priority to EP03784598.9A priority patent/EP1553210B1/en
Publication of JP2004124246A publication Critical patent/JP2004124246A/en
Priority to IL166622A priority patent/IL166622A/en
Application granted granted Critical
Publication of JP3971293B2 publication Critical patent/JP3971293B2/en
Priority to US12/402,755 priority patent/US8323807B2/en
Priority to US12/402,763 priority patent/US20090173625A1/en
Priority to IL218369A priority patent/IL218369A0/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具、摺動部材、金型等の如き耐摩耗部材に被覆される積層皮膜に関するものであり、詳細には、耐摩耗性および耐熱性に優れた積層皮膜と、上記切削工具や摺動部材等の基材の特性を損なうことのない低温条件で該積層皮膜を形成することのできる有用な製造方法に関するものである。尚、本発明の対象となる積層皮膜は、上記した様々な用途に適用できるが、以下では代表例として切削工具に適用する場合を中心に説明を進める。
【0002】
【従来の技術】
一般に、優れた耐摩耗性や摺動特性が求められる切削工具や摺動部材として、高速度鋼製や超硬合金製等の基材表面に、チタン窒化物やチタンアルミニウム窒化物等の硬質皮膜が、物理蒸着法(以下、PVD法という)や化学蒸着法(以下、CVD法という)等の方法で形成されたものが用いられている。
【0003】
特に切削工具として使用する場合、前記硬質皮膜には耐摩耗性と耐熱性(高温での耐酸化性)が特性として要求されるので、該両特性を有するものとして、特にチタンアルミニウム窒化物(TiAlN)が、切削時の刃先温度が高温となる超硬工具等への被覆材料として近年多く使用されている。この様にTiAlNが優れた特性を発揮するのは、皮膜に含まれるアルミニウムの作用により耐熱性が向上し、800℃程度の高温まで安定した耐摩耗性と耐熱性を維持できるからである。該TiAlNとしては、TiとAlの組成比の異なる様々なものが使用されているが、その大半は、上記両特性を備えたTi:Alの原子比が50:50〜25:75のものである。
【0004】
ところで切削工具等の刃先は、切削時に1000℃以上の高温となる場合がある。この様な状況下、上記TiAlN膜のみでは十分な耐熱性を確保できないため、例えば、特許文献1に示されるように、TiAlN膜を形成した上に、更にアルミナ層を形成して耐熱性を確保することが行われている。
【0005】
アルミナは、温度によって様々な結晶構造をとるが、いずれも熱的に準安定状態にある。しかし、切削工具の如く切削時における刃先の温度が、常温から1000℃以上にわたる広範囲で著しく変動する場合には、アルミナの結晶構造が変化し、皮膜に亀裂が生じたり剥離する等の問題を生じる。ところが、CVD法を採用し、基材温度を1000℃以上に高めることによって形成されるα型結晶構造のアルミナだけは、一旦形成されると、以後の温度に関係なく熱的に安定な構造を維持する。したがって、切削工具等に耐熱性を付与するには、α型結晶構造のアルミナ膜を被覆することが有効な手段とされている。
【0006】
しかしながら、上述した通りα型結晶構造のアルミナを形成するには、基材を1000℃以上にまで加熱しなければならないため、適用できる基材が限られる。基材の種類によっては、1000℃以上の高温にさらされると軟質化し、耐摩耗部材用基材としての適性が失われる可能性が生じるからである。また、超硬合金の様な高温用基材であっても、この様な高温にさらされると変形等の問題が生じる。また、耐摩耗性を発揮する膜として基材上に形成されたTiAlN膜等の硬質皮膜の実用温度域は一般に最高で800℃程度であり、1000℃以上の高温にさらされると、皮膜が変質し、耐摩耗性が劣化するおそれがある。
【0007】
この様な問題に対し、特許文献2には、上記アルミナと同レベルの高硬度を有する(Al,Cr)23混合結晶が、500℃以下の低温域で得られた旨報告されている。しかしながら、被削材が鉄を主成分とするものである場合、前記混合結晶皮膜の表面に存在するCrが、切削時に被削材中の鉄と化学反応を起こし易いため、皮膜の消耗が激しく寿命を縮める原因となる。
【0008】
また、O.Zywitzki,G.Hoetzschらは、非特許文献1で、高出力(11−17kW)のパルス電源を用いて反応性スパッタリングを行うことで、750℃でα型結晶構造の酸化アルミニウム皮膜を形成できた旨報告している。しかし、この方法でα型結晶構造の酸化アルミニウムを得るには、パルス電源の大型化が避けられない。
【0009】
この様な問題を解決した技術として、特許文献3には、格子定数が4.779Å以上5.000Å以下で、膜厚が少なくとも0.005μmであるコランダム構造(α型結晶構造)の酸化物皮膜を下地層とし、該下地層上にα型結晶構造のアルミナ皮膜を形成する方法が開示されている。上記酸化物皮膜の成分は、Cr23、(Fe,Cr)23又は(Al,Cr)23のいずれかであることが好ましく、該酸化物皮膜の成分が(Fe,Cr)23である場合には、(Fex,Cr(1-x)23(ただし、xは0≦x≦0.54)を採用することがより好ましく、また、該酸化物皮膜の成分が(Al,Cr)23である場合には、(Aly,Cr(1-y)23(ただし、yは0≦y≦0.90)を採用することがより好ましいと示されている。
【0010】
また、硬質皮膜としてTi、Cr、Vよりなる群から選択される1種以上の元素とAlとの複合窒化皮膜を形成した上に、中間層として(Alz,Cr(1-z))N(ただし、zは0≦z≦0.90)からなる皮膜を形成し、さらに該皮膜を酸化処理してコランダム構造(α型結晶構造)の酸化物皮膜を形成した後、該酸化物皮膜上にα型アルミナを形成することが有用である旨示されている。
【0011】
しかし上記方法では、α型結晶構造のアルミナ膜を形成するにあたり、例えばCrN皮膜を形成し、該CrN皮膜を酸化してコランダム構造(α型結晶構造)を有するCr23を中間膜として別途形成しなければならないため、積層皮膜の形成効率を高めるうえでは、なお改善の余地が残されている。また、中間膜として形成されたCr含有皮膜による切削性能の低下が懸念されることから、切削性能を高める観点からも改善の余地を残すものと考えられる。
【0012】
【特許文献1】
特許第2742049号公報
【特許文献2】
特開平5−208326号公報
【特許文献3】
特開2002−53946号公報
【非特許文献1】
Surf.Coat.Technol. 86-87 1996 p. 640-647
【0013】
【発明が解決しようとする課題】
本発明はこの様な事情に鑑みてなされたものであって、その目的は、耐摩耗性および耐熱性に優れた、α型結晶構造主体のアルミナ膜を有する積層皮膜を、基材や硬質皮膜の特性の劣化や変形を抑制し、かつ装置負荷の少ない低温条件下で、中間膜を介さず効率よく形成することのできる有用な方法を提供し、併せてこの様な方法で得られる耐摩耗性および耐熱性に優れた積層皮膜、更には該積層皮膜の被覆された工具を提供することにある。
【0014】
【課題を解決するための手段】
本発明で、耐摩耗性および耐熱性に優れたα型結晶構造主体のアルミナ膜を有する積層皮膜を得るための手段として以下の(i)(ii)がある。
【0015】
(i)本発明の積層皮膜として、AlおよびTiを必須とする金属成分と、CまたはNを含む化合物からなる硬質皮膜を有する積層皮膜において、該硬質皮膜を酸化することによって形成される酸化物含有層と、該酸化物含有層上に形成されるα型結晶構造を主体とするアルミナ膜を有するところに特徴があるものとする。前記酸化物含有層は、最表面側が実質的にアルミナからなるものであることが好ましく、また前記硬質皮膜は、TiAlNからなるものを特に好ましい形態とする。
【0016】
またAlおよびTiを必須とする金属成分と、CまたはNを含む化合物からなる硬質皮膜として、AlおよびTiの他、IVa族(Ti除く)、Va族、VIa族およびSiよりなる群から選択される少なくとも1種の元素を必須成分とするCまたはNを含む化合物からなるものを採用してもよく、この場合、特にTiAlCrNからなるものを用いるのが好ましい。
【0017】
更に本発明は、Alを必須とする金属成分と、CまたはNを含む化合物からなる硬質皮膜を有する積層皮膜において、該硬質皮膜を酸化することによって形成され最表面側が実質的にアルミナからなる酸化物含有層と、該酸化物含有層上に形成されるα型結晶構造を主体とするアルミナ膜を有するところに特徴を有する積層皮膜としてもよく、前記Alを必須とする金属成分と、CまたはNを含む化合物からなる硬質皮膜として、Alの他、IVa族、Va族、VIa族およびSiよりなる群から選択される少なくとも1種の元素を必須成分とする窒化物または炭化物を含む化合物からなるものを用いるのがよい。
【0018】
また、前記酸化物含有層上に形成されるアルミナ膜は、α型結晶構造が70%以上であるものがよい。
【0019】
本発明では、この様な積層皮膜が表面に形成された積層皮膜被覆工具も保護対象に包含する。
【0020】
更に本発明は、上記の様な積層皮膜を製造する有用な方法も規定するものであり、前記硬質皮膜を形成した後、該硬質皮膜の表面を酸化して酸化物含有層を形成し、その後、該酸化物含有層上にα型結晶構造を主体とするアルミナ膜を形成するところに特徴を有する。
【0021】
前記酸化物含有層の形成は、酸化性ガス含有雰囲気下で基板温度を650〜800℃に保持して行うことが好ましく、また、前記α型結晶構造を主体とするアルミナ膜の形成は、PVD法で行うことが好ましい。尚、この酸化処理時における「基板温度」とは超硬合金製や炭素鋼製、工具鋼製等の基材および該基材上に形成された硬質皮膜の温度をいうものとする(以下同じ)。
【0022】
前記酸化物含有層の形成と、前記α型結晶構造を主体とするアルミナ膜の形成は、生産性向上の観点から同一装置内で行うことが好ましく、より好ましくは前記硬質皮膜の形成、前記酸化物含有層の形成、および前記α型結晶構造を主体とするアルミナ膜の形成の全てを同一装置内で行うのがよい。
【0023】
(ii)また本発明は、α型結晶構造主体のアルミナ膜の形成された積層皮膜を得るべく、次の方法を規定するものである。即ち、金属化合物からなる硬質皮膜上にアルミナ膜形成された積層皮膜を製造する方法であって、Tiと、CまたはNを含む化合物(例えば、窒化物、炭化物または炭窒化物)からなる硬質皮膜を基板上に形成した後、該硬質皮膜の表面を酸化して酸化物含有層を形成し、次いで該酸化物含有層表面における酸化物の還元を伴いながら、α型結晶構造を主体とするアルミナ膜を形成するところに特徴を有する方法である。
【0024】
前記硬質皮膜として、TiN、TiCおよびTiCNよりなる群から選択される1層または2層以上の積層を形成するのがよい。
【0025】
更に、前記硬質皮膜と基材もしくは硬質皮膜同士の接合界面に、接合される両素材構成元素の組成傾斜層を形成すると、基材と硬質皮膜や硬質皮膜同士の密着性等を高めることができるので望ましい。
【0026】
この様に硬質皮膜として、酸化物生成の標準自由エネルギーがアルミニウムより大きいTiを金属成分とする硬質皮膜を用いる場合、積層皮膜の製造方法として、該硬質皮膜の表面を酸化し、チタン酸化物含有層を形成した後に、該層表面のチタン酸化物の還元を伴いながらアルミナ膜を形成するのがよく、具体的には、前記酸化物含有層(前記チタン酸化物含有層)としてTiO2含有層を形成した後、アルミナ形成において該層表面のTiO2のTi35への還元を伴いながらアルミナ膜を形成することが好ましい。
【0027】
前記酸化物含有層の形成は、酸化性ガス含有雰囲気下で基板温度を650〜800℃に保持して行うことが好ましく、前記α型結晶構造を主体とするアルミナ膜の形成は、PVD法で行うことが好ましい。
【0028】
また、上記方法においても、前記酸化物含有層の形成と、前記α型結晶構造を主体とするアルミナ膜の形成は、生産性向上の観点から同一装置内で行うことが好ましく、より好ましくは前記硬質皮膜の形成、前記酸化物含有層の形成、および前記α型結晶構造を主体とするアルミナ膜の形成の全てを同一装置内で行うのがよい。
【0029】
本発明では、上記いずれかの方法で製造された積層皮膜であって、金属化合物からなる硬質皮膜上にα型結晶構造を主体とするアルミナ膜が形成されていることを特徴とする耐摩耗性と耐熱性に優れた積層皮膜と、該積層皮膜が表面に形成された耐摩耗性および耐熱性に優れた積層皮膜被覆工具も保護対象に包含する。
【0030】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で、α型結晶構造主体のアルミナを硬質皮膜や基材等の特性を維持できる約800℃以下の温度域で形成するための方法について研究を進めた。その結果、
▲1▼第1手段として、Alを必須とする金属成分とB、C、N、O等との化合物からなる硬質皮膜を形成後、当該硬質皮膜の表面を酸化し、酸化物含有層を形成する処理を行った後にアルミナの皮膜を形成する方法、または、
▲2▼第2手段として、酸化物生成の標準自由エネルギーがアルミニウムより大きい金属とB、C,N,O等との化合物からなる硬質皮膜を形成した後、該硬質皮膜の表面を酸化して酸化物含有層を形成し、次いで該酸化物含有層表面における酸化物の還元を伴いながらアルミナ膜を形成する方法
を採用すればよいことを見出し、本発明に想到した。以下、上記▲1▼▲2▼の各方法について説明する。
(1)第1手段について
上述の通り、本発明者らは、前述した様な状況の下で、α型結晶構造主体のアルミナ(以下、単に「α型主体アルミナ膜」ということがある)を、前記硬質皮膜や基材等の特性を維持できる約800℃以下の温度域で形成するための方法について研究を進めた結果、第1手段として、TiAlN、TiAlCrN等のAlを含む硬質皮膜を形成した後、当該皮膜の表面を酸化することにより形成した酸化物含有層を、α型結晶構造を主体とするアルミナ皮膜形成の下地とすればよいことを見出し、上記本発明に想到した。
【0031】
この様な作用が得られる詳細な機構は定かではないが、Ikedaらが、「Thin Solid Films」[195(1991)99-110]に開示したTiAlN皮膜の高温酸化挙動からすると、本発明の上記作用は以下のような理由によるものと考えられる。
【0032】
即ち上記文献中で、Ikedaらは、高温の酸素含有雰囲気でTiAlN皮膜を酸化処理すると、TiAlN皮膜の最表面に薄いアルミナ膜が析出することを指摘している。また、その結論に至った観察結果として、大気中で最大800℃まで加熱することで酸化したTiAlN(原子比でTi:Al=50:50)膜のオージェ深さ方向分析の結果をFig.12に示している。このFig.12には、最表面から皮膜内部に至る膜組成として、まず最表面に、アルミナを主体とする層が存在し、その内部にTiとAlの混合した酸化物層が存在し、更にその内部にTi主体の酸化物層が存在していることを明らかにしている。
【0033】
そして、本発明者らが行った後記実施例からも明らかなように、TiAlNからなる硬質皮膜の酸化処理温度(740〜780℃)は、Ikedaらの実験における酸化温度(800℃)に比較的近いことから、本発明でも、上記実験結果と同様の層が形成されているものと推定される。
【0034】
本発明者らは、更に、様々な金属元素を含む硬質皮膜を酸化して同様の測定を行ったところ、Alを含有する硬質皮膜の表面を酸化すれば、硬質皮膜中のAlが優先的に表面に浮上して酸化され、その結果、形成された酸化層の最表面にはアルミナが形成しやすいことを見出した。そしてこの様なアルミナを含む酸化物層をアルミナ皮膜形成の下地とすれば、800℃以下の比較的低温域でも、α型結晶構造主体のアルミナ皮膜が形成されることを見出した。この様な現象が生ずる理由としては、硬質皮膜を酸化処理して形成された酸化物含有層上に、例えば反応性スパッタリング法によってアルミナ膜の形成を行うと、該酸化物含有層上にα型アルミナの結晶核が選択的に形成されるためと考えられる。
【0035】
<第1手段における硬質皮膜について>
