JP2005097722A - Corrosion resistant member, and method for manufacturing the same - Google Patents

Corrosion resistant member, and method for manufacturing the same Download PDF

Info

Publication number
JP2005097722A
JP2005097722A JP2004085007A JP2004085007A JP2005097722A JP 2005097722 A JP2005097722 A JP 2005097722A JP 2004085007 A JP2004085007 A JP 2004085007A JP 2004085007 A JP2004085007 A JP 2004085007A JP 2005097722 A JP2005097722 A JP 2005097722A
Authority
JP
Japan
Prior art keywords
corrosion
plasma
spraying
resistant
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004085007A
Other languages
Japanese (ja)
Inventor
Masanori Abe
昌則 阿部
Koyata Takahashi
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004085007A priority Critical patent/JP2005097722A/en
Priority to KR1020050023341A priority patent/KR20060044497A/en
Priority to SG200501716A priority patent/SG115782A1/en
Priority to EP05006201A priority patent/EP1580294A1/en
Priority to US11/085,202 priority patent/US7504164B2/en
Priority to TW094108831A priority patent/TW200538584A/en
Publication of JP2005097722A publication Critical patent/JP2005097722A/en
Priority to US12/256,960 priority patent/US20090053533A1/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion resistant glass member which is high in corrosion resistance, less in generation of particles, and easily manufactured, and contains nitrogen, and a method for manufacturing the same. <P>SOLUTION: A corrosion resistance member formed of glass consisting of Si, Al, O, N and elements of group 3a and/or group 2a, and a member with a corrosion resistant thermal spraying film of glass consisting of the composition are high in corrosion resistance and heat-resistant strength against corrosive gas and plasma, less in generation of particles. The corrosion resistant member of glass can be manufactured by mixing, molding, heat-treating silicon nitride, alumina, silica and oxides of elements of group 3a and/or group 2a, or performing thermal spraying on a base material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体等の製造におけるCVD(Chemical Vapor Deposition)装置、プラズマ処理装置(プラズマエッチング装置)等に用いる部材であり、特に腐食性ガス又はプラズマに対する耐蝕性が高い部材に関するものである。   The present invention relates to a member used for a CVD (Chemical Vapor Deposition) apparatus, a plasma processing apparatus (plasma etching apparatus) or the like in the manufacture of a semiconductor or the like, and particularly relates to a member having high corrosion resistance against corrosive gas or plasma.

半導体等の製造工程におけるプラズマエッチングや、CVD装置のクリーニング用途には腐食性ガスが多用されている。これら腐食性ガスにはフッ素系、塩素系ガス等が用いられている。フッ素系ガスではCF、C、C、CHF/CF、SF等が用いられており(例えば特許文献1参照)、塩素系ガスでは、Cl、BCl、CCl等が用いられている(非特許文献1参照)。さらにHF、F、NFを用いることも提案されている(例えば特許文献1、2、3参照)。 Corrosive gas is frequently used for plasma etching in the manufacturing process of semiconductors and the like and for cleaning of CVD apparatuses. For these corrosive gases, fluorine-based or chlorine-based gases are used. CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 / CF 4 , SF 6, etc. are used in the fluorine-based gas (see, for example, Patent Document 1), and in the chlorine-based gas, Cl 2 , BCl 3 , CCl 4 or the like is used (see Non-Patent Document 1). Further, it has been proposed to use HF, F 2 , or NF 3 (see, for example, Patent Documents 1, 2, and 3).

このような腐食性ガスを用いる装置の容器、内壁、部品等、上記ガス或いは上記ガスを含むプラズマに接触する部分には、石英、アルミナ、窒化アルミニウム等のセラミックス又はアルミニウム、ステンレス等の金属が使用されている。しかし、これらの部材はフッ素系ガスと反応しフッ化物を生成して装置内のパーティクル発生の原因となることや、部材が短時間に消耗するという問題があった。   Quartz, alumina, ceramics such as aluminum nitride, and metals such as aluminum and stainless steel are used for the parts that come into contact with the gas or plasma containing the gas, such as containers, inner walls, and components of such corrosive gases. Has been. However, these members have a problem that they react with a fluorine-based gas to generate fluoride to cause generation of particles in the apparatus, and the members are consumed in a short time.

例えば、石英の部材はフッ素ガスと反応してSiFを生成して昇華して消耗する。またアルミナ、窒化アルミニウム等のセラミックスでは、アルミニウムのフッ化物AlFは昇華し難いが、部材の粒界や気孔において選択的に腐蝕が進行し、結晶粒子脱落によりパーティクルが発生する。 For example, a quartz member reacts with fluorine gas to produce SiF 4 and sublimates and wears out. Further, in ceramics such as alumina and aluminum nitride, aluminum fluoride AlF 3 is difficult to sublimate, but corrosion proceeds selectively at the grain boundaries and pores of the member, and particles are generated by dropping of crystal grains.

この様な問題を解決する方法として、マグネシア、シリカを含むアルミナセラミックスの表面開気孔率を0.3%以下とした焼結体が提案されている(例えば特許文献4参照)。しかしこの様な焼結体でも焼結粒子の結晶粒界での腐食は避けられず、当該結晶粒子の脱落によるパーティクル発生は避けられなかった。   As a method for solving such a problem, a sintered body has been proposed in which the surface open porosity of alumina ceramics containing magnesia and silica is 0.3% or less (see, for example, Patent Document 4). However, even in such a sintered body, corrosion of the sintered particles at the crystal grain boundary is unavoidable, and generation of particles due to dropping of the crystal particles is unavoidable.

結晶粒界を無くしてパーティクルの発生を押さえると同時に窒素を導入することで耐蝕性を向上させる方法として、Si−Al−O−N元素で構成されたガラスが提案されている(例えば特許文献5参照)。しかし、これらの耐蝕性のガラスは作製方法として還元雰囲気又は不活性雰囲気中での作製が必要であるため、作製装置が大規模になることで部材が高価であった。   As a method of improving the corrosion resistance by eliminating the grain boundaries and suppressing the generation of particles and simultaneously introducing nitrogen, glass composed of Si—Al—O—N elements has been proposed (for example, Patent Document 5). reference). However, since these corrosion-resistant glasses need to be produced in a reducing atmosphere or an inert atmosphere as a production method, members are expensive due to a large-scale production apparatus.

一方、基材を保護するために基材表面に溶射膜を形成する技術が知られているため、上述の耐蝕性のガラスを基材の上に溶射・被覆することが考えられる。しかし、従来の溶射技術では、緻密質な窒素含有ガラスの溶射膜形成が困難であり、従来の溶射による保護膜の形成は主に金属或いはセラミックスを用いるものであった。   On the other hand, since a technique for forming a sprayed film on the surface of the base material in order to protect the base material is known, it is conceivable to spray and coat the above-mentioned corrosion-resistant glass on the base material. However, with the conventional thermal spraying technique, it is difficult to form a dense sprayed film of nitrogen-containing glass, and the conventional protective film formation by thermal spraying mainly uses metal or ceramics.

窒素を含有する溶射膜作製の先行技術としては、例えば、Si、Al、ZrO、TiOの混合粉末を熱処理して得たβサイアロン及びχサイアロン粉末の爆発溶射による窒化珪素溶射膜を作製したものが示されている(例えば、非特許文献2参照)。 As a prior art for producing a sprayed film containing nitrogen, for example, nitriding by explosive spraying of β sialon and χ sialon powder obtained by heat treatment of a mixed powder of Si 3 N 4 , Al 2 O 3 , ZrO 2 , and TiO 2 What produced the silicon sprayed film is shown (for example, refer nonpatent literature 2).

また、Si、Al、YにAlN、SiO、MgOの混合粉体を爆発溶射にて溶射してアモルファス層とYAG層を作製したものも示されている(例えば非特許文献3参照)。更に、Si、Al、Yの混合粉体について、プラズマ溶射によるα窒化珪素を作製したものが報告されている(例えば、非特許文献4参照)。 Also shown is an amorphous layer and a YAG layer produced by spraying a mixed powder of AlN, SiO 2 and MgO on Si 3 N 4 , Al 2 O 3 and Y 2 O 3 by explosive spraying ( For example, refer nonpatent literature 3). Furthermore, it has been reported that α silicon nitride is produced by plasma spraying for a mixed powder of Si 3 N 4 , Al 2 O 3 , and Y 2 O 3 (see, for example, Non-Patent Document 4).