切削工具等の優れた耐摩耗性を確保するのに有効であり、かつ、該硬質皮膜を酸化処理して、α型結晶構造主体のアルミナ膜形成に有用な酸化物層を形成するのに有用な硬質皮膜として、AlとTiを必須とする金属成分とB、C、N、O等との化合物からなる硬質皮膜を採用する。
【0036】
AlとTiを必須とする金属成分とB、C、N、O等との化合物からなる硬質皮膜としては、AlとTiを必須とする金属成分の窒化物、または炭化物、炭窒化物、ほう化物、窒酸化物、炭窒酸化物等からなる硬質皮膜が挙げられ、具体的に、例えばTiAlN、TiAlCN、TiAlC、TiAlNO等を用いることができる。その中でも、特にTiAlNからなる硬質皮膜が好ましい。尚、硬質皮膜としてTiAlN皮膜を用いる場合、TiとAlの組成比は任意に設定できるが、好ましいのはTi:Alが原子比で40:60〜25:75のものである。
【0037】
更に本発明では、AlとTiを必須とし、更に第3番目の元素として、IVa族(Ti除く)、Va族、VIa族およびSiよりなる群から選択される少なくとも1種の元素を必須成分とする窒化物、炭化物、炭窒化物、ほう化物、窒酸化物、または炭窒酸化物からなるものを硬質皮膜としてもよく、該硬質皮膜として、例えばTiAlCrN、TiAlVN、TiAlSiN、TiAlCrCN等が挙げられる。より好ましくは、Al,TiおよびCrの窒化物、炭化物、炭窒化物、ほう化物、窒酸化物、または炭窒酸化物からなる硬質皮膜を用いるのがよく、例えばTiAlCrN、TiAlCrCN、TiAlCrON、TiAlCrBN等が挙げられる。この場合、TiAlCrNからなる硬質皮膜を用いるのが更に好ましく、特に、下記に示す組成のものを用いることが推奨される。
【0038】
即ち、(Tia,Alb,Crc)(C1-dd)からなる硬質皮膜であって、
0.02≦a≦0.30、
0.55≦b≦0.765、
0.06≦c、
a+b+c=1、
0.5≦d≦1(a,b,cはそれぞれTi,Al,Crの原子比を示し、dはNの原子比を示す。以下同じ)、
または
0.02≦a≦0.175、
0.765≦b、
4(b−0.75)≦c、
a+b+c=1、
0.5≦d≦1を満たすものである。
【0039】
更に本発明では、Alを必須とする金属成分とB、C、N、O等との化合物からなる硬質皮膜を酸化することによって形成される最表面側が実質的にアルミナからなる酸化物含有層と、該酸化物含有層上に形成されるα型結晶構造を主体とするアルミナ膜を有する積層皮膜も規定するが、このときのAlを必須とする金属成分とB、C、N、O等との化合物からなる硬質皮膜としては、Alと、IVa族、Va族、VIa族およびSiよりなる群から選択される少なくとも1種の元素とを必須成分とする窒化物、炭化物、炭窒化物、ほう化物、窒酸化物、または炭窒酸化物からなるものを用いるのがよく、例えば、上述の様なAlとTiを金属成分として含有するものの他、AlCrN、AlCrCN等を用いることができる。
【0040】
前記硬質皮膜の膜厚は、硬質皮膜に期待される耐摩耗性と耐熱性を十分に発揮させるため、0.5μm以上とするのがよく、より好ましくは1μm以上である。しかし硬質皮膜の膜厚が厚すぎると、切削時に該硬質皮膜に亀裂が生じ易くなり長寿命化が図れなくなるので、硬質皮膜の膜厚は20μm以下、より好ましくは10μm以下に抑えるのがよい。
【0041】
上記硬質皮膜の形成方法は特に限定されないが、耐摩耗性および耐熱性を高めるべくAl原子比の高い硬質皮膜を形成するには、PVD法で形成することが好ましく、該PVD法としてAIP(イオンプレーティング)法や反応性スパッタリング法を採用することがより好ましい。また、PVD法で硬質皮膜を形成する方法を採用すれば、硬質皮膜の形成と後述するα型主体アルミナ膜の形成を同一装置内で成膜を行うことができるので、生産性向上の観点からも好ましい。
【0042】
<第1手段における酸化物含有層について>
本発明では、前記硬質皮膜を形成した後、該硬質皮膜の表面を酸化し、酸化物含有層を形成、特にAlを含有する硬質皮膜表面に、最表面側が実質的にアルミナからなる酸化物含有層を形成するのがよいことから、硬質皮膜の酸化は下記の条件で行うことが好ましい。
【0043】
即ち、前記酸化は、酸化性ガス含有雰囲気で行うことが好ましい。その理由は効率よく酸化できるからであり、例えば酸素、オゾン、H22等の酸化性ガスを含有する雰囲気が挙げられ、その中には大気雰囲気も勿論含まれる。
【0044】
また前記酸化は、基板温度を650〜800℃に保持して熱酸化を行うことが望ましい。基板温度が低過ぎると十分に酸化が行われないからであり、好ましくは700℃以上に高めて行うことが望ましい。基板温度を高めるにつれて酸化は促進されるが、基板温度の上限は、本発明の目的に照らして1000℃未満に抑えることが必要である。本発明では、800℃以下でも後述するα型主体アルミナ膜の形成に有用な酸化物含有層を形成することができる。
【0045】
本発明では、上記酸化処理のその他の条件について格別の制限はなく、具体的な酸化方法として、上記熱酸化の他、例えば酸素、オゾン、H22等の酸化性ガスをプラズマ化して照射する方法を採用することも勿論有効である。
【0046】
<第1手段におけるα型結晶構造主体のアルミナ膜について>
そして上述した通り、前記酸化物含有層を下地とすれば、該酸化物含有層上にα型結晶構造主体のアルミナ膜を確実に形成することができるのである。
【0047】
このα型主体のアルミナ膜は、α型結晶構造が70%以上のものが優れた耐熱性を発揮するので好ましく、より好ましくはα型結晶構造が90%以上のものであり、最も好ましくはα型結晶構造が100%のものである。
【0048】
α型主体アルミナ膜の膜厚は、0.1〜20μmとすることが望ましい。該アルミナ膜の優れた耐熱性を持続させるには、0.1μm以上確保することが有効だからであり、好ましくは1μm以上である。しかしα型主体アルミナ膜の膜厚が厚すぎると、該アルミナ膜中に内部応力が生じて亀裂等が生じ易くなるので好ましくない。従って、前記膜厚は20μm以下とするのがよく、より好ましくは10μm以下、更に好ましくは5μm以下である。
【0049】
α型主体アルミナ膜の形成方法は特に限定されないが、CVD法では1000℃以上の高温域で行う必要があるので好ましくなく、低温域で成膜することのできるPVD法を採用することが望ましい。PVD法の中でも、スパッタリング法が好ましく、特に反応性スパッタリングは、安価なメタルターゲットを用いて高速成膜を行うことができるので好ましい。
【0050】
該アルミナ膜形成時の基板温度は特に規定しないが、約650〜800℃の温度域で行うと、α型主体アルミナ膜が形成され易いので好ましい。また、前記酸化処理工程に引き続き、酸化処理時の基板温度を一定に保ってα型主体アルミナ膜を形成すれば、基材や硬質皮膜の特性を維持できる他、生産性にも優れているので好ましい。
【0051】
尚、本発明にかかる積層皮膜の形成は、前記酸化物含有層の形成と前記α型結晶構造を主体とするアルミナ膜の形成を、同一装置内で行うことが生産性向上の観点から好ましく、より好ましくは、前記硬質皮膜の形成、前記酸化物含有層の形成、および前記α型結晶構造を主体とするアルミナ膜の形成の全ての工程を、同一装置内で行うのがよい。
【0052】
具体的には、例えばAIP蒸発源、マグネトロンスパッタリングカソード、ヒーター加熱機構、基材回転機構等を備え、後述する実施例で示す様な成膜装置に、例えば超硬合金製の基材を設置し、まずAIP法等を採用してTiAlN等の硬質皮膜を形成した後、前述した様な酸素、オゾン、H22等の酸化性ガス雰囲気中で該硬質皮膜の表面を熱酸化させ、その後、反応性スパッタリング法等を採用してα型結晶構造主体のアルミナ膜を形成することが挙げられる。
【0053】
本発明は、この様な積層皮膜が形成された積層皮膜被覆工具も規定するものであり、その具体的な適用例としては、例えば、基材が超硬合金製であり、硬質皮膜としてTiAlNを形成したスローアウェイチップや、基材が超硬合金製であり、硬質皮膜としてTiAlCrNを形成したエンドミルや、基材がサーメット製であり、硬質皮膜としてTiAlNを形成したスローアウェイチップ等の切削工具、更には、高温下で使用される熱間加工用金型等を挙げることができる。
【0054】
(2)第2手段について
上述した様に、本発明者らは、約800℃以下の低温条件でα型主体アルミナ膜を硬質皮膜上に形成する別の手段として、酸化物生成の標準自由エネルギーがアルミニウムより大きい金属、即ちAlよりも酸化されにくい元素と、B、C,N,O等との化合物からなる硬質皮膜を形成した後、該硬質皮膜の表面を酸化して酸化物含有層を形成し、次いで該酸化物含有層表面における酸化物の還元を伴いながらアルミナ膜を形成すればよいことを見出した。
【0055】
上記手段のメカニズムについて完全に解明できた訳ではないが、以下に示す実験結果に基づき、次のような機構によるものと考えられる。
【0056】
(a)本発明者らは、まず、後述する実施例に示す通り、超硬基材上に硬質皮膜としてTiN皮膜を形成し、次に酸素雰囲気中で基材の温度を約760℃で20分間保持して酸化処理を行い、その後、ほぼ同じ温度に保ったまま、Alターゲットをアルゴンと酸素雰囲気中でスパッタリングさせて酸化処理膜上にアルミナ膜を形成した。
【0057】
後述する図6は、この様にして得られた積層皮膜の薄膜X線回折結果である。該図6から、確認できるピークのほとんどはα型結晶構造のアルミナを示すものであり、α型結晶構造を主体とするアルミナ膜が形成されていることがわかる。尚、硬質皮膜としてTiCNを用いた場合も同様の結果が得られた。
【0058】
そこでこの様に、TiN膜やTiCN膜をベースにα型結晶構造を主体とするアルミナ皮膜が形成される機構について追究すべく、前記図6の薄膜X線回折結果を調べたところ、アルミナ膜の下地層を構成する化合物と考えられるTiNとγ−Ti35のピークが確認された。TiNは硬質皮膜を構成する化合物であると考えられ、γ−Ti35はアルミナ膜とTiN膜の間に存在する酸化物含有層と考えられる。
【0059】
(b)次に、硬質皮膜としてTiN膜を形成し、上記図6の場合と同様の条件で酸化処理を行ったものについて、XPSでデプスプロファイリングを観察した。その結果を図1に示す。また、該酸化処理後の皮膜の薄膜X線回折結果を図2に示す。
【0060】
この図1および図2より、酸化処理後の皮膜の表層から約100nm深さまでは、TiO2(ルチル型)が形成されていることがわかる。尚、この結果は、TiCN皮膜を酸化処理した場合も同様であった。
【0061】
この上記(a)および(b)の結果から、酸化処理で形成されたTiO2は、次のアルミナ膜の形成過程でTiO2からTi35に還元されていることがわかる。
【0062】
(c)また、本発明者らは、Cr23皮膜上にアルミナ膜を形成する実験を行って、成膜雰囲気における酸素濃度が高いほど、形成されるアルミナはα型の結晶構造となり易く、酸素濃度が低くなるとα型結晶構造のアルミナが得られ難いことを既に確認している。
【0063】
これら上記(a)〜(c)の結果から、本発明者らは、アルミナ膜形成工程(特にその初期段階)において、成膜雰囲気形成のために供給された酸素に加えて、皮膜中の酸化物の還元で生ずる酸素の働きにより、α型結晶構造のアルミナの結晶成長が促進されること、換言すれば、硬質皮膜の酸化処理で形成された酸化物の還元反応が促進される状態にして、成膜雰囲気の酸素濃度をより高めるようにすれば、α型結晶構造のアルミナの結晶成長が促進されることを見出した。以下、この様な機構を実現するための条件について詳述する。
【0064】
<第2手段における硬質皮膜について>
アルミナ膜の形成工程において、皮膜側からの酸素の供給、即ち、上記酸化物含有層中の酸化物の還元を促進させるには、硬質皮膜が、「酸化処理工程では酸化されて酸化物となるが、アルミナ膜形成工程では、Al存在下で該酸化物が還元され易い」元素を金属元素として含むものがよく、そのためには、酸化物生成の標準自由エネルギーがアルミニウムよりも大きい元素を採用することが大変有効であることがわかった。
【0065】
上記酸化物生成の標準自由エネルギーがアルミニウムよりも大きい元素としては、Si、Cr、Fe、Mn等挙げられる。しかしその中でも、Tiの酸化物生成の標準自由エネルギーが、750℃付近で約−720kJ/(g・mol)と、アルミニウムの酸化物生成の標準自由エネルギー:約−900kJ/(g・mol)と比較して大きく、Al存在下で還元されやすいので、Tiを金属成分とする硬質皮膜を用いることが好ましい。また、切削工具等に汎用されているTiCやTiN等の硬質皮膜上にα型結晶構造のアルミナ膜を形成できる点からも、Tiを金属成分とする硬質皮膜を用いることが好ましい。
【0066】
尚、硬質皮膜としては、該金属とB、C,N,O等との化合物からなるもの形成すればよく、例えば、前記金属を必須成分とする窒化物、炭化物、炭窒化物、ほう化物、窒酸化物、または炭窒酸化物等からなるものを硬質皮膜として形成することができ、具体的に、TiN、TiCN、TiC、TiCNO、TiCrN、TiSiN等が挙げられる。
【0067】
本発明では、この中でもTiNやTiCN、TiCを用いるのがよく、具体的には、TiN、TiCNまたはTiCを単独で基材上に形成する他、TiN、TiCNまたはTiCを2層以上積層することが挙げられる。
【0068】
この場合、硬質皮膜と基材もしくは硬質皮膜同士の接合界面に、接合される両素材構成元素の組成傾斜層を形成し、基材と硬質皮膜または硬質皮膜同士の密着性等を高めるようにしてもよい。
【0069】
組成傾斜層を設ける場合の具体例として、例えば基材上にTiN皮膜を形成する場合、組成傾斜層としてTi金属膜に占めるN組成比が基材側から連続的または段階的に高くなる層を設け、該組成傾斜層上にTiN皮膜を形成することが挙げられる。また、例えばTiN皮膜上にTiCN皮膜を形成する場合には、TiN皮膜上に、組成傾斜層としてTiN皮膜に占めるC組成比がTiN皮膜側から連続的または段階的に高くなる層を設け、該組成傾斜層上にTiCN皮膜を形成することが挙げられる。
【0070】
Tiを金属成分とする硬質皮膜を用いて、該硬質皮膜上にα型結晶構造主体のアルミナ膜を形成する場合には、まず、TiNやTiCN等のTiを必須元素として含む窒化物等の化合物からなる硬質皮膜を形成した後、該硬質皮膜の表面を酸化してチタン酸化物含有層を形成し、次いでアルミナ膜形成工程で、該層表面のチタン酸化物の還元反応させながらアルミナ膜を形成すればよく、具体的には、硬質皮膜の表面を酸化してTiO2とした後、アルミナ膜の形成において該層表面のTiO2をTi35に還元させながらアルミナ膜を形成すれば、α型結晶構造を主体とするアルミナを効率よく形成できることが分かった。
【0071】
前記硬質皮膜の膜厚は、硬質皮膜に期待される耐摩耗性と耐熱性を十分に発揮させるため、0.5μm以上とするのがよく、より好ましくは1μm以上である。しかし硬質皮膜の膜厚が厚すぎると、切削時に該硬質皮膜に亀裂が生じ易くなり長寿命化が図れなくなるので、硬質皮膜の膜厚は20μm以下、より好ましくは10μm以下に抑えるのがよい。
【0072】
上記硬質皮膜の形成方法は特に限定されないが、PVD法で形成することが好ましく、該PVD法としてAIP(イオンプレーティング)法や反応性スパッタリング法を採用することがより好ましい。また、PVD法で硬質皮膜を形成する方法を採用すれば、硬質皮膜の形成と後述するα型主体アルミナ膜の形成を同一装置内で成膜を行うことができるので、生産性向上の観点からも好ましい。
【0073】
<第2手段における酸化物含有層の形成について>
本発明では、前記硬質皮膜を形成した後に、該硬質皮膜の表面を酸化して、酸化物含有層(特にTiを含有する硬質皮膜を用いる場合には、最表面側が実質的にTiO2からなる酸化物含有層)を形成すべく、硬質皮膜の酸化は下記条件で行うことが好ましい。
【0074】
即ち、前記酸化は、酸化性ガス含有雰囲気で行うことが好ましい。その理由は効率よく酸化できるからであり、例えば酸素、オゾン、H22等の酸化性ガスを含有する雰囲気が挙げられ、その中には大気雰囲気も勿論含まれる。
【0075】
また前記酸化は、基板温度を650〜800℃に保持して熱酸化を行うことが望ましい。この場合、基板温度が650℃を下回る低温だと十分に酸化が行われないからであり、好ましくは700℃以上に高めて行うことが望ましい。基板温度を高めるにつれて酸化は促進されるが、基板温度の上限は、本発明の目的に照らして1000℃未満に抑えることが必要である。本発明では、800℃以下でも後述するα型主体アルミナ膜の形成に有用な酸化物含有層を形成することができる。
【0076】
本発明では、上記酸化処理のその他の条件について格別の制限はなく、具体的な酸化方法として、上記熱酸化の他、例えば酸素、オゾン、H22等の酸化性ガスをプラズマ化して照射する方法を採用することも勿論有効である。