しかし、これらの溶射膜は結晶質であると同時に溶射膜個々の粒子同士の結合が弱く、気孔が多いことで密度が低いために、プラズマエッチング時に溶射膜の粒界や気孔において選択的に腐蝕が進行し、結晶粒子脱落によるパーティクルが発生する。また、爆発溶射を用いると装置が高価であり、溶射膜の堆積効率が悪く、爆発時の風圧でアルミニウムなど金属基板が変形してしまうこともあり、一般的ではない。   However, these sprayed films are crystalline and at the same time, the bonding between the individual particles of the sprayed film is weak and the density is low due to the large number of pores. Therefore, during plasma etching, they are selectively corroded at the grain boundaries and pores of the sprayed film. Progresses and particles are generated due to the drop of crystal particles. Further, when explosive spraying is used, the apparatus is expensive, the deposition efficiency of the sprayed film is poor, and a metal substrate such as aluminum may be deformed by the wind pressure at the time of explosion, which is not general.

すなわち、従来、一般的な溶射法を用いた窒素含有の緻密質で個々の粒子同士が良く結合したガラスの溶射膜を作製する技術は無く、溶射膜は結晶質になり、プラズマエッチング時に結晶粒子脱落によるパーティクルが発生してしまうため、窒素含有ガラスの溶射膜を腐食性ガス又はプラズマに対する耐蝕性部材として用いることが出来なかった。   In other words, there is no conventional technique for producing a glass sprayed film in which individual particles are well-bonded with a dense nitrogen-containing material using a general spraying method, and the sprayed film becomes crystalline, and crystal particles are formed during plasma etching. Since particles are generated due to dropping off, the sprayed film of nitrogen-containing glass cannot be used as a corrosion-resistant member against corrosive gas or plasma.

特開2000−223430号公報JP 2000-223430 A

特開2000−248363号公報JP 2000-248363 A 特開平05−090180号公報JP 05-090180 A 特開平11−278919号公報JP 11-278919 A 特開平11−228172号公報JP-A-11-228172 L.Peters,“Plasma Etch Chemistry:The Untold Story,”Semic.Intl.,15(6),66(1992).L. Peters, “Plasma Etch Chemistry: The United Story,” Semi. Intl. , 15 (6), 66 (1992). B.G.Seong,S.Y.Hwang and J.M.Park“Sialon Coating From Sintered Mixtures of Silicon Nitride and Oxides”Thermal Spray 2003:Advancing the Science & Applying the Technology,(Ed)C.Moreau and B.Marple,Published by ASM International, Materials Park, Ohio,USA,2003,719(2003)B. G. Seong, S.M. Y. Hwang and J.H. M.M. Park “Sialon Coating From Sintered Mixtures of Silicon Nitride and Oxides”, Thermal Spray 2003: Advanced the Science & Applying the Technology. Moreau and B.M. Marple, Publicized by ASM International, Materials Park, Ohio, USA, 2003, 719 (2003) R.B.Heimann、S.Thiele、L.M.Berger、M.Herrmann、M.Nebelung、B.Wielage、T.M.Schnick、P.Vuoristo,“Thermally Sprayed Silicon Nitride−Based Coatings on Steel for Application in Severe Operation Environments:Preliminary Results”Microstructural Science Vol.26,389(1998)R. B. Heimann, S .; Thiele, L.M. M.M. Berger, M.M. Herrmann, M.M. Nebelung, B.M. Wielage, T.W. M.M. Schnick, P.A. Vuoristo, “Thermally Sprayed Silicon Nitride-Based Coatings on Steel for Application in Severe Operation Environments: Preliminary Results Vs. 26,389 (1998) Y.Bao、D.T.Gawne、T.Zhang“The Influence of Matrix Phase Viscosity on the Plasma−Spray Deposition of Silicon−Nitride Composite Coatings”,(Ed)C.Moreau and B.Marple,Published by ASM International, Materials Park, Ohio,USA,2003,263(2003)Y. Bao, D.C. T. T. et al. Gawne, T .; Zhang “The Inflation of Matrix Phase Visibility on the Plasma-Spray Deposition of Silicon-Nitride Composite Coatings,” (Ed.) Moreau and B.M. Marple, Publicized by ASM International, Materials Park, Ohio, USA, 2003, 263 (2003)

以上説明した様に、半導体製造プロセスにおいて腐食性ガスやプラズマを用いる工程では、部材の腐蝕によるパーティクル発生、それに伴う製品汚染、歩留まり低下等の問題があった。またこの様な問題を抑制するSi−Al−O−N元素で構成されたガラス質の耐蝕性部材が提案されているが、ガラス質の耐蝕性部材は製造が困難であり、耐蝕性は必ずしも十分ではなかった。また、上記Si−Al−O−Nガラスを比較的入手が容易な部材の上に溶射により成膜することは困難であった。一方、Si−Al−Y系での溶射は可能であるが、溶射膜は結晶質のため、パーティクルの問題が発生した。 As described above, in the process using a corrosive gas or plasma in the semiconductor manufacturing process, there are problems such as generation of particles due to corrosion of members, product contamination associated therewith, and yield reduction. Further, a vitreous corrosion-resistant member composed of a Si—Al—O—N element that suppresses such a problem has been proposed, but the vitreous corrosion-resistant member is difficult to manufacture, and the corrosion resistance is not necessarily limited. It was not enough. In addition, it has been difficult to form the Si—Al—O—N glass by thermal spraying on a member that is relatively easily available. On the other hand, although spraying with the Si 3 N 4 —Al 2 O 3 —Y 2 O 3 system is possible, the sprayed film is crystalline, so that there is a problem of particles.

本発明の目的は、耐蝕性が高く、パーティクルが少なく、製造が容易で窒素を含有したガラス質の耐蝕性部材を与えるものである。   An object of the present invention is to provide a vitreous corrosion-resistant member having high corrosion resistance, few particles, easy production, and containing nitrogen.

本発明者らは、上述のような現状に鑑み、鋭意検討を行なった結果、Si、Al、O、N及び3a族及び/又は2a族の元素によって構成されたガラスからなる耐蝕性の部材では、腐蝕性ガスや腐食性ガスを含むプラズマに対する耐蝕性が高く、パーティクルの発生が少ないことを見出した。また、この材料は溶射に適しており、基材にこの材料を溶射することで粒子同士の結合が良く、緻密な溶射膜ができ、その結果、部材の耐蝕性が著しく向上し、パーティクルの発生も少ないことを見出し、本発明を完成するに至ったものである。   As a result of intensive studies in view of the above situation, the present inventors have found that corrosion-resistant members made of glass composed of Si, Al, O, N, and Group 3a and / or Group 2a elements are used. The present inventors have found that the corrosion resistance against corrosive gas and plasma containing corrosive gas is high, and the generation of particles is small. In addition, this material is suitable for thermal spraying, and by spraying this material on the base material, the bonding between particles is good, and a dense thermal sprayed film can be formed. As a result, the corrosion resistance of the member is remarkably improved, and particles are generated. As a result, the present invention has been completed.

すなわち、第一の発明は、フッ素プラズマもしくは塩素プラズマ又は腐食性ガスに曝される部位がSi、Al、O、N及び3a族及び/又は2a族の元素によって構成されたガラスからなる耐蝕性部材である。   That is, the first invention is a corrosion-resistant member made of glass in which a portion exposed to fluorine plasma, chlorine plasma, or corrosive gas is composed of Si, Al, O, N and Group 3a and / or Group 2a elements. It is.

以下、本発明の耐蝕性部材について詳細に説明する。   Hereinafter, the corrosion-resistant member of the present invention will be described in detail.