【0077】
また、後述するように、上記酸化処理は、次の工程で成膜するアルミナ膜の成膜装置中で行うのが望ましい。
【0078】
<第2手段におけるα型結晶構造主体のアルミナ膜の形成について>
上述した通り、第2手段においては、酸化物生成の標準自由エネルギーがアルミニウムより大きい金属とB、C,N,O等との化合物からなる硬質皮膜を形成し、該硬質皮膜の表面を酸化して得た酸化物含有層を下地とすれば、該酸化物含有層上にα型主体のアルミナ膜を確実に形成することができ、α型主体アルミナ膜の形成方法は特に限定されないが、基板や装置等に悪影響を与えることなく効率よく成膜するには、次の様な方法が推奨される。
【0079】
即ち、CVD法では1000℃以上の高温域で行う必要があるので好ましくなく、低温域で成膜することのできるPVD法を採用することが望ましい。PVD法の中でも、スパッタリング法が好ましく、特に反応性スパッタリングは、安価なメタルターゲットを用いて高速成膜を行うことができるので好ましい。
【0080】
該アルミナ膜形成時の基板温度は特に規定しないが、約650〜800℃の温度域で行うと、α型主体アルミナ膜が形成され易いので好ましい。また、前記酸化処理工程に引き続き、酸化処理時の基板温度を一定に保ってα型主体アルミナ膜を形成すれば、基材や硬質皮膜の特性を維持できる他、生産性にも優れているので好ましい。
【0081】
形成するα型主体のアルミナ膜は、α型結晶構造が70%以上のものが優れた耐熱性を発揮するので好ましく、より好ましくはα型結晶構造が90%以上のものであり、最も好ましくはα型結晶構造が100%のものである。
【0082】
α型主体アルミナ膜の膜厚は、0.1〜20μmとすることが望ましい。該アルミナ膜の優れた耐熱性等を持続させるには、0.1μm以上確保することが有効だからであり、より好ましくは、0.5μm以上、更に好ましくは1μm以上である。しかしα型主体アルミナ膜の膜厚が厚すぎると、該アルミナ膜中に内部応力が生じて亀裂等が生じ易くなるので好ましくない。従って、前記膜厚は20μm以下とするのがよく、より好ましくは10μm以下、更に好ましくは5μm以下である。
【0083】
尚、第2手段で積層皮膜を形成する場合も、前記第1手段の場合と同様に前記酸化物含有層の形成と前記α型結晶構造を主体とするアルミナ膜の形成を、同一装置内で行うことが生産性向上の観点から好ましく、より好ましくは、前記硬質皮膜の形成、前記酸化物含有層の形成、および前記α型結晶構造を主体とするアルミナ膜の形成の全ての工程を、同一装置内で行うのがよい。
【0084】
具体的には、例えばAIP蒸発源、マグネトロンスパッタリングカソード、ヒーター加熱機構、基材回転機構等を備え、後述する実施例で示す様な成膜装置に、例えば超硬合金製の基材を設置し、まずAIP法等を採用してTiN等の硬質皮膜を形成した後、前述した様な酸素、オゾン、H22等の酸化性ガス雰囲気中で該硬質皮膜の表面を熱酸化させ、その後、反応性スパッタリング法等を採用してα型結晶構造主体のアルミナ膜を形成することが挙げられる。
【0085】
本発明は、この様な第2手段による方法で形成された、金属化合物からなる硬質皮膜上にα型結晶構造を主体とするアルミナ膜が形成されていることを特徴とする耐摩耗性と耐熱性に優れた積層皮膜と、該積層皮膜が形成された積層皮膜被覆工具も規定するものであり、積層皮膜被覆工具の具体的な適用例としては、例えば、基材が超硬合金製であり、硬質皮膜としてTiN、TiCNを形成したスローアウェイチップや、基材が超硬合金製であり、硬質皮膜としてTiN、TiCNを形成したエンドミルや、基材がサーメット製であり、硬質皮膜としてTiN、TiCNを形成したスローアウェイチップ等の切削工具、更には、高温下で使用される熱間加工用金型等を挙げることができる。
【0086】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0087】
<実施例1>
まず、前記第1手段についての実施例を示す。サイズが12.7mm×12.7mm×5mmで超硬合金製の基材を、鏡面研磨(Ra=0.02μm程度)し、アルカリ槽と純水槽中で超音波洗浄してから乾燥したものを、積層皮膜の被覆に用いた。
【0088】
本実施例では、硬質皮膜の形成、該硬質皮膜の酸化処理、およびα型主体アルミナ膜の形成を、図3に示す真空成膜装置( (株)神戸製鋼所製 AIP-S40複合機)で行った。
【0089】
基材上への硬質皮膜の形成は、図3に示す装置1でAIP用蒸発源7を用いAIP法(アークイオンプレーティング法)で行い、膜厚が2〜3μmの、TiとAlの原子比(Ti:Al)が0.55:0.45のTiAlN硬質皮膜、またはTi、AlおよびCrの原子比(Ti:Al:Cr)が0.10:0.65:0.18のTiAlCrN硬質皮膜を形成した。また比較例1として、上記TiAlN皮膜上に、更にAIP法でCrN皮膜を形成した。
【0090】
上記硬質皮膜の酸化、または硬質皮膜上に形成されたCrN膜の酸化は、次の様にして行った。即ち、試料(基板)2を装置1内の回転テーブル3上の遊星回転治具4にセットし、装置内がほぼ真空状態となるまで排気した後、装置内部の側面に2箇所と中央部に設置したヒーター5で試料を表1に示す温度(酸化工程での基板温度)となるまで加熱した。試料の温度が所定の温度となった時点で、装置1内に、酸素ガスを流量200sccm、圧力0.5Paとなるよう導入し、20分間または60分間加熱保持して酸化を行った。
【0091】
尚、上記硬質皮膜の形成、酸化処理および後述するアルミナ成膜は、前記図3における回転テーブル3を回転(公転)させるとともに、その上に設置した遊星回転治具4(基材保持用パイプ)も回転(自転)させながら行った。本実施例では、回転テーブル3の回転数を3rpmとし、遊星回転治具4の回転数を20rpmにして回転させながら、酸化処理およびアルミナ成膜を行った。
【0092】
次に、α型結晶構造を主体とするアルミナ膜を前記酸化物含有層上に形成した。該アルミナ膜の形成は、アルゴンと酸素雰囲気中で、基板温度を前記酸化処理工程とほぼ同程度とし、図3における1台又は2台のアルミニウムターゲットを装着したスパッタリングカソード6に約3kWのパルスDC電力を加え、反応性スパッタリング法を採用して行った。尚、アルミナ膜の形成時には、試料(基板)温度が酸化処理時よりも若干上昇した。また該アルミナ膜の形成は、放電電圧およびアルゴン−酸素の流量比率をプラズマ発光分光法を利用して制御し、放電状態をいわゆる遷移モードにして行った。
【0093】
この様にして形成された積層皮膜の表面を薄膜X線回折装置で分析し、最表面皮膜として形成されたアルミナ膜の結晶構造を特定した。即ち、後述する図4や図5に示される様なX線回折測定結果から、α型結晶構造のアルミナを代表するX線回折ピークとして2θ=25.5761(°)のピーク強度Iαを選択し、γ型結晶構造のアルミナを代表するX線回折ピークとして2θ=19.4502(°)のピーク強度Iγを選択し、この強度比:Iα/Iγ値の大きさから、α型結晶構造のアルミナ形成の程度を評価した。これらの結果を表1に併記する。
【0094】
【表1】

Figure 0003971293
【0095】
図4は、本発明例1の積層皮膜表面を薄膜X線回折装置で測定した結果である。この図4に示されるX線回折の主要なピークが、TiAlNに起因する回折ピークと最表面に形成されたα型結晶構造のアルミナの回折ピークであることから、本発明例1の皮膜は、硬質皮膜上にα型結晶構造主体のアルミナ皮膜が形成されたものであることがわかる。
【0096】
また図5は、比較例1の積層皮膜表面の薄膜X線回折結果を示したものであり、α型結晶構造のアルミナの回折ピークとともに、中間膜であるCrNが酸化されてなるCr23に起因する回折ピークが観察される。
【0097】
このことから、比較例1でも本発明例1と同様にα型結晶構造主体のアルミナ膜が形成されていることがわかる。しかし、本発明にかかる硬質皮膜の方が、中間膜として形成されたCr含有皮膜による切削性能低下を懸念する必要がないことに加え、中間膜を設けるといった工程を省略して積層皮膜の生産性をより高めるといった観点から優れている。
【0098】
本発明例2および本発明例3は、硬質皮膜としてTiAlNまたはTiAlCrNを基材上に形成し、酸化処理工程の基板温度のみを本発明例1より30℃低い750℃に設定し、その他の条件を本発明例1と同様にして成膜したものである。表1に示す通り、本発明例2および本発明例3では、形成された皮膜に若干γ型結晶構造のアルミナが混合するものの、α型主体のアルミナ皮膜が形成されていることがわかる。
【0099】
また本発明例4は、硬質皮膜としてTiAlNを形成し、酸化処理工程における基板温度を前記本発明例2および本発明例3よりも更に低い740℃とし、酸化処理時間を本発明例1〜3よりも長い60分間とし、その他の条件を本発明例1と同様にして成膜したものである。表1に示す通り、本発明例4で得られた皮膜の最表面は、ほぼ純粋なα型結晶構造アルミナで覆われていることがわかる。
【0100】
比較例2および比較例3は、酸化処理温度を比較例2では635℃とし、比較例3では580℃とし、いずれも20分間加熱保持して行ったものである。表1に示す比較例3の結果より、酸化処理を580℃で行った場合には、その後にアルミナ膜を成膜しても全くα型結晶構造のアルミナ膜が形成されず、γ型結晶構造主体のアルミナ膜が形成されることがわかる。また比較例2から、酸化処理を635℃で行った場合には、成膜されたアルミナ膜の結晶構造はα型が若干優位であるが、実質的にα型とγ型の混合となっており、α型主体とは言い難い。
【0101】
<実施例2>
次に、前記第2手段についての実施例を示す。サイズが12.7mm×12.7mm×5mmで超硬合金製の基材を、鏡面研磨(Ra=0.02μm程度)し、アルカリ槽と純水槽中で超音波洗浄してから乾燥したものを、積層皮膜の被覆に用いた。
【0102】
本実施例でも、前記実施例1と同様に、硬質皮膜の形成、該硬質皮膜の酸化処理、およびα型主体アルミナ膜の形成を、図3に示す真空成膜装置( (株)神戸製鋼所製 AIP-S40複合機)で行った。
【0103】
基材上への硬質皮膜の形成は、図3に示す装置1でAIP用蒸発源7を用いAIP法(アークイオンプレーティング法)で行い、膜厚が2〜3μmのTiN皮膜またはTiCN皮膜を基材上に形成した。また参考例として、基材上に同膜厚のCrNを形成した。
【0104】
上記皮膜の酸化は、次の様にして行った。即ち、試料(基板)2を装置1内の回転テーブル3上の遊星回転治具4にセットし、装置内がほぼ真空状態となるまで排気した後、装置内部の側面に2箇所と中央部に設置したヒーター5で試料を約760℃付近まで加熱した。試料の温度が約760℃付近となった時点で、装置1内に、酸素ガスを流量200sccm、圧力0.5Paとなるよう導入し、20分間加熱保持して酸化を行った。
【0105】
尚、上記硬質皮膜の形成、酸化処理および後述するアルミナ成膜は、前記図3における回転テーブル3を回転(公転)させるとともに、その上に設置した遊星回転治具4(基材保持用パイプ)も回転(自転)させながら行った。本実施例では、回転テーブル3の回転数を3rpmとし、遊星回転治具4の回転数を20rpmにして回転させながら、酸化処理およびアルミナ成膜を行った。
【0106】
次に、α型結晶構造を主体とするアルミナ膜を前記酸化物含有層上に形成した。該アルミナ膜の形成は、アルゴンと酸素雰囲気中で、基板温度を前記酸化処理工程とほぼ同程度とし、図3における2台のアルミニウムターゲットを装着したスパッタリングカソード6に平均5.6kWのパルスDC電力を加え、反応性スパッタリング法を採用して行った。尚、アルミナ膜の形成時には、試料(基板)温度が酸化処理時よりも若干上昇した。
また該アルミナ膜の形成は、放電電圧およびアルゴン−酸素の流量比率をプラズマ発光分光法を利用して制御し、放電状態をいわゆる遷移モードにして行った。
【0107】
この様にして形成された積層皮膜の表面を薄膜X線回折装置で分析(薄膜XRD分析)し、最表面皮膜として形成されたアルミナ膜の結晶構造を特定した。TiN皮膜を用いた場合(本発明例1´)の薄膜X線回折結果を図6に示し、TiCN皮膜を用いた場合(本発明例2´)の薄膜X線回折結果を図7に示す。
【0108】
また、前記実施例1と同様に、図6または図7の薄膜X線回折結果からIα/Iγ値を求め、α型結晶構造のアルミナ形成の程度を評価した。この結果を前記成膜条件と併せて表2に示す。
【0109】
【表2】
Figure 0003971293
【0110】
前記図6および図7で示されるX線回折の主要なピークは、TiN皮膜またはTiCN皮膜(尚、図7では、TiCN皮膜中のTiN構造のみが薄膜X線回折で検出される)に起因する回折ピークと最表面に形成されたα型結晶構造のアルミナの回折ピークであり、また前記図6、図7および表2から、γ型結晶構造のアルミナを代表するX線回折ピーク(2θ=19.4502°)は確認されず、また、その他のγ型結晶構造のアルミナを示すピークも小さいことから、本発明例1´および本発明例2´の積層皮膜は、硬質皮膜上にα型結晶構造主体のアルミナ膜が形成されたものであることがわかる。
【0111】
更に、前記図6および図7から、TiN皮膜またはTiCN皮膜とアルミナ膜との間には、該皮膜を酸化処理したのち還元されて形成されたと思われるTi35のピークを確認できる。
【0112】
これに対し参考例は、酸化物生成の標準自由エネルギーがアルミニウムより小さい金属であるCrを金属成分とするCrN皮膜上にアルミナ膜を形成した例であるが、表2より、Iα/Iγ値が前記本発明例1’や本発明例2’と比較して小さいことから、形成されたアルミナ膜は、α型結晶構造のアルミナに対してγ型結晶構造アルミナの比率が高いものであることが分かる。
【0113】
【発明の効果】
本発明は以上の様に構成されており、特に耐熱性に優れたα型結晶構造主体のアルミナ膜を、基材や硬質皮膜の特性を劣化させることのない成膜温度域で形成することができた。また従来のように、硬質皮膜とα型結晶構造のアルミナ膜との間に中間膜を設ける必要がないので、効率的に積層皮膜を形成することができ、かつ該中間膜による切削性能等の低下が生じることもない。従ってこの様な積層皮膜および該積層皮膜の製造方法の実現により、従来よりも耐摩耗性および耐熱性に優れた切削工具等を安価で提供できることとなった。
【0114】
尚、本発明は、汎用されるTiN,TiCN,TiC等のチタン系硬質皮膜上に耐酸化性に優れたα型結晶構造のアルミナを比較的低温で形成する方法を提供する点で実用的である。
【図面の簡単な説明】
【図1】TiNを酸化処理して得られた皮膜のXPSデプスプロファイリングを示す図である。
【図2】TiNを酸化処理して得られた皮膜の薄膜X線回折結果である。
【図3】本発明の実施に用いる装置例を示す概略説明図(上面図)である。
【図4】実施例1における本発明例1の薄膜X線回折結果である。
【図5】実施例1における比較例1の薄膜X線回折結果である。
【図6】実施例2における本発明例1´(TiN皮膜)の薄膜X線回折結果である。
【図7】実施例2における本発明例2´(TiCN皮膜)の薄膜X線回折結果である。
【符号の説明】
1 成膜用装置
2 試料(基板)
3 回転テーブル
4 遊星回転治具
5 ヒーター
6 スパッタリングカソード
7 AIP用蒸発源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated film coated on a wear-resistant member such as a cutting tool, a sliding member, a die, and the like. Specifically, the laminated film is excellent in wear resistance and heat resistance, and the cutting tool described above. The present invention relates to a useful production method capable of forming the laminated film under low temperature conditions without impairing the properties of a substrate such as a sliding member. In addition, although the laminated | coated film | membrane used as the object of this invention can be applied to the above-mentioned various uses, below, description is advanced centering on the case where it applies to a cutting tool as a representative example.