本発明の耐蝕性部材はガラス、換言すれば非晶質である。耐蝕性部材が結晶質であると、腐食性ガス雰囲気では結晶粒界が選択的にエッチングされ、結晶粒の脱落によりパーティクル発生原因となるからである。耐蝕性部材が非晶質であるか否かは、耐蝕性ガラスをエックス線回折で評価した際に非晶質のハローパターンが観測されると共に結晶性の回折ピークが観測されるかどうかで確認することが出来る。   The corrosion-resistant member of the present invention is glass, in other words, amorphous. This is because, when the corrosion-resistant member is crystalline, crystal grain boundaries are selectively etched in a corrosive gas atmosphere, and the generation of particles is caused by dropping of crystal grains. Whether or not the corrosion-resistant member is amorphous is confirmed by whether or not an amorphous halo pattern and a crystalline diffraction peak are observed when the corrosion-resistant glass is evaluated by X-ray diffraction. I can do it.

このようなガラスについては、AlN、SiO,Y混合粉末を不活性雰囲気中で溶融することで作製することが、例えば、Ronald E.Loehman,“Preparation and Properties of Yttrium−Silicon−Aluminum Oxynitride Glasses,”Journal of American Ceramic Society.,62(9−10),491(1979)に提案されている。 Such a glass can be produced by melting AlN, SiO 2 , Y 2 O 3 mixed powder in an inert atmosphere. Loehman, “Preparation and Properties of Yttrium-Silicon-Aluminum Oxynitride Glasses,” Journal of American Ceramic Society. 62 (9-10), 491 (1979).

また、同様の方法で2a族の含有ガラスを作製することが、例えば、R.Pastuszak and P.Verdier,J.Non−Cryst.Solids,56(1973)141に提案されている。   Further, the production of the group 2a-containing glass by the same method is described in, for example, R.A. Pastuszak and P.M. Verdier, J .; Non-Cryst. Solids, 56 (1973) 141.

本発明における耐蝕性部材のガラス組成は、Si、Al、O、Nと元素周期律表3a族及び/又は2a族との元素からなる群より選ばれる少なくとも1つの元素を含むものである。ここで言う3a族とは、Sc、Yとランタノイド元素のことであり、2a族とはBe、Mg、Ca、Sr,Baである。Al及び3a族及び/又は2a族の元素を含むガラスは、腐食性ガス或いはそのプラズマとの反応性が低く、仮に腐食性ガス中のフッ素と反応が生じたとしても生成するものは高沸点化合物であり、プラズマや腐蝕性ガスによるエッチングを抑制する効果がある。一方、Si、Al、O、N元素のみで耐蝕性部材を作製すると融点が高いために、ガラス化しにくく、結晶化してしまい、パーティクルの発生原因となってしまうが、3a族及び/又は2a族元素を添加することにより融点を下げ、ガラス化を促進することで緻密化すると同時にパーティクルを減少させることができる。   The glass composition of the corrosion-resistant member in the present invention contains at least one element selected from the group consisting of Si, Al, O, N and elements of Group 3a and / or Group 2a of the Periodic Table of Elements. The 3a group mentioned here is Sc, Y and lanthanoid elements, and the 2a group is Be, Mg, Ca, Sr, Ba. Glass containing Al and elements of Group 3a and / or Group 2a has low reactivity with corrosive gas or plasma thereof, and even if it reacts with fluorine in corrosive gas, what is generated is a high-boiling compound And has the effect of suppressing etching by plasma or corrosive gas. On the other hand, if a corrosion-resistant member is made of only elements of Si, Al, O, and N, the melting point is high, so that it is difficult to vitrify and crystallize, causing generation of particles. By adding an element, the melting point is lowered, and vitrification is promoted to increase the density and simultaneously reduce the particles.

本発明の耐蝕性部材の組成としては、Si:Alの原子数比率が99.9:0.1から30:70の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Al+Si:3a族元素の原子数比率が95:5から40:60が好ましい。この場合、3a族元素を酸化物として導入した場合には酸化物に含まれている酸素は含めないこととする。更に好ましい組成としては、Si:Alの原子数比率が99.9:0.1から35:65の範囲、O:Nの原子数比率が99.9:0.1から65:35の範囲であり、Al+Si:3a族元素の原子数比率が95:5から40:60である。   The composition of the corrosion-resistant member of the present invention has a Si: Al atomic ratio in the range of 99.9: 0.1 to 30:70, and an O: N atomic ratio of 99.9: 0.1 to 60. : 40, and the atomic number ratio of Al + Si: 3a group element is preferably 95: 5 to 40:60. In this case, when a group 3a element is introduced as an oxide, oxygen contained in the oxide is not included. More preferably, the Si: Al atomic ratio is in the range of 99.9: 0.1 to 35:65, and the O: N atomic ratio is in the range of 99.9: 0.1 to 65:35. Yes, the atomic ratio of Al + Si: 3a group element is 95: 5 to 40:60.

2a族元素を添加する場合は、Si:Alの原子数比率が99.9:0.1から30:70の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Al+Si:2a族元素の原子数比率が95:5から50:50が好ましい。この場合、2a族元素を酸化物として導入した場合には酸化物に含まれている酸素は含めないこととする。   When the group 2a element is added, the Si: Al atomic ratio is in the range of 99.9: 0.1 to 30:70, and the O: N atomic ratio is 99.9: 0.1 to 60:40. The atomic ratio of the Al + Si: 2a group element is preferably 95: 5 to 50:50. In this case, when the group 2a element is introduced as an oxide, oxygen contained in the oxide is not included.

この組成の中で、3a族を除いたSi−Al−O−N元素の範囲について、AlN−Si−SiO−Al系の相図を図1に示すが、上記の組成範囲(図1中、A+Bの領域)では、ガラス安定領域であり、結晶化し難く、更に好ましい組成範囲としては「A」で示される格子で示される部分である。一方、組成がこれらの範囲から外れるとガラスが結晶化し易く、粒界、気孔が形成され、そこから腐食が進行してパーティクル発生原因となり易い。 In this composition, the phase diagram of the AlN—Si 3 N 4 —SiO 2 —Al 2 O 3 system for the range of Si—Al—O—N elements excluding group 3a is shown in FIG. In the composition range (A + B region in FIG. 1), it is a glass stable region, hardly crystallized, and a more preferable composition range is a portion indicated by a lattice indicated by “A”. On the other hand, if the composition is out of these ranges, the glass is likely to crystallize, grain boundaries and pores are formed, and corrosion proceeds from there to easily cause generation of particles.

また、第2の発明は、フッ素プラズマもしくは塩素プラズマ又は腐食性ガスに曝される部位が、Si、Al、O、N及び3a族及び/又は2a族の元素によって構成されたガラスの溶射膜であることを特徴とするものである。   The second invention is a glass sprayed film in which the part exposed to fluorine plasma or chlorine plasma or corrosive gas is composed of Si, Al, O, N and Group 3a and / or Group 2a elements. It is characterized by being.

ガラス溶射膜にすると、ガラス化すると同時に粒子同士の結合も良くなって、緻密化することからこの耐蝕性ガラスを溶射膜として基材にコーティングすることにより、安価で耐蝕性に優れた材料を提供することができる。   When a glass sprayed coating is used, it will vitrify and at the same time improve the bonding between particles, so it will be densified. By coating this corrosion-resistant glass on the substrate as a sprayed coating, a material that is inexpensive and has excellent corrosion resistance is provided. can do.

本発明で用いる基材は特に限定はないが、石英ガラスなどの耐熱ガラスやアルミニウム、ステンレス等の金属、アルミナ、ムライト等のセラミックス等が挙げられる。   The substrate used in the present invention is not particularly limited, and examples thereof include heat-resistant glass such as quartz glass, metals such as aluminum and stainless steel, ceramics such as alumina and mullite, and the like.