[0002]
[Prior art]
In general, as a cutting tool or sliding member that requires excellent wear resistance and sliding characteristics, a hard film such as titanium nitride or titanium aluminum nitride is formed on the surface of a base material such as high-speed steel or cemented carbide. However, those formed by methods such as physical vapor deposition (hereinafter referred to as PVD) and chemical vapor deposition (hereinafter referred to as CVD) are used.
[0003]
In particular, when used as a cutting tool, the hard coating is required to have wear resistance and heat resistance (oxidation resistance at high temperature) as characteristics. Therefore, titanium aluminum nitride (TiAlN) is particularly preferable as having both characteristics. However, in recent years, it has been widely used as a coating material for carbide tools and the like in which the cutting edge temperature during cutting becomes high. The reason why TiAlN exhibits excellent characteristics is that heat resistance is improved by the action of aluminum contained in the film, and stable wear resistance and heat resistance can be maintained up to a high temperature of about 800 ° C. As the TiAlN, various materials having different composition ratios of Ti and Al are used, and most of them are Ti: Al atomic ratios having the above characteristics of 50:50 to 25:75. is there.
[0004]
By the way, the cutting edge of a cutting tool or the like may become a high temperature of 1000 ° C. or higher during cutting. Under such circumstances, the TiAlN film alone cannot secure sufficient heat resistance. For example, as shown in Patent Document 1, after forming a TiAlN film, an alumina layer is further formed to ensure heat resistance. To be done.
[0005]
Alumina has various crystal structures depending on the temperature, but all are thermally metastable. However, when the temperature of the cutting edge at the time of cutting, such as a cutting tool, fluctuates significantly over a wide range from room temperature to over 1000 ° C., the crystal structure of alumina changes, causing problems such as cracking or peeling of the film. . However, only the α-type crystal structure alumina formed by adopting the CVD method and raising the substrate temperature to 1000 ° C. or higher, once formed, has a thermally stable structure regardless of the subsequent temperature. maintain. Therefore, in order to impart heat resistance to a cutting tool or the like, it is an effective means to coat an alumina film having an α-type crystal structure.
[0006]
However, as described above, in order to form an alumina having an α-type crystal structure, the base material must be heated to 1000 ° C. or higher, so that applicable base materials are limited. This is because, depending on the type of the substrate, when exposed to a high temperature of 1000 ° C. or higher, the substrate softens and may lose its suitability as a wear-resistant member substrate. Further, even a high temperature base material such as a cemented carbide causes problems such as deformation when exposed to such a high temperature. In addition, the practical temperature range of hard coatings such as TiAlN films formed on a substrate as a film exhibiting wear resistance is generally about 800 ° C. at maximum, and when exposed to a high temperature of 1000 ° C. or more, the coating changes in quality. In addition, the wear resistance may deteriorate.
[0007]
In order to solve such a problem, Patent Document 2 has the same high hardness as that of the alumina (Al, Cr). 2 O Three It is reported that mixed crystals were obtained in a low temperature range of 500 ° C. or lower. However, when the work material is composed mainly of iron, Cr present on the surface of the mixed crystal film tends to cause a chemical reaction with iron in the work material at the time of cutting. This will shorten the service life.
[0008]
In addition, O.Zywitzki, G.Hoetzsch et al., In Non-Patent Document 1, perform reactive sputtering using a high-power (11-17 kW) pulse power source, thereby forming an α-type crystal structure aluminum oxide film at 750 ° C. Has been reported. However, in order to obtain aluminum oxide having an α-type crystal structure by this method, it is inevitable that the pulse power supply is enlarged.
[0009]
As a technique for solving such problems, Patent Document 3 discloses an oxide film having a corundum structure (α-type crystal structure) having a lattice constant of 4.779 mm or more and 5.000 mm or less and a film thickness of at least 0.005 μm. Is a base layer, and an α-type crystal structure alumina film is formed on the base layer. The oxide film component is Cr 2 O Three , (Fe, Cr) 2 O Three Or (Al, Cr) 2 O Three It is preferable that the component of the oxide film is (Fe, Cr) 2 O Three (Fe) x , Cr (1-x) ) 2 O Three (However, x is preferably 0 ≦ x ≦ 0.54), and the oxide film component is (Al, Cr). 2 O Three (Al y , Cr (1-y) ) 2 O Three It is indicated that it is more preferable to adopt (where y is 0 ≦ y ≦ 0.90).
[0010]
Further, after forming a composite nitride film of one or more elements selected from the group consisting of Ti, Cr and V as a hard film and Al, as an intermediate layer (Al z , Cr (1-z) ) N (provided that z is 0 ≦ z ≦ 0.90), and the coating is further oxidized to form an oxide film having a corundum structure (α-type crystal structure). It has been shown to be useful to form α-type alumina on the coating.
[0011]
However, in the above method, when forming an alumina film having an α-type crystal structure, for example, a CrN film is formed, and the CrN film is oxidized to have a Crundum structure (α-type crystal structure). 2 O Three Must be separately formed as an intermediate film, and there is still room for improvement in increasing the formation efficiency of the laminated film. Moreover, since there is a concern about a decrease in cutting performance due to the Cr-containing coating formed as an intermediate film, it is considered that there is room for improvement from the viewpoint of enhancing the cutting performance.
[0012]
[Patent Document 1]
Japanese Patent No. 2742049
[Patent Document 2]
JP-A-5-208326
[Patent Document 3]
JP 2002-53946 A
[Non-Patent Document 1]
Surf.Coat.Technol. 86-87 1996 p. 640-647
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a laminated film having an α-type crystal structure-based alumina film excellent in wear resistance and heat resistance as a substrate or a hard film. Provides a useful method that can be formed efficiently without using an intermediate film under low-temperature conditions with low equipment load, while preventing deterioration and deformation of the material, and wear resistance obtained by such a method Another object of the present invention is to provide a laminated film excellent in heat resistance and heat resistance, and a tool coated with the laminated film.
[0014]
[Means for Solving the Problems]
In the present invention, the following (i) and (ii) are available as means for obtaining a laminated film having an α-type crystal structure-based alumina film excellent in wear resistance and heat resistance.
[0015]
(I) As the laminated film of the present invention, Al and A metal component indispensable for Ti, Contains C or N A laminated film having a hard film made of a compound has an oxide-containing layer formed by oxidizing the hard film and an alumina film mainly composed of an α-type crystal structure formed on the oxide-containing layer. It is assumed that there is a feature. It is preferable that the oxide-containing layer is substantially composed of alumina on the outermost surface side, and the hard coating is particularly preferably composed of TiAlN.
[0016]
Also Al and A metal component indispensable for Ti, Contains C or N Al and Ti as hard coatings composed of compounds Other And at least one element selected from the group consisting of IVa group (excluding Ti), Va group, VIa group and Si as an essential component Compound containing C or N In this case, it is preferable to use one made of TiAlCrN.
[0017]
Furthermore, the present invention provides a metal component essentially comprising Al, Contains C or N Laminated film having a hard film composed of a compound In Formed by oxidizing the hard film The A laminated film characterized by having an oxide-containing layer whose outermost surface is substantially composed of alumina and an alumina film mainly composed of an α-type crystal structure formed on the oxide-containing layer may be used. A metal component that requires Contains C or N As a hard film composed of a compound, Al Other Nitride containing at least one element selected from the group consisting of IVa, IVa, Va, VIa and Si as an essential component Or compounds containing carbides It is good to use what consists of.
[0018]
The alumina film formed on the oxide-containing layer preferably has an α-type crystal structure of 70% or more.
[0019]
In the present invention, a laminated film-coated tool having such a laminated film formed on the surface is also included in the protection target.
[0020]
Furthermore, the present invention also defines a useful method for producing the laminated film as described above. After forming the hard film, the surface of the hard film is oxidized to form an oxide-containing layer, and then It is characterized in that an alumina film mainly composed of an α-type crystal structure is formed on the oxide-containing layer.
[0021]
The oxide-containing layer is preferably formed by maintaining the substrate temperature at 650 to 800 ° C. in an oxidizing gas-containing atmosphere, and the alumina film mainly composed of the α-type crystal structure is formed by PVD. It is preferable to carry out by the method. The “substrate temperature” at the time of this oxidation treatment refers to the temperature of a base material made of cemented carbide, carbon steel, tool steel, etc. and a hard coating formed on the base material (the same applies hereinafter). ).
[0022]
The formation of the oxide-containing layer and the formation of the alumina film mainly composed of the α-type crystal structure are preferably performed in the same apparatus from the viewpoint of improving productivity, more preferably the formation of the hard film and the oxidation. The formation of the material-containing layer and the formation of the alumina film mainly composed of the α-type crystal structure are preferably performed in the same apparatus.
[0023]
(Ii) In the present invention, the following method is defined in order to obtain a laminated film on which an α-type crystal structure-based alumina film is formed. That is, an alumina film on a hard film made of a metal compound But A method for producing a formed laminated film, Contains Ti and C or N Compound (eg, nitride, carbide) Or carbonitride ) Hard coating On the board After the formation, the surface of the hard film is oxidized to form an oxide-containing layer, and then an alumina film mainly composed of an α-type crystal structure is formed with the reduction of the oxide on the surface of the oxide-containing layer. However, this method has features.
[0024]
As the hard coating, it is preferable to form one layer or a laminate of two or more layers selected from the group consisting of TiN, TiC and TiCN.
[0025]
Furthermore, when the composition gradient layer of both material constituent elements to be bonded is formed at the bonding interface between the hard film and the substrate or between the hard films, the adhesion between the substrate and the hard film or between the hard films can be improved. So desirable.
[0026]
In this way, as a hard film, when using a hard film whose standard free energy for oxide formation is Ti, which is larger than aluminum, using a metal component, the surface of the hard film is oxidized and titanium oxide is contained as a method for producing a laminated film. After forming the layer, it is preferable to form an alumina film with reduction of titanium oxide on the surface of the layer. Specifically, as the oxide-containing layer (the titanium oxide-containing layer), TiO 2 After forming the containing layer, the TiO on the surface of the layer is formed in alumina formation. 2 Ti Three O Five It is preferable to form an alumina film with the reduction.
[0027]
The oxide-containing layer is preferably formed by holding the substrate temperature at 650 to 800 ° C. in an oxidizing gas-containing atmosphere, and the alumina film mainly composed of the α-type crystal structure is formed by a PVD method. Preferably it is done.
[0028]
Also in the above method, the formation of the oxide-containing layer and the formation of the alumina film mainly composed of the α-type crystal structure are preferably performed in the same apparatus from the viewpoint of improving productivity, and more preferably The formation of the hard film, the formation of the oxide-containing layer, and the formation of the alumina film mainly composed of the α-type crystal structure are all preferably performed in the same apparatus.
[0029]
In the present invention, the multi-layered film manufactured by any one of the above methods, wherein an alumina film mainly composed of an α-type crystal structure is formed on a hard film made of a metal compound. Also included are objects of protection, such as a laminated film excellent in heat resistance and a laminated film coated tool excellent in wear resistance and heat resistance formed on the surface of the laminated film.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Under the circumstances as described above, the present inventors have studied a method for forming an alumina mainly composed of α-type crystal structure in a temperature range of about 800 ° C. or less capable of maintaining the characteristics of a hard film or a substrate. Proceeded. as a result,
(1) As a first means, after forming a hard coating composed of a compound of a metal component essentially containing Al and B, C, N, O, etc., the surface of the hard coating is oxidized to form an oxide-containing layer A method of forming an alumina film after performing the treatment, or
(2) As a second means, after forming a hard film composed of a compound of B, C, N, O, etc. with a metal whose standard free energy for oxide formation is larger than that of aluminum, the surface of the hard film is oxidized. Method for forming an oxide-containing layer, and then forming an alumina film with reduction of the oxide on the surface of the oxide-containing layer
As a result, the inventors have found out that the present invention can be adopted. Hereinafter, the above methods (1) and (2) will be described.
(1) About the first means
As described above, under the circumstances as described above, the present inventors changed the α-type crystal structure-based alumina (hereinafter sometimes simply referred to as “α-type main alumina film”) to the hard film or substrate. As a result of research on a method for forming at a temperature range of about 800 ° C. or less that can maintain the characteristics such as, as a first means, after forming a hard film containing Al such as TiAlN and TiAlCrN, the surface of the film The inventors have found that the oxide-containing layer formed by oxidizing can be used as a base for forming an alumina film mainly composed of an α-type crystal structure.
[0031]
Although the detailed mechanism by which such an effect is obtained is not clear, Ikeda et al. Described the high-temperature oxidation behavior of the TiAlN coating disclosed in “Thin Solid Films” [195 (1991) 99-110]. The action is considered to be due to the following reasons.
[0032]
That is, in the above document, Ikeda et al. Point out that when a TiAlN film is oxidized in a high-temperature oxygen-containing atmosphere, a thin alumina film is deposited on the outermost surface of the TiAlN film. Further, as an observation result that led to the conclusion, the results of Auger depth direction analysis of TiAlN (atomic ratio Ti: Al = 50: 50) film oxidized by heating up to 800 ° C. in the atmosphere are shown in FIG. 12 shows. This FIG. No. 12, as a film composition from the outermost surface to the inside of the film, first, a layer mainly composed of alumina exists on the outermost surface, an oxide layer in which Ti and Al are mixed is present inside, and further inside It is clarified that a Ti-based oxide layer exists.
[0033]
As will be apparent from the following examples conducted by the present inventors, the oxidation treatment temperature (740 to 780 ° C.) of the hard film made of TiAlN is relatively lower than the oxidation temperature (800 ° C.) in the experiment of Ikeda et al. From the closeness, it is presumed that the same layer as the above experimental result is formed also in the present invention.
[0034]
Further, the inventors of the present invention performed similar measurements by oxidizing hard films containing various metal elements. If the surface of a hard film containing Al is oxidized, Al in the hard film is preferentially used. It has been found that alumina floats on the surface and is oxidized, and as a result, alumina is easily formed on the outermost surface of the formed oxide layer. It has been found that when such an oxide layer containing alumina is used as a base for forming an alumina film, an α-type crystal structure-based alumina film can be formed even at a relatively low temperature range of 800 ° C. or lower. The reason why such a phenomenon occurs is that when an alumina film is formed by, for example, reactive sputtering on an oxide-containing layer formed by oxidizing a hard film, α-type is formed on the oxide-containing layer. This is probably because crystal nuclei of alumina are selectively formed.
[0035]
<About the hard film in the first means>
Effective for ensuring excellent wear resistance of cutting tools and the like, and is useful for forming an oxide layer useful for forming an alumina film mainly composed of α-type crystal structure by oxidizing the hard film. As such a hard film, a hard film made of a compound of a metal component essentially containing Al and Ti and B, C, N, O or the like is employed.
[0036]
As a hard film composed of a metal component containing Al and Ti and a compound of B, C, N, O, etc., the metal component nitride or carbide, carbonitride, boride which requires Al and Ti In particular, a hard film made of a nitride oxide, a carbonitride oxide, or the like can be used, and specifically, for example, TiAlN, TiAlCN, TiAlC, TiAlNO, or the like can be used. Among these, a hard film made of TiAlN is particularly preferable. When a TiAlN film is used as the hard film, the composition ratio of Ti and Al can be arbitrarily set, but it is preferable that Ti: Al has an atomic ratio of 40:60 to 25:75.
[0037]
Furthermore, in the present invention, Al and Ti are essential, and at least one element selected from the group consisting of IVa group (excluding Ti), Va group, VIa group, and Si as the third element is an essential component. Nitride, carbide, carbonitride, boride, nitride oxide, or carbonitride oxide may be used as the hard coating, and examples of the hard coating include TiAlCrN, TiAlVN, TiAlSiN, and TiAlCrCN. More preferably, a hard film made of nitride, carbide, carbonitride, boride, nitride oxide or carbonitride of Al, Ti and Cr is used, for example, TiAlCrN, TiAlCrCN, TiAlCrON, TiAlCrBN, etc. Is mentioned. In this case, it is more preferable to use a hard film made of TiAlCrN, and it is particularly recommended to use a hard film having the composition shown below.
[0038]
That is, (Ti a , Al b , Cr c ) (C 1-d N d A hard coating consisting of
0.02 ≦ a ≦ 0.30,
0.55 ≦ b ≦ 0.765,
0.06 ≦ c,
a + b + c = 1,
0.5 ≦ d ≦ 1 (a, b, and c represent the atomic ratio of Ti, Al, and Cr, respectively, d represents the atomic ratio of N, and so on)
Or
0.02 ≦ a ≦ 0.175,
0.765 ≦ b,
4 (b−0.75) ≦ c,
a + b + c = 1,
It satisfies 0.5 ≦ d ≦ 1.
[0039]
Furthermore, in the present invention, an oxide-containing layer whose outermost surface side is substantially made of alumina formed by oxidizing a hard film made of a compound of a metal component essentially containing Al and B, C, N, O, etc. In addition, a laminated film having an alumina film mainly composed of an α-type crystal structure formed on the oxide-containing layer is also defined. At this time, a metal component essentially including Al and B, C, N, O, etc. As the hard film composed of the above compound, a nitride, carbide, carbonitride, boron, which contains Al and at least one element selected from the group consisting of IVa group, Va group, VIa group and Si as essential components For example, AlCrN, AlCrCN, etc. can be used in addition to those containing Al and Ti as metal components as described above.
[0040]
The film thickness of the hard film is preferably 0.5 μm or more, and more preferably 1 μm or more in order to sufficiently exhibit the wear resistance and heat resistance expected of the hard film. However, if the film thickness of the hard film is too thick, cracks are likely to occur in the hard film at the time of cutting, and the life cannot be extended. Therefore, the film thickness of the hard film is preferably suppressed to 20 μm or less, more preferably 10 μm or less.
[0041]
The formation method of the hard film is not particularly limited, but in order to form a hard film having a high Al atomic ratio in order to improve wear resistance and heat resistance, it is preferably formed by the PVD method. As the PVD method, AIP (ion It is more preferable to employ a plating method or a reactive sputtering method. In addition, if a method of forming a hard film by the PVD method is adopted, the formation of the hard film and the formation of an α-type main alumina film described later can be performed in the same apparatus. From the viewpoint of improving productivity. Is also preferable.
[0042]
<Regarding the oxide-containing layer in the first means>
In the present invention, after the hard coating is formed, the surface of the hard coating is oxidized to form an oxide-containing layer. In particular, the surface of the hard coating containing Al contains an oxide substantially composed of alumina on the outermost surface side. Since it is preferable to form a layer, it is preferable to oxidize the hard film under the following conditions.
[0043]
That is, the oxidation is preferably performed in an oxidizing gas-containing atmosphere. The reason is that it can be oxidized efficiently, for example, oxygen, ozone, H 2 O 2 An atmosphere containing an oxidizing gas such as, for example, is included, and of course, an air atmosphere is also included.
[0044]
The oxidation is preferably performed by maintaining the substrate temperature at 650 to 800 ° C. This is because if the substrate temperature is too low, the oxidation is not performed sufficiently, and it is preferable to increase the temperature to 700 ° C. or higher. Although the oxidation is promoted as the substrate temperature is increased, the upper limit of the substrate temperature needs to be suppressed to less than 1000 ° C. for the purpose of the present invention. In the present invention, an oxide-containing layer useful for forming an α-type main alumina film described later can be formed even at 800 ° C. or lower.
[0045]
In the present invention, there are no particular restrictions on the other conditions for the oxidation treatment, and specific oxidation methods include, for example, oxygen, ozone, H, in addition to the thermal oxidation. 2 O 2 Of course, it is also effective to adopt a method in which an oxidizing gas such as plasma is irradiated.
[0046]
<Alumina film mainly composed of α-type crystal structure in the first means>
As described above, if the oxide-containing layer is used as a base, an α-type crystal structure-based alumina film can be reliably formed on the oxide-containing layer.
[0047]
As the α-type alumina film, an α-type crystal structure having an α-type crystal structure of 70% or more is preferable because it exhibits excellent heat resistance, more preferably an α-type crystal structure is 90% or more, and most preferably α-type crystal structure. The type crystal structure is 100%.