用いる基材の表面は、表面粗さRaが1〜50μmであることが好ましい。表面粗さを1〜50μmとすることにより、耐蝕性ガラス溶射膜と基材との密着性が向上する。表面粗さRaが1μm未満では、基材と耐蝕性ガラス溶射膜が剥離し易い場合があり、基材の上に耐蝕性ガラス溶射膜を均一に被覆することが難しい場合がある。一方、表面粗さRaが50μmを超えると、耐蝕性ガラス溶射膜の表面を平滑にすることが難しく、プラズマや腐蝕性ガスによるエッチングを抑制することが難しい場合がある。   The surface of the substrate to be used preferably has a surface roughness Ra of 1 to 50 μm. By setting the surface roughness to 1 to 50 μm, the adhesion between the corrosion-resistant glass sprayed film and the substrate is improved. When the surface roughness Ra is less than 1 μm, the substrate and the corrosion-resistant glass sprayed film may be easily peeled off, and it may be difficult to uniformly coat the corrosion-resistant glass sprayed film on the substrate. On the other hand, when the surface roughness Ra exceeds 50 μm, it is difficult to smooth the surface of the corrosion-resistant glass sprayed film, and it may be difficult to suppress etching by plasma or corrosive gas.

本発明であるガラス質の耐蝕性溶射膜の厚みに限定はないが、0.01mmから3mm、特に0.01から0.5mmであることが好ましい。ガラス質の耐蝕性溶射膜の厚みが3mmを超えて厚くなると、基材との熱膨張率の差によって耐蝕性ガラス溶射膜のひび割れ、剥離が発生し易く、一方0.01mm未満では保護膜として不十分である場合がある。耐蝕性ガラス溶射膜の厚みは、部材の断面を顕微鏡で観察するか、部材の断面をEPMA(X線マイクロアナライザー)による構成元素の組成分析を行なうこと等で確認することができる。   The thickness of the vitreous corrosion-resistant sprayed film according to the present invention is not limited, but is preferably 0.01 mm to 3 mm, particularly preferably 0.01 to 0.5 mm. When the thickness of the glassy corrosion-resistant sprayed film exceeds 3 mm, the corrosion-resistant glass sprayed film tends to crack and peel off due to the difference in thermal expansion coefficient with the base material. It may be insufficient. The thickness of the corrosion-resistant glass sprayed film can be confirmed by observing the cross section of the member with a microscope or by analyzing the composition of constituent elements using an EPMA (X-ray microanalyzer).

本発明であるガラス質耐蝕性溶射膜の表面粗さRaは0.01〜10μm、特に8μm以下であることが好ましい。耐蝕性ガラス溶射膜の表面平滑性が悪く荒れたものであると、耐蝕性ガラス溶射膜表面に形成された突起形状の特にエッジの部分がプラズマ或いは腐食性ガスによって選択的にエッチングされ、パーティクルが発生し易い。   The surface roughness Ra of the glassy corrosion-resistant sprayed film according to the present invention is preferably 0.01 to 10 μm, particularly preferably 8 μm or less. If the surface smoothness of the corrosion-resistant glass sprayed film is poor and rough, the protrusions formed on the surface of the corrosion-resistant glass sprayed film surface are selectively etched by plasma or corrosive gas, especially the edges. It is easy to generate.

本発明の耐蝕性ガラス溶射膜は、N、Ar等不活性ガスあるいはH等還元性ガスを溶射ガスとして用いたものであることが好ましい。窒素含有物質の溶射では、プラズマガスに酸素が含有すると溶射中に酸化してしまい、溶射膜から窒素が消失することで耐蝕性が低下する。溶射膜中の窒素の含有量については、溶射膜表面に蛍光X線分析やEPMA分析を行うことや、少量削り取った溶射膜を炉によって分解した後に発生する窒素ガスについて熱伝導率測定を行うことで測定する窒素分析装置を用いることで分析する。 The corrosion-resistant glass sprayed film of the present invention is preferably one using an inert gas such as N 2 or Ar or a reducing gas such as H 2 as the spray gas. In the thermal spraying of a nitrogen-containing substance, if oxygen is contained in the plasma gas, it is oxidized during the thermal spraying, and the corrosion resistance is lowered by the disappearance of nitrogen from the sprayed film. Regarding the nitrogen content in the sprayed film, perform X-ray fluorescence analysis or EPMA analysis on the surface of the sprayed film, or measure the thermal conductivity of nitrogen gas generated after cracking a small amount of the sprayed film in a furnace. Analyze by using a nitrogen analyzer to measure in

本発明の耐蝕性ガラス溶射膜の作製時、常圧下での溶射ガン先端と基板との間の距離である溶射距離は、40〜150mmが好ましい。溶射距離が150mmをこえると基板に溶射材が付着するまでに冷却されてしまい、基板上に溶射膜が堆積されない場合があり、溶射距離が40mmより短いと基材、溶射膜両方の温度が上昇してしまい、溶射材である窒化物の分解によって窒素の消失が発生し、耐蝕性が低下する場合がある。   When producing the corrosion-resistant glass sprayed coating of the present invention, the spraying distance, which is the distance between the tip of the spraying gun and the substrate under normal pressure, is preferably 40 to 150 mm. If the spraying distance exceeds 150 mm, the sprayed material will cool down before adhering to the substrate, and the sprayed film may not be deposited on the substrate. If the spraying distance is shorter than 40 mm, the temperature of both the substrate and the sprayed film will rise. As a result, the disappearance of nitrogen may occur due to the decomposition of the nitride, which is the thermal spray material, and the corrosion resistance may decrease.

本発明の耐蝕性ガラス溶射膜の作製時、大気圧下における不活性ガスあるいは還元性ガスを用いたプラズマ溶射の場合、基材温度としては、100〜800℃が好ましい。基材温度が100℃より低いと溶射材が基材に付着時に冷却がされてしまい、基板上の溶射膜の膜質が悪い。また、基材温度が800℃よりも高いと、溶射材である窒化物の分解によって窒素の消失が発生し、耐蝕性が低下する。   In the production of the corrosion-resistant glass sprayed film of the present invention, in the case of plasma spraying using an inert gas or a reducing gas under atmospheric pressure, the substrate temperature is preferably 100 to 800 ° C. When the substrate temperature is lower than 100 ° C., the sprayed material is cooled when adhering to the substrate, and the film quality of the sprayed film on the substrate is poor. On the other hand, if the substrate temperature is higher than 800 ° C., the disappearance of nitrogen occurs due to the decomposition of the nitride, which is the thermal spray material, and the corrosion resistance decreases.

また、不活性ガス加圧下における不活性ガスあるいは還元性ガスを用いたプラズマ溶射の場合、基材温度としては、100〜1200℃が好ましい。基材温度が100℃より低いと溶射材が基材に付着時に冷却がされてしまい、基材上の溶射膜の膜質が悪い。また、基材温度が1200℃よりも高いと、溶射材である窒化物の分解によって窒素の消失が発生し、耐蝕性が低下する。加圧下での溶射では、常圧での溶射と比べて、窒素の分解による窒素の発生を押さえることが出来るため、常圧よりも高い温度で溶射を行うことが出来る。   In the case of plasma spraying using an inert gas or a reducing gas under an inert gas pressurization, the substrate temperature is preferably 100 to 1200 ° C. When the substrate temperature is lower than 100 ° C., the sprayed material is cooled when adhering to the substrate, and the film quality of the sprayed film on the substrate is poor. On the other hand, when the substrate temperature is higher than 1200 ° C., the disappearance of nitrogen occurs due to the decomposition of the nitride, which is the thermal spray material, and the corrosion resistance decreases. In thermal spraying under pressure, compared to thermal spraying at normal pressure, generation of nitrogen due to decomposition of nitrogen can be suppressed, so that thermal spraying can be performed at a temperature higher than normal pressure.