[0048]
The film thickness of the α-type main alumina film is preferably 0.1 to 20 μm. In order to maintain the excellent heat resistance of the alumina film, it is effective to secure 0.1 μm or more, preferably 1 μm or more. However, it is not preferable that the α-type main alumina film is too thick because internal stress is generated in the alumina film and cracks are easily generated. Therefore, the film thickness is preferably 20 μm or less, more preferably 10 μm or less, and still more preferably 5 μm or less.
[0049]
The method for forming the α-type main alumina film is not particularly limited, but the CVD method is not preferable because it needs to be performed in a high temperature region of 1000 ° C. or higher, and it is desirable to adopt a PVD method that allows film formation in a low temperature region. Among PVD methods, a sputtering method is preferable, and reactive sputtering is particularly preferable because high-speed film formation can be performed using an inexpensive metal target.
[0050]
The substrate temperature at the time of forming the alumina film is not particularly defined, but it is preferable to perform in the temperature range of about 650 to 800 ° C. because the α-type main alumina film is easily formed. In addition, if the α-type main alumina film is formed by keeping the substrate temperature during the oxidation process constant after the oxidation process, the characteristics of the base material and the hard film can be maintained, and the productivity is also excellent. preferable.
[0051]
In addition, the formation of the multilayer coating according to the present invention is preferably performed from the viewpoint of productivity improvement, in which the formation of the oxide-containing layer and the formation of the alumina film mainly composed of the α-type crystal structure are performed in the same apparatus. More preferably, all steps of forming the hard coating, forming the oxide-containing layer, and forming the alumina film mainly composed of the α-type crystal structure are performed in the same apparatus.
[0052]
Specifically, for example, an AIP evaporation source, a magnetron sputtering cathode, a heater heating mechanism, a substrate rotating mechanism, etc. are provided, and a substrate made of cemented carbide is installed in a film forming apparatus as shown in the examples described later. First, a hard film such as TiAlN is formed by employing the AIP method, and then oxygen, ozone, H, etc. as described above. 2 O 2 The surface of the hard film is thermally oxidized in an oxidizing gas atmosphere such as, and then an alumina film mainly composed of an α-type crystal structure is formed by employing a reactive sputtering method or the like.
[0053]
The present invention also defines a laminated film-coated tool on which such a laminated film is formed. As a specific application example thereof, for example, the base material is made of cemented carbide, and TiAlN is used as the hard film. Cutting tools such as the throwaway tip formed, an end mill in which the base material is made of cemented carbide and TiAlCrN is formed as a hard coating, and the throwaway tip in which the base material is made of cermet and TiAlN is formed as a hard coating, Furthermore, the metal mold | die for hot processing used at high temperature etc. can be mentioned.
[0054]
(2) About the second means
As described above, the present inventors, as another means for forming an α-type main alumina film on a hard film under a low temperature condition of about 800 ° C. or lower, are metals whose standard free energy for oxide formation is larger than that of aluminum, that is, After forming a hard film composed of a compound that is less oxidized than Al and a compound of B, C, N, O, etc., the surface of the hard film is oxidized to form an oxide-containing layer, and then the oxide It has been found that an alumina film may be formed while reducing the oxide on the surface of the containing layer.
[0055]
Although the mechanism of the above means has not been completely clarified, it is considered that it is based on the following mechanism based on the experimental results shown below.
[0056]
(A) The inventors first formed a TiN film as a hard film on a cemented carbide substrate as shown in the examples described later, and then the temperature of the substrate at about 760 ° C. in an oxygen atmosphere was 20 Oxidation treatment was performed by holding for a minute, and then an alumina film was formed on the oxidation treatment film by sputtering an Al target in an atmosphere of argon and oxygen while maintaining the same temperature.
[0057]
FIG. 6 described later is a thin film X-ray diffraction result of the laminated film obtained in this way. From FIG. 6, it can be seen that most of the peaks that can be confirmed indicate α-type crystal structure alumina, and an alumina film mainly composed of the α-type crystal structure is formed. Similar results were obtained when TiCN was used as the hard coating.
[0058]
Thus, in order to investigate the mechanism of the formation of the alumina film mainly composed of the α-type crystal structure based on the TiN film or the TiCN film as described above, the thin film X-ray diffraction result of FIG. 6 was examined. TiN and γ-Ti which are considered to be compounds constituting the underlayer Three O Five The peak of was confirmed. TiN is considered to be a compound constituting a hard film, and γ-Ti Three O Five Is considered to be an oxide-containing layer existing between the alumina film and the TiN film.
[0059]
(B) Next, depth profiling was observed with XPS for a TiN film formed as a hard film and subjected to oxidation treatment under the same conditions as in FIG. The result is shown in FIG. Moreover, the thin film X-ray-diffraction result of the film | membrane after this oxidation process is shown in FIG.
[0060]
From FIG. 1 and FIG. 2, at a depth of about 100 nm from the surface layer of the film after the oxidation treatment, TiO 2 It can be seen that (rutile type) is formed. This result was the same when the TiCN film was oxidized.
[0061]
From the results of the above (a) and (b), TiO formed by oxidation treatment 2 In the next alumina film formation process, TiO 2 To Ti Three O Five It can be seen that it has been reduced.
[0062]
(C) The inventors have also made Cr 2 O Three An experiment was conducted to form an alumina film on the film. The higher the oxygen concentration in the film formation atmosphere, the easier the alumina formed to have an α-type crystal structure, and an α-type crystal structure alumina was obtained when the oxygen concentration decreased. I have already confirmed that it is difficult.
[0063]
From the results of the above (a) to (c), the present inventors, in the alumina film forming process (particularly the initial stage), in addition to the oxygen supplied for forming the film forming atmosphere, the oxidation in the film The action of oxygen produced by the reduction of the product promotes the crystal growth of alumina having an α-type crystal structure, in other words, a state in which the reduction reaction of the oxide formed by the oxidation treatment of the hard film is promoted. The inventors have found that the crystal growth of alumina having an α-type crystal structure is promoted by further increasing the oxygen concentration in the film formation atmosphere. Hereinafter, conditions for realizing such a mechanism will be described in detail.
[0064]
<About the hard film in the second means>
In the formation process of the alumina film, in order to promote the supply of oxygen from the film side, that is, the reduction of the oxide in the oxide-containing layer, the hard film is oxidized into an oxide in the oxidation process. However, in the alumina film forming process, it is preferable to include an element that easily reduces the oxide in the presence of Al as a metal element. For this purpose, an element whose standard free energy for oxide formation is larger than that of aluminum is used. Was found to be very effective.
[0065]
Examples of the element having a standard free energy for generating the oxide larger than that of aluminum include Si, Cr, Fe, and Mn. However, among them, the standard free energy for Ti oxide formation is about -720 kJ / (g · mol) at around 750 ° C., and the standard free energy for aluminum oxide formation: about −900 kJ / (g · mol). Since it is relatively large and is easily reduced in the presence of Al, it is preferable to use a hard film containing Ti as a metal component. Moreover, it is preferable to use the hard film | membrane which uses Ti as a metal component also from the point which can form the alumina film | membrane of (alpha) -type crystal structure on hard films | membranes, such as TiC and TiN which are widely used for a cutting tool etc.
[0066]
The hard film may be formed of a compound of the metal and B, C, N, O, etc., for example, nitride, carbide, carbonitride, boride, which contains the metal as an essential component, A thing made of a nitride oxide, a carbonitride oxide, or the like can be formed as a hard film, and specific examples include TiN, TiCN, TiC, TiCNO, TiCrN, TiSiN, and the like.
[0067]
In the present invention, among these, TiN, TiCN, or TiC is preferably used. Specifically, TiN, TiCN, or TiC is formed alone on the substrate, and two or more layers of TiN, TiCN, or TiC are stacked. Is mentioned.
[0068]
In this case, a composition gradient layer of both material constituting elements to be bonded is formed at the bonding interface between the hard film and the base material or between the hard films, and the adhesion between the base material and the hard film or between the hard films is improved. Also good.
[0069]
As a specific example of providing a composition gradient layer, for example, when a TiN film is formed on a substrate, a layer in which the N composition ratio in the Ti metal film increases continuously or stepwise from the substrate side as a composition gradient layer. And providing a TiN film on the composition gradient layer. For example, when forming a TiCN film on a TiN film, a layer in which the C composition ratio in the TiN film is continuously or stepwise increased from the TiN film side as a composition gradient layer on the TiN film, For example, a TiCN film is formed on the composition gradient layer.
[0070]
When an alumina film mainly composed of α-type crystal structure is formed on a hard film containing Ti as a metal component, first, a compound such as nitride containing Ti as an essential element such as TiN or TiCN. After forming a hard coating consisting of the above, the surface of the hard coating is oxidized to form a titanium oxide-containing layer, and then an alumina film is formed while reducing the titanium oxide on the surface of the layer in the alumina film forming step. Specifically, the surface of the hard coating is oxidized to form TiO 2 Then, in the formation of the alumina film, the TiO on the surface of the layer 2 Ti Three O Five It was found that if the alumina film is formed while reducing to an alumina, alumina having an α-type crystal structure as a main component can be formed efficiently.
[0071]
The film thickness of the hard film is preferably 0.5 μm or more, and more preferably 1 μm or more in order to sufficiently exhibit the wear resistance and heat resistance expected of the hard film. However, if the film thickness of the hard film is too thick, cracks are likely to occur in the hard film at the time of cutting, and the life cannot be extended. Therefore, the film thickness of the hard film is preferably suppressed to 20 μm or less, more preferably 10 μm or less.
[0072]
Although the formation method of the said hard film is not specifically limited, It is preferable to form by PVD method, and it is more preferable to employ | adopt AIP (ion plating) method and reactive sputtering method as this PVD method. In addition, if a method of forming a hard film by the PVD method is adopted, the formation of the hard film and the formation of an α-type main alumina film described later can be performed in the same apparatus. From the viewpoint of improving productivity. Is also preferable.
[0073]
<About the formation of the oxide-containing layer in the second means>
In the present invention, after the hard coating is formed, the surface of the hard coating is oxidized to form an oxide-containing layer (especially when a hard coating containing Ti is used, the outermost surface side is substantially TiO 2. 2 It is preferable to oxidize the hard film under the following conditions in order to form an oxide-containing layer comprising:
[0074]
That is, the oxidation is preferably performed in an oxidizing gas-containing atmosphere. The reason is that it can be oxidized efficiently, for example, oxygen, ozone, H 2 O 2 An atmosphere containing an oxidizing gas such as, for example, is included, and of course, an air atmosphere is also included.
[0075]
The oxidation is preferably performed by maintaining the substrate temperature at 650 to 800 ° C. In this case, if the substrate temperature is lower than 650 ° C., the oxidation is not sufficiently performed, and it is preferable to increase the temperature to 700 ° C. or higher. Although the oxidation is promoted as the substrate temperature is increased, the upper limit of the substrate temperature needs to be suppressed to less than 1000 ° C. for the purpose of the present invention. In the present invention, an oxide-containing layer useful for forming an α-type main alumina film described later can be formed even at 800 ° C. or lower.
[0076]
In the present invention, there are no particular restrictions on the other conditions for the oxidation treatment, and specific oxidation methods include, for example, oxygen, ozone, H, in addition to the thermal oxidation. 2 O 2 Of course, it is also effective to adopt a method in which an oxidizing gas such as plasma is irradiated.
[0077]
Further, as will be described later, it is desirable that the oxidation treatment is performed in an alumina film forming apparatus for forming the film in the next step.
[0078]
<Regarding Formation of Alumina Film Containing Mainly α-type Crystal Structure in Second Means>
As described above, in the second means, a hard film composed of a compound having a standard free energy of oxide formation larger than aluminum and a compound of B, C, N, O, etc. is formed, and the surface of the hard film is oxidized. If the oxide-containing layer obtained in this manner is used as a base, an α-type alumina film can be reliably formed on the oxide-containing layer, and the method for forming the α-type alumina film is not particularly limited. The following method is recommended for efficient film formation without adversely affecting the apparatus and the apparatus.
[0079]
That is, the CVD method is not preferable because it needs to be performed in a high temperature range of 1000 ° C. or higher, and it is desirable to adopt a PVD method capable of forming a film in a low temperature range. Among PVD methods, a sputtering method is preferable, and reactive sputtering is particularly preferable because high-speed film formation can be performed using an inexpensive metal target.
[0080]
The substrate temperature at the time of forming the alumina film is not particularly defined, but it is preferable to perform in the temperature range of about 650 to 800 ° C. because the α-type main alumina film is easily formed. In addition, if the α-type main alumina film is formed by keeping the substrate temperature during the oxidation process constant after the oxidation process, the characteristics of the base material and the hard film can be maintained, and the productivity is also excellent. preferable.
[0081]
The α-type mainly formed alumina film is preferably one having an α-type crystal structure of 70% or more because it exhibits excellent heat resistance, more preferably an α-type crystal structure is 90% or more, and most preferably. The α-type crystal structure is 100%.
[0082]
The film thickness of the α-type main alumina film is preferably 0.1 to 20 μm. In order to maintain the excellent heat resistance and the like of the alumina film, it is effective to secure 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 1 μm or more. However, it is not preferable that the α-type main alumina film is too thick because internal stress is generated in the alumina film and cracks are easily generated. Therefore, the film thickness is preferably 20 μm or less, more preferably 10 μm or less, and still more preferably 5 μm or less.
[0083]
In the case of forming the laminated film by the second means, the formation of the oxide-containing layer and the formation of the alumina film mainly composed of the α-type crystal structure are performed in the same apparatus as in the case of the first means. It is preferable from the viewpoint of productivity improvement, and more preferably, all steps of forming the hard film, forming the oxide-containing layer, and forming an alumina film mainly composed of the α-type crystal structure are the same. This should be done in the device.
[0084]
Specifically, for example, an AIP evaporation source, a magnetron sputtering cathode, a heater heating mechanism, a substrate rotating mechanism, etc. are provided, and a substrate made of cemented carbide is installed in a film forming apparatus as shown in the examples described later. First, a hard film such as TiN is formed by employing the AIP method, and then oxygen, ozone, H, etc. as described above. 2 O 2 The surface of the hard film is thermally oxidized in an oxidizing gas atmosphere such as, and then an alumina film mainly composed of an α-type crystal structure is formed by employing a reactive sputtering method or the like.