本発明の耐蝕性ガラス部材は基材と耐蝕性ガラス溶射膜との間に熱伝導率が10W/m・K以下の材料で構成される中間層を有することが好ましい。基材と耐蝕性ガラス溶射膜との間に低熱伝導の中間層を入れると、溶射後の冷却速度が遅くなり、溶射膜がよく溶け合うことで、気孔の少ない緻密な溶射膜を得ることが出来る。この中間層については、中でもジルコニア、セリア、ハフニア等が特に好ましい。10W/m・Kを超える材料では、冷却速度が遅くならず、緻密な溶射膜を得ることが難しい場合がある。   The corrosion-resistant glass member of the present invention preferably has an intermediate layer composed of a material having a thermal conductivity of 10 W / m · K or less between the substrate and the corrosion-resistant glass sprayed film. If an intermediate layer with low thermal conductivity is inserted between the substrate and the corrosion-resistant glass sprayed film, the cooling rate after spraying becomes slow, and the sprayed film melts well, so that a dense sprayed film with few pores can be obtained. . Among these intermediate layers, zirconia, ceria, hafnia and the like are particularly preferable. With materials exceeding 10 W / m · K, the cooling rate is not slow, and it may be difficult to obtain a dense sprayed film.

次に本発明の耐蝕性部材の製造方法を説明する。   Next, the manufacturing method of the corrosion-resistant member of this invention is demonstrated.

本発明の耐蝕性部材の製造方法としては、Si、Al、O、N及び3a及び/又は2a族の元素を含有するよう、例えば、シリカ、アルミナ、窒化アルミニウム、窒化ケイ素、3a族および2a族酸化物粉末の中から選択した粉末を所定の割合で混合し、加圧若しくは常圧の還元雰囲気下等で溶融させてガラスインゴットを作製するなどの方法がある。   The method for producing a corrosion-resistant member of the present invention includes, for example, silica, alumina, aluminum nitride, silicon nitride, 3a group and 2a group so as to contain Si, Al, O, N and 3a and / or 2a group elements. There is a method of preparing a glass ingot by mixing a powder selected from oxide powders at a predetermined ratio and melting the mixture in a reducing atmosphere under pressure or normal pressure.

本発明のガラス溶射膜による耐蝕性部材は、溶射によって耐蝕性ガラス溶射膜を形成することによって製造できる。   The corrosion-resistant member by the glass sprayed film of the present invention can be manufactured by forming a corrosion-resistant glass sprayed film by spraying.

本発明で用いる溶射原料は、Si、Al、O、N及び3a族及び/又は2a族の元素を含むガラス組成の原料であり、粉末形状の原料を用いることが好ましい。このような原料としては、上述したような各酸化物や各窒化物粉末の顆粒混合物や、上述の各酸化物や各窒化物粉末を所定の割合で混合し、加圧若しくは常圧の還元雰囲気下で溶融したガラスインゴットを作成した後、粉砕することによって調製したものを用いることができる。更に、上述した各酸化物や各窒化物粉末をスラリー化し、当該混合スラリーをスプレードライ法で顆粒を作成した後、顆粒を焼結する等の方法で得ることも出来る。上述した各方法において、必要に応じてアクリル系等のバインダーを添加しても良い。   The thermal spraying raw material used in the present invention is a raw material having a glass composition containing Si, Al, O, N and Group 3a and / or Group 2a elements, and it is preferable to use a powdery raw material. As such a raw material, a granule mixture of each oxide and each nitride powder as described above, or a mixture of each of the above oxides and each nitride powder in a predetermined ratio, and a reducing atmosphere under pressure or normal pressure. A glass ingot melted below can be prepared, and then prepared by pulverization. Furthermore, each oxide and each nitride powder mentioned above can be made into a slurry, and the mixed slurry can be obtained by a method of forming granules by a spray drying method and then sintering the granules. In each method described above, an acrylic binder or the like may be added as necessary.

溶射に用いる原料粉末の粒径に限定はないが、平均粒径で10〜100μmであることが好ましい。平均粒径10μm未満では原料粉末自身に十分な流動性がないため溶射フレーム中に原料を均一に供給することが難しい場合がある。また、平均粒径が100μmを超えると、溶射粒子の溶融が不均一となり、得られる溶射膜の基材に対する密着性が悪くなりやすい場合がある。   The particle size of the raw material powder used for thermal spraying is not limited, but the average particle size is preferably 10 to 100 μm. If the average particle size is less than 10 μm, the raw material powder itself does not have sufficient fluidity, and it may be difficult to uniformly supply the raw material into the thermal spray frame. On the other hand, if the average particle size exceeds 100 μm, the sprayed particles may not be melted uniformly, and the adhesion of the resulting sprayed film to the substrate may be likely to deteriorate.

本発明では耐蝕性ガラス溶射被膜の形成の際、基材表面の温度をあらかじめ予熱して溶射することが好ましい。基材表面をあらかじめ予熱することは、溶射の際に、熱ショックによる基材の割れ防止、並びに密着性の高い耐蝕性ガラス溶射膜を得るために有効である。予熱温度は用いる基材の種類によっても異なるが、例えば石英ガラス基材の場合100〜800℃、アルミニウム基材の場合50〜500℃の範囲が好ましい。   In the present invention, when forming the corrosion-resistant glass sprayed coating, it is preferable that the temperature of the substrate surface is preheated and sprayed in advance. Preheating the substrate surface in advance is effective for preventing cracking of the substrate due to heat shock and obtaining a corrosion-resistant glass sprayed film having high adhesion during thermal spraying. The preheating temperature varies depending on the type of substrate used, but for example, a range of 100 to 800 ° C. for a quartz glass substrate and a range of 50 to 500 ° C. for an aluminum substrate are preferable.

予熱温度を上げすぎると溶射膜中の窒素が分解してしまうことや、ガラスの結晶化が進行するため好ましくない。予熱は、基材を外部ヒーターで加熱する、或いは原料を供給せずに溶射フレームを基材に照射すること等で行えば良い。予熱温度は、基材の裏面からの熱電対による測定、或いは非接触の放射温度計等で測定できる。   An excessively high preheating temperature is not preferable because nitrogen in the sprayed film is decomposed and crystallization of the glass proceeds. Preheating may be performed by heating the substrate with an external heater, or irradiating the substrate with a thermal spray frame without supplying raw materials. The preheating temperature can be measured with a thermocouple from the back surface of the substrate or with a non-contact radiation thermometer.

本発明で用いる溶射法はプラズマ溶射であることが好ましい。図2に一般的なプラズマ溶射装置を示す。プラズマ溶射装置はアノード21とカソード20との間に流れたプラズマガス22がアーク放電にすることによって形成されるプラズマジェットを熱源として、溶射粉末23を溶融し、溶融した溶射粉末はプラズマガスの流速で基材25にぶつかり堆積するものである。   The thermal spraying method used in the present invention is preferably plasma spraying. FIG. 2 shows a general plasma spraying apparatus. The plasma spraying apparatus melts the thermal spray powder 23 by using a plasma jet formed by the plasma gas 22 flowing between the anode 21 and the cathode 20 as arc discharge as a heat source, and the melted thermal spray powder has a flow velocity of the plasma gas. In this case, the bumps are deposited on the substrate 25.

プラズマ溶射装置では、プラズマガスとして、N、Ar等不活性ガスあるいはH等還元性ガス又はこれらの混合ガスを用いることができる。窒素含有物質の溶射では、プラズマガスに酸素が含有すると溶射中に酸化してしまい、溶射膜から窒素が消失することで耐蝕性が低下するため、プラズマガスとして不活性ガス、還元性ガスを用いることが出来るプラズマ溶射法が好ましい。 In the plasma spraying apparatus, an inert gas such as N 2 or Ar, a reducing gas such as H 2, or a mixed gas thereof can be used as the plasma gas. In the thermal spraying of nitrogen-containing materials, if oxygen is contained in the plasma gas, it will be oxidized during thermal spraying, and the corrosion resistance will be reduced by the disappearance of nitrogen from the sprayed film, so an inert gas or reducing gas is used as the plasma gas. A plasma spraying method that can be used is preferable.

また、プラズマ溶射法の他に一般的な溶射法としてフレーム溶射や高速フレーム溶射もあるが、いずれも酸素等に対して燃料を過剰とした還元雰囲気のフレームで溶射することが好ましい。   In addition to the plasma spraying method, there are flame spraying and high-speed flame spraying as general spraying methods. However, it is preferable to perform spraying in a flame in a reducing atmosphere in which fuel is excessive with respect to oxygen or the like.

本発明の溶射において、溶射フレームを基材に溶射する際の投入する溶射パワーは用いる装置によっても異なるが、例えば図2に示すようなプラズマ溶射装置の場合、溶射パワーを20kW以上とするような条件が例示できる。   In the thermal spraying of the present invention, the thermal spraying power applied when spraying the thermal spraying frame onto the base material varies depending on the apparatus used. For example, in the case of a plasma thermal spraying apparatus as shown in FIG. 2, the thermal spraying power is set to 20 kW or more. Conditions can be exemplified.

溶射によって耐食性ガラスを製造する場合、用いる基材は表面粗さRaが1〜50μmのものを用いることが好ましい。表面が平滑な基材を用いると、溶射膜の堆積効率が悪く、また、基材とガラス質の耐蝕性溶射膜との密着性も悪くなる傾向にある。   When producing corrosion-resistant glass by thermal spraying, it is preferable to use a substrate having a surface roughness Ra of 1 to 50 μm. When a substrate having a smooth surface is used, the deposition efficiency of the sprayed film is poor, and the adhesion between the substrate and the glassy corrosion-resistant sprayed film tends to be deteriorated.

基材表面の表面粗さRaを1〜50μmとする方法としては、その様な表面粗さの溶射膜を基材に予め溶射する方法、或いは基材自身をブラスト処理又はブラスト処理とフッ酸等による化学的エッチングを併せて施すことが例示できる。   As a method of setting the surface roughness Ra of the substrate surface to 1 to 50 μm, a method in which a sprayed film having such a surface roughness is sprayed on the substrate in advance, or the substrate itself is blasted or blasted and hydrofluoric acid, etc. It is possible to exemplify the chemical etching by the above.

本発明の耐蝕性部材は成膜装置又はプラズマ処理装置の容器或いは部品等に用いることが出来る。耐蝕性部材の使用方法としては、これらの装置の中で腐食性ガスやプラズマに接触する部位に用いることができ、より具体的にはリング状部材やベルジャーとして用いることが挙げられる。   The corrosion-resistant member of the present invention can be used for a container or a part of a film forming apparatus or a plasma processing apparatus. As a method of using the corrosion-resistant member, it can be used in a part that comes into contact with corrosive gas or plasma in these apparatuses, and more specifically, it can be used as a ring-shaped member or a bell jar.

ここでいう成膜装置とは、例えばCVD装置やPVD(Physical Vapor Deposition)装置等である。これらの装置の反応管やベルジャー等は、使用後の洗浄にフッ素系ガスによる洗浄を行なわれており、当該洗浄による腐食やそれに起因するパーティクル発生が問題であったが、本発明の耐蝕性部材を用いればそれらの問題が解決される。   The film forming apparatus here is, for example, a CVD apparatus or a PVD (Physical Vapor Deposition) apparatus. The reaction tubes and bell jars of these devices are cleaned with fluorine-based gas for cleaning after use, and corrosion due to the cleaning and the generation of particles due to the cleaning have been a problem. Those problems are solved by using.

またここでいうプラズマ処理装置とは、例えばプラズマエッチング装置、プラズマクリーニング装置であり、装置内に設置した製品にプラズマを照射し、製品の表面を剥離、あるいは清浄化する装置をさす。これら装置のリング状フォーカスリング又はベルジャー等でもフッ素系プラズマによってエッチングが行なわれるため、装置内の部品で腐食性ガスやプラズマと接触する部位では、パーティクルの発生が問題であった。この場合も同様に、本発明の耐蝕性部材を用いれば腐食されにくく、パーティクルの発生が少ない。   The plasma processing apparatus here is, for example, a plasma etching apparatus or a plasma cleaning apparatus, and refers to an apparatus that irradiates a product placed in the apparatus with plasma and peels or cleans the surface of the product. Since the ring-shaped focus ring or bell jar of these apparatuses is also etched by fluorine-based plasma, the generation of particles is a problem in the parts in the apparatus that come into contact with corrosive gas or plasma. Similarly, in this case, if the corrosion-resistant member of the present invention is used, it is difficult to corrode and the generation of particles is small.

本発明の耐蝕性部材は以下の効果を有するため、CVD装置、プラズマ処理装置等の腐食性ガス、プラズマを用いる装置に使用した際、耐蝕性が高く、パーティクル発生が少ないため、製品への汚染がなく、高い製品留まりで連続運転が可能である。   Since the corrosion-resistant member of the present invention has the following effects, when used in an apparatus using a corrosive gas or plasma, such as a CVD apparatus or a plasma processing apparatus, it has high corrosion resistance and generates less particles, so that it contaminates products. It is possible to operate continuously with a high product yield.

本発明を実施例に基づき詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。   The present invention will be described in detail based on examples, but the present invention is not limited to these examples.

実施例
1)バルク体の作製
窒化ケイ素、アルミナ、シリカ及び表1に示す3a元素の酸化物を表1No.101、102の組成になるように調整、混合、成型し、雰囲気加圧炉を用いて,カーボンるつぼ中で熱処理温度1750℃、0.6MPaの窒素加圧雰囲気下で4時間の熱処理を行ない、ガラスバルク体を作製した。図3にそれぞれの組成を図示する。
2)溶射膜の作製
2−1)溶射基材の調製
ブラストにより表面粗さRaを6μmとした石英ガラスに対し、24%フッ酸で1時間処理して表面粗さRaを10μmとした石英ガラス基材(基材A)、ブラストによって表面粗さを7μmとしたアルミニウム基材(基材B)、ブラストによって表面粗さを6μmとしたムライト基材(基材C)、アルミニウム基板に3モル%イットリウムを含むジルコニア溶射膜を被覆し、表面粗さRaを8μmとしたアルミニウム基板(基材D)、アルミニウム基板にセリア溶射膜を被覆し、表面粗さRaを9μmとしたアルミニウム基板(基板E)を調製した。
Example 1 Production of Bulk Body Silicon nitride, alumina, silica and oxides of the 3a element shown in Table 1 were prepared in Table 1 No. Adjusted, mixed, and molded so as to have a composition of 101, 102, and performed a heat treatment for 4 hours in a carbon crucible under a nitrogen pressure atmosphere at a heat treatment temperature of 1750 ° C. and 0.6 MPa using an atmospheric pressure furnace, A glass bulk body was produced. FIG. 3 illustrates the respective compositions.
2) Preparation of thermal sprayed film 2-1) Preparation of thermal sprayed base material Quartz glass with surface roughness Ra of 10 μm treated with 24% hydrofluoric acid for 1 hour against quartz glass with surface roughness Ra of 6 μm by blasting Base material (base material A), aluminum base material (base material B) whose surface roughness is 7 μm by blasting, mullite base material (base material C) whose surface roughness is 6 μm by blasting, 3 mol% in aluminum substrate An aluminum substrate (base material D) coated with a zirconia sprayed film containing yttrium and having a surface roughness Ra of 8 μm, and an aluminum substrate (substrate E) coated with a ceria sprayed film on the aluminum substrate and having a surface roughness Ra of 9 μm Was prepared.

2−2)溶射用原料粉末の調製
窒化ケイ素、アルミナ、シリカ及び表1に示す3a及び又は2a族元素の酸化物を表1の組成になるように調整し、それら粉末にバインダーを混合した後、スプレードライにより、平均粒径50μmの造粒粉末を得た。この造粒粉末について、500℃2時間の脱脂後、1300℃2時間の焼結を行い、平均粒径50μmの焼結粉末を得た。
2-2) Preparation of raw material powder for thermal spraying After adjusting silicon oxide, alumina, silica and oxides of group 3a and / or 2a elements shown in Table 1 to have the composition shown in Table 1, and mixing a binder with these powders Then, granulated powder having an average particle diameter of 50 μm was obtained by spray drying. The granulated powder was degreased at 500 ° C. for 2 hours and then sintered at 1300 ° C. for 2 hours to obtain a sintered powder having an average particle size of 50 μm.