[0085]
The present invention is characterized in that an alumina film mainly composed of an α-type crystal structure is formed on a hard film made of a metal compound, which is formed by such a second means. A laminated film with excellent properties and a laminated film-coated tool on which the laminated film is formed are also specified. As a specific application example of the laminated film-coated tool, for example, the substrate is made of cemented carbide. , A throw-away tip formed with TiN, TiCN as a hard film, a base material made of cemented carbide, an end mill formed with TiN, TiCN as a hard film, and a substrate made of cermet, with TiN as a hard film, A cutting tool such as a throw-away tip in which TiCN is formed, and a hot working die used at a high temperature can be used.
[0086]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0087]
<Example 1>
First, an embodiment of the first means will be shown. A substrate made of cemented carbide having a size of 12.7 mm × 12.7 mm × 5 mm is mirror-polished (Ra = 0.02 μm), ultrasonically washed in an alkali bath and a pure water bath, and dried. , And used for coating the laminated film.
[0088]
In this example, the formation of the hard film, the oxidation treatment of the hard film, and the formation of the α-type main alumina film were performed with a vacuum film forming apparatus (AIP-S40 compound machine manufactured by Kobe Steel). went.
[0089]
The hard coating is formed on the substrate by the AIP method (arc ion plating method) using the AIP evaporation source 7 in the apparatus 1 shown in FIG. TiAlN hard coating with a ratio (Ti: Al) of 0.55: 0.45 or TiAlCrN hard coating with an atomic ratio of Ti, Al and Cr (Ti: Al: Cr) of 0.10: 0.65: 0.18 A film was formed. As Comparative Example 1, a CrN film was further formed on the TiAlN film by the AIP method.
[0090]
The oxidation of the hard film or the CrN film formed on the hard film was performed as follows. That is, the sample (substrate) 2 is set on the planetary rotating jig 4 on the rotary table 3 in the apparatus 1 and evacuated until the inside of the apparatus is almost in a vacuum state. The sample was heated to the temperature shown in Table 1 (substrate temperature in the oxidation step) with the heater 5 installed. When the temperature of the sample reached a predetermined temperature, oxygen gas was introduced into the apparatus 1 at a flow rate of 200 sccm and a pressure of 0.5 Pa, and oxidation was performed by heating and holding for 20 minutes or 60 minutes.
[0091]
In addition, the formation of the hard film, the oxidation treatment, and the alumina film formation, which will be described later, rotate (revolve) the rotary table 3 shown in FIG. 3, and the planetary rotating jig 4 (base material holding pipe) installed thereon. Was also carried out while rotating (rotating). In this example, the oxidation treatment and the alumina film formation were performed while rotating the rotating table 3 at 3 rpm and the planetary rotating jig 4 at 20 rpm.
[0092]
Next, an alumina film mainly composed of an α-type crystal structure was formed on the oxide-containing layer. The alumina film is formed in an atmosphere of argon and oxygen with the substrate temperature being substantially the same as that in the oxidation treatment step, and a pulse DC of about 3 kW on the sputtering cathode 6 equipped with one or two aluminum targets in FIG. Electric power was applied and a reactive sputtering method was employed. When the alumina film was formed, the sample (substrate) temperature slightly increased compared to the oxidation treatment. The alumina film was formed by controlling the discharge voltage and the flow rate ratio of argon-oxygen using plasma emission spectroscopy, and setting the discharge state to a so-called transition mode.
[0093]
The surface of the laminated film thus formed was analyzed with a thin film X-ray diffractometer to identify the crystal structure of the alumina film formed as the outermost film. That is, a peak intensity Iα of 2θ = 25.5761 (°) is selected as an X-ray diffraction peak representing alumina with an α-type crystal structure from the X-ray diffraction measurement results as shown in FIGS. A peak intensity Iγ of 2θ = 19.4502 (°) is selected as an X-ray diffraction peak representative of alumina of a type crystal structure, and the intensity ratio: Iα / Iγ value indicates the degree of alumina formation of the α type crystal structure. evaluated. These results are also shown in Table 1.
[0094]
[Table 1]
Figure 0003971293
[0095]
FIG. 4 shows the result of measuring the surface of the laminated film of Example 1 of the present invention with a thin film X-ray diffractometer. Since the main peak of X-ray diffraction shown in FIG. 4 is a diffraction peak due to TiAlN and a diffraction peak of alumina having an α-type crystal structure formed on the outermost surface, the film of Example 1 of the present invention has It can be seen that an α-type crystal structure-based alumina coating is formed on the hard coating.
[0096]
FIG. 5 shows the results of thin film X-ray diffraction on the surface of the laminated film of Comparative Example 1. CrN formed by oxidation of CrN as an intermediate film together with the diffraction peak of alumina having an α-type crystal structure. 2 O Three A diffraction peak due to is observed.
[0097]
From this, it can be seen that also in Comparative Example 1, an alumina film mainly composed of an α-type crystal structure is formed as in Inventive Example 1. However, the hard coating according to the present invention does not need to worry about cutting performance degradation due to the Cr-containing coating formed as an intermediate film, and omits the step of providing an intermediate film to improve the productivity of the laminated coating. It is excellent from the viewpoint of raising
[0098]
In Invention Example 2 and Invention Example 3, TiAlN or TiAlCrN is formed on the base material as a hard film, and only the substrate temperature in the oxidation treatment step is set to 750 ° C., which is 30 ° C. lower than that of Invention Example 1, and other conditions. Was formed in the same manner as Example 1 of the present invention. As shown in Table 1, it can be seen that in Example 2 and Example 3 of the present invention, an alumina film mainly composed of α-type was formed, although alumina having a γ-type crystal structure was slightly mixed with the formed film.
[0099]
In Invention Example 4, TiAlN is formed as a hard coating, the substrate temperature in the oxidation treatment step is set to 740 ° C. lower than those of Invention Example 2 and Invention Example 3, and the oxidation treatment time is set to Examples 1 to 3 of Invention. The film was formed in the same manner as in Example 1 of the present invention, except for 60 minutes longer. As shown in Table 1, it can be seen that the outermost surface of the coating obtained in Inventive Example 4 is covered with substantially pure α-type crystal structure alumina.
[0100]
In Comparative Example 2 and Comparative Example 3, the oxidation treatment temperature was 635 ° C. in Comparative Example 2 and 580 ° C. in Comparative Example 3, both of which were performed by heating and holding for 20 minutes. From the result of Comparative Example 3 shown in Table 1, when the oxidation treatment was performed at 580 ° C., an alumina film having an α-type crystal structure was not formed at all even if an alumina film was formed thereafter, and a γ-type crystal structure It can be seen that a main alumina film is formed. From Comparative Example 2, when the oxidation treatment is performed at 635 ° C., the α-type crystal structure of the formed alumina film is slightly superior, but it is substantially a mixture of α-type and γ-type. It is hard to say that it is α-type.
[0101]
<Example 2>
Next, an embodiment of the second means will be shown. A substrate made of cemented carbide having a size of 12.7 mm × 12.7 mm × 5 mm is mirror-polished (Ra = 0.02 μm), ultrasonically washed in an alkali bath and a pure water bath, and dried. , And used for coating the laminated film.
[0102]
Also in this example, similarly to Example 1, the formation of the hard film, the oxidation treatment of the hard film, and the formation of the α-type main alumina film were carried out by using the vacuum film forming apparatus shown in FIG. AIP-S40 multifunction machine).
[0103]
The hard coating is formed on the substrate by the AIP method (arc ion plating method) using the AIP evaporation source 7 in the apparatus 1 shown in FIG. 3, and a TiN coating or TiCN coating having a thickness of 2 to 3 μm is formed. Formed on a substrate. As a reference example, CrN having the same film thickness was formed on a substrate.
[0104]
The film was oxidized as follows. That is, the sample (substrate) 2 is set on the planetary rotating jig 4 on the rotary table 3 in the apparatus 1 and evacuated until the inside of the apparatus is almost in a vacuum state. The sample was heated to about 760 ° C. with the installed heater 5. When the temperature of the sample reached about 760 ° C., oxygen gas was introduced into the apparatus 1 at a flow rate of 200 sccm and a pressure of 0.5 Pa, and oxidation was performed by heating and holding for 20 minutes.
[0105]
In addition, the formation of the hard film, the oxidation treatment, and the alumina film formation, which will be described later, rotate (revolve) the rotary table 3 shown in FIG. 3, and the planetary rotating jig 4 (base material holding pipe) installed thereon. Was also carried out while rotating (rotating). In this example, the oxidation treatment and the alumina film formation were performed while rotating the rotating table 3 at 3 rpm and the planetary rotating jig 4 at 20 rpm.
[0106]
Next, an alumina film mainly composed of an α-type crystal structure was formed on the oxide-containing layer. The alumina film is formed in an argon and oxygen atmosphere with the substrate temperature being substantially the same as that in the oxidation treatment step, and an average 5.6 kW pulsed DC power applied to the sputtering cathode 6 equipped with the two aluminum targets in FIG. And a reactive sputtering method was employed. When the alumina film was formed, the sample (substrate) temperature slightly increased compared to the oxidation treatment.
The alumina film was formed by controlling the discharge voltage and the flow rate ratio of argon-oxygen using plasma emission spectroscopy, and setting the discharge state to a so-called transition mode.
[0107]
The surface of the laminated film thus formed was analyzed with a thin film X-ray diffractometer (thin film XRD analysis), and the crystal structure of the alumina film formed as the outermost film was specified. The thin film X-ray diffraction result when the TiN film is used (Invention Example 1 ′) is shown in FIG. 6, and the thin film X-ray diffraction result when the TiCN film is used (Invention Example 2 ′) is shown in FIG.
[0108]
Similarly to Example 1, the Iα / Iγ value was determined from the thin film X-ray diffraction results of FIG. 6 or FIG. 7, and the degree of alumina formation of the α-type crystal structure was evaluated. The results are shown in Table 2 together with the film forming conditions.
[0109]
[Table 2]
Figure 0003971293
[0110]
The main peak of X-ray diffraction shown in FIG. 6 and FIG. 7 is attributed to a TiN film or a TiCN film (in FIG. 7, only the TiN structure in the TiCN film is detected by thin film X-ray diffraction). FIG. 6, FIG. 7 and Table 2 show that the X-ray diffraction peak (2θ = 19) representative of the alumina having the γ-type crystal structure is obtained from the diffraction peak and the diffraction peak of the α-type crystal structure formed on the outermost surface. .4502 °) is not confirmed, and the peaks indicating alumina having other γ-type crystal structures are also small. Therefore, the laminated films of Invention Example 1 ′ and Invention Example 2 ′ have α-type crystals on the hard film. It can be seen that a structure-based alumina film is formed.
[0111]
Further, from FIG. 6 and FIG. 7, it is assumed that Ti film formed between the TiN film or TiCN film and the alumina film is oxidized and then reduced. Three O Five Can be confirmed.
[0112]
On the other hand, the reference example is an example in which an alumina film is formed on a CrN film having a metal component of Cr, which is a metal whose standard free energy for oxide formation is smaller than that of aluminum. Since the present invention example 1 ′ and invention example 2 ′ are small, the formed alumina film has a high ratio of γ-type crystal structure alumina to α-type crystal structure alumina. I understand.
[0113]
【The invention's effect】
The present invention is configured as described above, and an alumina film mainly composed of an α-type crystal structure, which is particularly excellent in heat resistance, can be formed in a film forming temperature range that does not deteriorate the properties of the base material and the hard film. did it. Further, unlike the conventional case, it is not necessary to provide an intermediate film between the hard film and the alumina film having the α-type crystal structure, so that a laminated film can be formed efficiently and the cutting performance by the intermediate film can be reduced. There is no reduction. Therefore, by realizing such a laminated film and a method for producing the laminated film, it has become possible to provide a cutting tool or the like that is superior in wear resistance and heat resistance at a low cost.
[0114]
The present invention is practical in that it provides a method of forming alumina having an α-type crystal structure excellent in oxidation resistance on a titanium-based hard film such as TiN, TiCN, or TiC that is widely used at a relatively low temperature. is there.
[Brief description of the drawings]
FIG. 1 is a diagram showing XPS depth profiling of a film obtained by oxidizing TiN.
FIG. 2 is a thin film X-ray diffraction result of a film obtained by oxidizing TiN.
FIG. 3 is a schematic explanatory view (top view) showing an example of an apparatus used for carrying out the present invention.
4 is a thin film X-ray diffraction result of Example 1 of the present invention in Example 1. FIG.
5 is a thin film X-ray diffraction result of Comparative Example 1 in Example 1. FIG.
6 is a thin film X-ray diffraction result of Inventive Example 1 ′ (TiN film) in Example 2. FIG.
7 is a thin film X-ray diffraction result of Inventive Example 2 ′ (TiCN film) in Example 2. FIG.