2−3)耐蝕性ガラス溶射膜の形成
2−1)で調製した各種基材を用い、常圧にて、図2に示すプラズマ溶射装置を用いて、プラズマガスとして窒素40SLM(Standard Litter per Minite)と水素12SLM流し、溶射距離を60mmとし、溶射ガンを400mm/秒の速度で移動させながら、30kWのパワーでプラズマを生成し、原料粉末を供給することなく、基材の予熱を行った。
2-3) Formation of Corrosion Resistant Glass Sprayed Film Using the various substrates prepared in 2-1) and using the plasma spraying apparatus shown in FIG. 2 at normal pressure, nitrogen 40 SLM (Standard Litter per Minute) as plasma gas. ) And hydrogen 12SLM, the spraying distance was 60 mm, the spray gun was moved at a speed of 400 mm / second, plasma was generated at a power of 30 kW, and the substrate was preheated without supplying raw material powder.

次に2−2)で作製した溶射用原料粉末を供給量15g/分とし、速度を400mm/秒、ピッチ4mm、溶射距離60mmで溶射ガンを移動させながら5回溶射し、耐食性溶射膜を形成した。図3にそれぞれの組成を図示する。   Next, the thermal spraying raw material powder produced in 2-2) is supplied at a rate of 15 g / min, sprayed five times while moving the spray gun at a speed of 400 mm / second, a pitch of 4 mm, and a spray distance of 60 mm to form a corrosion-resistant sprayed film. did. FIG. 3 illustrates the respective compositions.

また、表2には、常圧にて、溶射粉末組成として原子数比でSi:Al比を75:25、O:N比を86:14、Al+Si:Y比を2:1と固定し、溶射距離を40、60、90、120、150mmと変化させた以外は上記と同様の方法で形成した溶射膜及び、窒素による加圧下で同様の方法で形成した溶射膜の条件を示す。   Table 2 also shows the thermal spray powder composition at a normal pressure with an atomic ratio of Si: Al ratio of 75:25, O: N ratio of 86:14, and Al + Si: Y ratio of 2: 1. The conditions of the sprayed film formed by the same method as described above except that the spraying distance is changed to 40, 60, 90, 120, and 150 mm, and the conditions of the sprayed film formed by the same method under the pressurization with nitrogen are shown.

3)性能評価(耐蝕性)
1)及び2)で調製した各種組成の耐蝕性ガラスバルク体及び溶射膜に対し、接触式表面粗さ計による表面粗さRaの測定、X線回折法によるガラス化の確認、フッ素系ガスを含むプラズマに曝した時のエッチング速度とパーティクル量の測定試験を行なった。エッチング条件は、反応処理室内の圧力1torr、反応ガスにCFガスを用い、電極板間に300Wの高周波電力を印加することによりプラズマを発生させた。エッチング厚みは段差測定法を用いて測定し、パーティクル発生は走査型電子顕微鏡により耐蝕性部材表面の粒状物質の観察によって評価した。X線回折法によるガラス化の確認では、すべてのバルク体及び溶射膜のガラス化が確認された。表面粗さRa、エッチング速度とパーティクル量については結果を表1及び表2に示した。いずれの耐蝕性部材もエッチングレートは0.3μm/hr以下、殆どの実施例においては0.2μm/hrと小さく、耐食性に優れ、パーティクルの発生が少なかった。
3) Performance evaluation (corrosion resistance)
Measurement of surface roughness Ra by contact type surface roughness meter, confirmation of vitrification by X-ray diffractometry, and fluorine-based gas for corrosion-resistant bulk glass and sprayed film of various compositions prepared in 1) and 2) The measurement test of the etching rate and the amount of particles when exposed to the plasma was included. As etching conditions, plasma was generated by applying a high-frequency power of 300 W between the electrode plates using a pressure of 1 torr in the reaction processing chamber, CF 4 gas as the reaction gas. The etching thickness was measured by using a level difference measuring method, and the generation of particles was evaluated by observing the granular material on the surface of the corrosion-resistant member with a scanning electron microscope. In the confirmation of vitrification by the X-ray diffraction method, the vitrification of all bulk bodies and sprayed films was confirmed. The results of the surface roughness Ra, the etching rate, and the amount of particles are shown in Tables 1 and 2. All of the corrosion-resistant members had an etching rate of 0.3 μm / hr or less, and in most of the examples, it was as small as 0.2 μm / hr, excellent in corrosion resistance, and generating less particles.

なお、実施例103において調製された溶射膜のX線回折スペクトルを図4に示した。非晶質を示すハローパターンが観測され、結晶性の回折ピークは観測されなかった。   The X-ray diffraction spectrum of the sprayed coating prepared in Example 103 is shown in FIG. An amorphous halo pattern was observed, and no crystalline diffraction peak was observed.

比較例
出発原料として、2−1)と同様の方法で表1のNo.112及び113の組成で溶射用原料粉末を作成した。ブラストにより表面粗さRaを6μmとした石英ガラスに、24%フッ酸で1時間処理した表面粗さRaを10μmとした石英ガラス基材(基材A)に対し、溶射用原料粉末を溶射した(No.112及び113)。基材Aに対してYの溶射粉末を溶射した部材(No.114)、溶射を行っていないアルミナの焼結体(No.115)、溶射を行っていない石英ガラスバルク体(No.116)を夫々実施例と同様の方法でガラス化の確認、エッチング速度及びパーティクル量の測定を行った。また、表2には、常圧にて、溶射粉末組成として原子数比でSi:Al比を75:25、O:N比を86:14、Al+Si:Y比を2:1と固定し、溶射距離を30mmとした以外は2−2)と同様の方法で形成した溶射膜及び、窒素による加圧下で同様の方法で形成した溶射膜について示す。
Comparative Example No. 1 in Table 1 was used as a starting material in the same manner as in 2-1). The raw material powder for thermal spraying was prepared with the composition of 112 and 113. The raw material powder for thermal spraying was sprayed on a quartz glass substrate (substrate A) having a surface roughness Ra of 10 μm treated with 24% hydrofluoric acid for 1 hour on quartz glass having a surface roughness Ra of 6 μm by blasting. (No. 112 and 113). A member (No. 114) obtained by spraying Y 2 O 3 sprayed powder on the substrate A, an alumina sintered body (No. 115) not sprayed, a quartz glass bulk body (No No) 116) was confirmed for vitrification, and the etching rate and the amount of particles were measured in the same manner as in the examples. Table 2 also shows the thermal spray powder composition at a normal pressure with an atomic ratio of Si: Al ratio of 75:25, O: N ratio of 86:14, and Al + Si: Y ratio of 2: 1. A sprayed film formed by the same method as in 2-2) and a sprayed film formed by the same method under pressure with nitrogen except that the spraying distance is set to 30 mm will be described.

No.112の部材では、ガラス質であることを確認したが、エッチング速度が耐蝕性部材と比較して大きく、耐蝕性が不良であった。No.113の部材では、エッチング速度が耐蝕性部材と比較して大きく、また、ガラス質ではなかったために、実施例のガラス質の耐蝕性部材に比べてパーティクル量が多く耐蝕性が不良であった。このNo.113の部材のX線回折スペクトルを図5に示すが、結晶性の回折ピークが多数観測された。Y溶射膜(No.114)は、石英ガラスバルク体に比べてエッチング速度は小さかったが、実施例のガラス質の耐蝕性部材に比べてパーティクルの発生が多かった。アルミナバルク(No.115)では、エッチング速度が耐蝕性部材と比較して大きく、実施例のガラス質の耐蝕性部材に比べてパーティクルの発生が多かった。ガラス質の耐蝕性溶射被膜のない石英ガラス基材(No.116)は、エッチング速度が6μm/hrと大きく、耐食性が不良であった。図3にそれぞれの組成を図示する。 No. The member 112 was confirmed to be glassy, but the etching rate was larger than that of the corrosion-resistant member, and the corrosion resistance was poor. No. In the member No. 113, the etching rate was higher than that of the corrosion-resistant member, and because it was not glassy, the amount of particles was large and the corrosion resistance was poor compared to the glassy corrosion-resistant member of Example. This No. FIG. 5 shows the X-ray diffraction spectrum of the member No. 113, and many crystalline diffraction peaks were observed. The Y 2 O 3 sprayed film (No. 114) had a lower etching rate than the quartz glass bulk body, but generated more particles than the vitreous corrosion-resistant member of the example. In the alumina bulk (No. 115), the etching rate was larger than that of the corrosion-resistant member, and the generation of particles was larger than that of the vitreous corrosion-resistant member of Examples. The quartz glass substrate (No. 116) having no vitreous corrosion-resistant sprayed coating had a large etching rate of 6 μm / hr and poor corrosion resistance. FIG. 3 illustrates the respective compositions.

また、溶射距離を30mmとした基材では、溶射膜は結晶化していた。また、エッチングレートが高くなると同時に溶射膜中の気泡が増加したため膜質が悪くなり、パーティクルが多く発生し耐蝕性が劣った(No.211、212)。この溶射膜について、窒素分析装置を用いて窒素含有量を測定した所、0.1%未満であった。   Moreover, in the base material which made the spraying distance 30 mm, the sprayed film was crystallized. Moreover, since the bubbles in the thermal spray film increased at the same time as the etching rate increased, the film quality deteriorated, many particles were generated, and the corrosion resistance was poor (No. 211, 212). About this sprayed film, when the nitrogen content was measured using a nitrogen analyzer, it was less than 0.1%.

Figure 2005097722
Figure 2005097722

Figure 2005097722
Figure 2005097722

本特許の組成の請求範囲を示す図である。It is a figure which shows the claim of the composition of this patent. プラズマ溶射装置の一例を示す図である。It is a figure which shows an example of a plasma spraying apparatus. 実施例及び比較例の組成を示す図である。It is a figure which shows the composition of an Example and a comparative example. No.103(実施例)で得られた溶射膜のX線回折スペクトルを示す図である。No. It is a figure which shows the X-ray-diffraction spectrum of the sprayed film obtained by 103 (Example). No.113(比較例)で得られた溶射膜のX線回折スペクトルを示す図である。No. It is a figure which shows the X-ray-diffraction spectrum of the sprayed film obtained by 113 (comparative example).

符号の説明Explanation of symbols

20:カソード
21:アノード
22:プラズマガス
23:溶射粉末(供給口)
24:溶射距離
25:基材
26:ガラス溶射膜
27:電源
20: Cathode 21: Anode 22: Plasma gas 23: Thermal spray powder (supply port)
24: Spraying distance 25: Base material 26: Glass sprayed film 27: Power supply

Claims (7)

フッ素プラズマもしくは塩素プラズマ又は腐食性ガスに曝される部位がSi、Al、O、N及び3a及び/又は2a族の元素によって構成されたガラスからなる耐蝕性部材。 A corrosion-resistant member made of glass in which a portion exposed to fluorine plasma, chlorine plasma, or corrosive gas is composed of Si, Al, O, N, and 3a and / or 2a group elements. フッ素プラズマもしくは塩素プラズマ又は腐食性ガスに曝される部位が溶射膜であることを特徴とする請求項1に記載の耐蝕性部材。 The corrosion-resistant member according to claim 1, wherein the portion exposed to fluorine plasma, chlorine plasma, or corrosive gas is a sprayed film. 耐蝕性部材の組成がSi:Alの原子数比率が99.9:0.1から30:70の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Al+Si:3a族元素の原子数比率が95:5から40:60である請求項1又は2に記載の耐蝕性部材。 In the composition of the corrosion resistant member, the Si: Al atomic ratio is in the range of 99.9: 0.1 to 30:70, and the O: N atomic ratio is in the range of 99.9: 0.1 to 60:40. The corrosion-resistant member according to claim 1, wherein the atomic ratio of Al + Si: 3a group element is 95: 5 to 40:60. 耐蝕性部材の組成がSi:Alの原子数比率が99.9:0.1から30:70の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Al+Si:2a族元素の原子数比率が95:5から50:50である請求項1又は2に記載の耐蝕性部材。 The composition of the corrosion resistant member has an Si: Al atomic ratio in the range of 99.9: 0.1 to 30:70 and an O: N atomic ratio in the range of 99.9: 0.1 to 60:40. The corrosion-resistant member according to claim 1, wherein the atomic ratio of the Al + Si: 2a group element is 95: 5 to 50:50. 基材と請求項1から4のいずれかに記載の耐蝕性部材との間に、溶射により形成された断熱性中間層を設けてなる耐蝕性積層部材。 A corrosion-resistant laminated member comprising a heat insulating intermediate layer formed by thermal spraying between a substrate and the corrosion-resistant member according to any one of claims 1 to 4. 還元性又は不活性ガスを用いた大気圧プラズマ溶射を用い、溶射距離を40〜150mm、溶射中の基材温度を100〜800℃とすることを特徴とする請求項1から4のいずれかに記載の耐蝕性部材の製造方法。 The atmospheric pressure plasma spraying using a reducing or inert gas is used, the spraying distance is set to 40 to 150 mm, and the substrate temperature during spraying is set to 100 to 800 ° C. The manufacturing method of the corrosion-resistant member of description. 不活性ガス加圧下における還元性又は不活性ガスを使用したプラズマ溶射を用い、溶射中の基材温度が100〜1200℃とすることを特徴とする請求項1から4のいずれかに記載の耐蝕性部材の製造方法。
5. Corrosion resistance according to any one of claims 1 to 4, characterized in that the substrate temperature during spraying is set to 100 to 1200 ° C using plasma spraying using reducing or inert gas under pressurized inert gas. A method for manufacturing a structural member.
JP2004085007A 2003-08-25 2004-03-23 Corrosion resistant member, and method for manufacturing the same Pending JP2005097722A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004085007A JP2005097722A (en) 2003-08-25 2004-03-23 Corrosion resistant member, and method for manufacturing the same
KR1020050023341A KR20060044497A (en) 2004-03-23 2005-03-21 Corrosion-resistant member and process of producing the same
SG200501716A SG115782A1 (en) 2004-03-23 2005-03-21 Corrosion-resistant member and process of producing the same
EP05006201A EP1580294A1 (en) 2004-03-23 2005-03-22 Corrosion-resistant member and process of producing the same
US11/085,202 US7504164B2 (en) 2004-03-23 2005-03-22 Corrosion-resistant member and process of producing the same
TW094108831A TW200538584A (en) 2004-03-23 2005-03-22 Corrosion-resistant member and process of producing the same
US12/256,960 US20090053533A1 (en) 2004-03-23 2008-10-23 Corrosion-resistant member and process of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003208664 2003-08-25
JP2004085007A JP2005097722A (en) 2003-08-25 2004-03-23 Corrosion resistant member, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005097722A true JP2005097722A (en) 2005-04-14

Family

ID=34466706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085007A Pending JP2005097722A (en) 2003-08-25 2004-03-23 Corrosion resistant member, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005097722A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045699A (en) * 2005-07-11 2007-02-22 Shinetsu Quartz Prod Co Ltd Quartz glass member
JP2008056533A (en) * 2006-08-31 2008-03-13 Shinetsu Quartz Prod Co Ltd Quartz glass and method of manufacturing the same
JP2009221540A (en) * 2008-03-17 2009-10-01 Nakashima:Kk Method for manufacturing roll body having glassy film formed thereon, glassy thermal spray material used for the same, and silent discharge electrode for ozone-generating device according to the manufacturing method
WO2012004454A1 (en) * 2010-07-09 2012-01-12 Teknologian Tutkimuskeskus Vtt Thermally sprayed completely amorphic oxide coating
JP2013216977A (en) * 2013-05-30 2013-10-24 Nakashima:Kk Vitreous flame spraying material for metal base roll body, metal base roll body with vitreous film, and ozonizer
CN105431926A (en) * 2014-05-16 2016-03-23 应用材料公司 Plasma spray coating design using phase and stress control

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415352A (en) * 1987-07-08 1989-01-19 Shinagawa Refractories Co Repeculator tube and its production
JPH0350169A (en) * 1989-07-14 1991-03-04 Nakashima:Kk Formation of glass coating film
JPH0383833A (en) * 1989-