[Explanation of symbols]
1 Deposition equipment
2 Sample (substrate)
3 Rotary table
4 Planetary rotating jig
5 Heater
6 Sputtering cathode
7 Evaporation source for AIP

Claims (25)

AlおよびTiを必須とする金属成分と、CまたはNを含む化合物からなる硬質皮膜を有する積層皮膜において、該硬質皮膜を酸化することによって形成される酸化物含有層と、該酸化物含有層上に形成されるα型結晶構造を主体とするアルミナ膜を有することを特徴とする耐摩耗性および耐熱性に優れた積層皮膜。In a laminated film having a hard film composed of a metal component essentially containing Al and Ti and a compound containing C or N, an oxide-containing layer formed by oxidizing the hard film, and the oxide-containing layer A multilayer coating excellent in wear resistance and heat resistance, comprising an alumina film mainly composed of an α-type crystal structure. 前記酸化物含有層は、最表面側が実質的にアルミナからなるものである請求項1に記載の積層皮膜。  The multilayer coating according to claim 1, wherein the outermost surface side of the oxide-containing layer is substantially made of alumina. 前記硬質皮膜は、TiAlNからなるものである請求項1または2に記載の積層皮膜。  The multilayer coating according to claim 1, wherein the hard coating is made of TiAlN. 前記硬質皮膜は、AlおよびTiの他、IVa族(Ti除く)、Va族、VIa族およびSiよりなる群から選択される少なくとも1種の元素を必須成分とするCまたはNを含む化合物からなるものである請求項1または2に記載の積層皮膜。The hard coating is composed of a compound containing C or N containing, as an essential component, at least one element selected from the group consisting of IVa group (excluding Ti), Va group, VIa group and Si in addition to Al and Ti. The laminated film according to claim 1 or 2, wherein the film is a laminated film. 前記硬質皮膜は、TiAlCrNからなるものである請求項4に記載の積層皮膜。  The multilayer coating according to claim 4, wherein the hard coating is made of TiAlCrN. Alを必須とする金属成分と、CまたはNを含む化合物からなる硬質皮膜を有する積層皮膜において、該硬質皮膜を酸化することによって形成され最表面側が実質的にアルミナからなる酸化物含有層と、該酸化物含有層上に形成されるα型結晶構造を主体とするアルミナ膜を有することを特徴とする耐摩耗性および耐熱性に優れた積層皮膜。In a laminated film having a metal component essentially comprising Al and a hard film made of a compound containing C or N, an oxide-containing layer formed by oxidizing the hard film and having an outermost surface substantially made of alumina A laminated film excellent in wear resistance and heat resistance, comprising an alumina film mainly composed of an α-type crystal structure formed on the oxide-containing layer. 前記硬質皮膜は、Alの他、IVa族、Va族、VIa族およびSiよりなる群から選択される少なくとも1種の元素を必須成分とする窒化物または炭化物を含む化合物からなるものである請求項6に記載の積層皮膜。The hard film is made of a compound containing nitride or carbide containing, as an essential component, at least one element selected from the group consisting of IVa group, Va group, VIa group and Si in addition to Al. 6. The laminated film according to 6. 前記酸化物含有層上に形成されるアルミナ膜は、α型結晶構造が70%以上である請求項1〜7のいずれかに記載の積層被膜。  The laminated film according to claim 1, wherein the alumina film formed on the oxide-containing layer has an α-type crystal structure of 70% or more. 請求項1〜8のいずれかに記載の積層皮膜が表面に形成されていることを特徴とする積層皮膜被覆工具。  A multilayer coating-coated tool, wherein the multilayer coating according to any one of claims 1 to 8 is formed on a surface. 請求項1〜8のいずれかに記載の積層皮膜を基板上に形成する方法であって、前記硬質皮膜を形成した後、該硬質皮膜の表面を酸化して酸化物含有層を形成し、その後、該酸化物含有層上に前記α型結晶構造を主体とするアルミナ膜を形成することを特徴とする耐摩耗性および耐熱性に優れた積層皮膜の製造方法。A method for forming the laminated film according to claim 1 on a substrate , wherein after forming the hard film, the surface of the hard film is oxidized to form an oxide-containing layer, and thereafter A method for producing a laminated coating excellent in wear resistance and heat resistance, comprising forming an alumina film mainly comprising the α-type crystal structure on the oxide-containing layer. 前記酸化物含有層の形成を、酸化性ガス含有雰囲気下で基板温度を650〜800℃に保持して行う請求項10に記載の積層皮膜の製造方法。  The manufacturing method of the laminated film of Claim 10 which forms the said oxide content layer by hold | maintaining a substrate temperature at 650-800 degreeC by oxidizing gas containing atmosphere. 前記α型結晶構造を主体とするアルミナ膜の形成を、PVD法で行う請求項10または11に記載の積層皮膜の製造方法。  The method for producing a multilayer coating according to claim 10 or 11, wherein the formation of the alumina film mainly comprising the α-type crystal structure is performed by a PVD method. 前記酸化物含有層の形成と前記α型結晶構造を主体とするアルミナ膜の形成を、同一装置内で行う請求項10〜12のいずれかに記載の積層皮膜の製造方法。  The method for producing a multilayer coating according to any one of claims 10 to 12, wherein the formation of the oxide-containing layer and the formation of an alumina film mainly composed of the α-type crystal structure are performed in the same apparatus. 前記硬質皮膜の形成、前記酸化物含有層の形成、および前記α型結晶構造を主体とするアルミナ膜の形成を、同一装置内で行う請求項10〜12のいずれかに記載の積層皮膜の製造方法。 The production of the multilayer coating according to any one of claims 10 to 12, wherein the formation of the hard coating, the formation of the oxide-containing layer, and the formation of an alumina film mainly composed of the α-type crystal structure are performed in the same apparatus. Method. 金属化合物からなる硬質皮膜上にアルミナ膜が形成された積層皮膜を製造する方法であって、Tiと、CまたはNを含む化合物からなる硬質皮膜を基板上に形成した後、該硬質皮膜の表面を酸化して酸化物含有層を形成し、次いで該酸化物含有層表面における酸化物の還元を伴いながらα型結晶構造を主体とするアルミナ膜を形成することを特徴とする積層皮膜の製造方法。A method for producing a laminated film in which an alumina film is formed on a hard film made of a metal compound, the surface of the hard film being formed after a hard film made of a compound containing Ti and C or N is formed on a substrate Forming an oxide containing layer and then forming an alumina film mainly comprising an α-type crystal structure with reduction of the oxide on the surface of the oxide containing layer . 前記硬質皮膜として、TiN、TiCおよびTiCNよりなる群から選択される1層または2層以上の積層を形成する請求項15に記載の積層皮膜の製造方法。The method for producing a laminated film according to claim 15 , wherein the hard film is formed of one or more layers selected from the group consisting of TiN, TiC, and TiCN. 前記硬質皮膜と基板もしくは硬質皮膜同士の接合界面に、接合される両素材構成元素の組成傾斜層を形成する請求項16に記載の積層皮膜の製造方法。The manufacturing method of the laminated film of Claim 16 which forms the composition inclination layer of both the raw material constituent elements joined to the joining interface of the said hard film and a board | substrate or hard films. 前記酸化物含有層としてチタン酸化物含有層を形成した後、アルミナ形成において、該層表面のチタン酸化物の還元を伴いながらアルミナ膜を形成する請求項16または17に記載の積層皮膜の製造方法。18. The method for producing a laminated film according to claim 16 or 17 , wherein after forming a titanium oxide-containing layer as the oxide-containing layer, an alumina film is formed while reducing the titanium oxide on the surface of the layer in forming alumina. . 前記酸化物含有層としてTiO2含有層を形成した後、アルミナ形成において、該層表面のTiO2のTi35への還元を伴いながらアルミナ膜を形成する請求項18に記載の積層皮膜の製造方法。The laminated film according to claim 18 , wherein after forming the TiO 2 -containing layer as the oxide-containing layer, an alumina film is formed while reducing the TiO 2 on the surface of the layer to Ti 3 O 5 in the alumina formation. Production method. 前記酸化物含有層の形成を、酸化性ガス含有雰囲気下で基板温度を650〜800℃に保持して行う請求項15〜19のいずれかに記載の積層皮膜の製造方法。The method for producing a laminated film according to any one of claims 15 to 19 , wherein the oxide-containing layer is formed by maintaining the substrate temperature at 650 to 800 ° C under an oxidizing gas-containing atmosphere. 前記アルミナ膜の形成を、PVD法で行う請求項15〜20のいずれかに記載の積層皮膜の製造方法。The method for producing a laminated film according to any one of claims 15 to 20 , wherein the alumina film is formed by a PVD method. 前記酸化物含有層の形成と前記アルミナ膜の形成を、同一装置内で行う請求項15〜21のいずれかに記載の積層皮膜の製造方法。The method for producing a laminated film according to any one of claims 15 to 21 , wherein the oxide-containing layer and the alumina film are formed in the same apparatus. 前記硬質皮膜の形成、前記酸化物含有層の形成、および前記アルミナ膜の形成を、同一装置内で行う請求項15〜22のいずれかに記載の積層皮膜の製造方法。The method for producing a laminated film according to any one of claims 15 to 22 , wherein the formation of the hard film, the formation of the oxide-containing layer, and the formation of the alumina film are performed in the same apparatus. 請求項15〜23のいずれかに記載の製造方法で製造された積層皮膜であって、金属化合物からなる硬質皮膜上にα型結晶構造を主体とするアルミナ膜が形成されていることを特徴とする耐摩耗性と耐熱性に優れた積層皮膜。A laminated film produced by the production method according to any one of claims 15 to 23, and characterized in that the alumina film mainly made of α-type crystal structure on the hard film of a metal compound is formed A laminated film with excellent wear resistance and heat resistance. 請求項24に記載の積層皮膜が表面に形成されていることを特徴とする耐摩耗性および耐熱性に優れた積層皮膜被覆工具。A laminated film-coated tool excellent in wear resistance and heat resistance, wherein the laminated film according to claim 24 is formed on the surface.
JP2002357210A 2002-08-08 2002-12-09 Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance Expired - Fee Related JP3971293B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2002357210A JP3971293B2 (en) 2002-08-08 2002-12-09 Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance
EP03784598.9A EP1553210B1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF a-TYPE CRYSTAL STRUCTURE
EP20140169853 EP2865784A1 (en) 2002-08-08 2003-08-08 Process for producing alumina coating composed mainly of alpha-type crystal structure
EP14169851.4A EP2848712B1 (en) 2002-08-08 2003-08-08 Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating , member clad with the alumina coating or laminate coating, process for producing the member, and physical vapor deposition apparatus
AU2003254888A AU2003254888A1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU
CNB038189275A CN100413998C (en) 2002-08-08 2003-08-08 Process for producing alumina coating composed mainly of alpha-type crystal structure, alumina coating composed mainly of alpha-type crystal structure, laminate coating including the alumina coating,
US10/523,931 US7531212B2 (en) 2002-08-08 2003-08-08 Process for producing an alumina coating comprised mainly of α crystal structure
PCT/JP2003/010114 WO2004015170A1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF α-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU
IL166622A IL166622A (en) 2002-08-08 2005-02-01 Process for producing an alumina coating and laminate coatings including the same
US12/402,755 US8323807B2 (en) 2002-08-08 2009-03-12 Process for producing alumina coating composed mainly of α-type crystal structure
US12/402,763 US20090173625A1 (en) 2002-08-08 2009-03-12 Process for producing an alumina coating comprised mainly of alpha crystal structure
IL218369A IL218369A0 (en) 2002-08-08 2012-02-28 A process for producing an alumina coating and laminate coatings including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002231954 2002-08-08
JP2002357210A JP3971293B2 (en) 2002-08-08 2002-12-09 Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance

Publications (2)

Publication Number Publication Date
JP2004124246A JP2004124246A (en) 2004-04-22
JP3971293B2 true JP3971293B2 (en) 2007-09-05

Family

ID=32300931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357210A Expired - Fee Related JP3971293B2 (en) 2002-08-08 2002-12-09 Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance

Country Status (1)

Country Link
JP (1) JP3971293B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101035925B (en) * 2004-09-08 2010-09-08 比克-维奥利克斯公司 Method for deposition of coating on a razor blade edge and razor blade
WO2007111293A1 (en) * 2006-03-28 2007-10-04 Sumitomo Metal Industries, Ltd. Cutting tool and process for manufacturing the same
CN101368260A (en) * 2007-09-14 2009-02-18 山特维克知识产权股份有限公司 A method and apparatus for depositing a coating onto a substrate
DE102007000512B3 (en) * 2007-10-16 2009-01-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard-coated body with a multi-layer system for tools and components such as drills, millers and indexable inserts, comprises a bonding layer applied on the body, a single- or multi-phase hard layer, and a phase gradient layer
EP2251122B1 (en) * 2008-02-27 2016-04-13 Kyocera Corporation Surface coated member and cutting tool
JP5234925B2 (en) * 2008-04-03 2013-07-10 株式会社神戸製鋼所 Hard film, method for forming the same, and hard film coated member
JP5739189B2 (en) 2011-02-24 2015-06-24 三菱マテリアル株式会社 Method for producing surface-coated cutting tool with excellent wear resistance
JP5358006B2 (en) * 2012-07-17 2013-12-04 株式会社神戸製鋼所 Hard film, method for forming the same, and hard film coated member
JP6488106B2 (en) * 2014-10-30 2019-03-20 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting
KR101737707B1 (en) * 2015-12-17 2017-05-29 한국야금 주식회사 Hard coated layer for cutting tools

Also Published As

Publication number Publication date
JP2004124246A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4205546B2 (en) Method for producing a laminated film having excellent wear resistance, heat resistance and adhesion to a substrate
US7169485B2 (en) Multilayer coating excellent in wear resistance and heat resistance
JP4502475B2 (en) Hard coating, wear-resistant member and method for producing the same
JP2793696B2 (en) Wear resistant coating
US8323807B2 (en) Process for producing alumina coating composed mainly of α-type crystal structure
JP4427271B2 (en) Alumina protective film and method for producing the same
JP4824173B2 (en) PVD coated cutting tool and manufacturing method thereof
JP2006152424A (en) Hard film, and hard film-coated cutting tool
IL171284A (en) Methods for producing an alumina film
JP3971293B2 (en) Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance
JP2006307318A (en) Method for producing alpha-alumina layer-formed member and surface treatment
JP2006192543A (en) Surface-coated cutting tool and its manufacturing method
JP2006192531A (en) Surface-coated cutting tool and its manufacturing method
JP3971338B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
JP3971337B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
KR100682416B1 (en) Process for producing alumina coating composed mainly of ?-type crystal structure, alumina coating composed mainly of ?-type crystal structure, laminate coating including the alumina coating, member clad with the alumina coating or laminate coating, process for producing the member, and physical evaporation apparatus
JP3971339B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
JP2009035784A (en) Oxide coating film, material coated with oxide coating film, and method for formation of oxide coating film
JP2009191370A (en) Oxide coating film, material coated with oxide coating film, and method for forming oxide coating film
JP2000017423A (en) Tool coated with high toughness hard laminated coating
JP2004332007A (en) ALUMINA FILM WITH alpha TYPE CRYSTAL STRUCTURE
JP2011127164A (en) Coating, cutting tool, and method for manufacturing coating
JP2003127006A (en) Cemented carbide-made cutting tool with surface clad exerting excellent heat plastic deformability resistance in high velocity cutting

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3971293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees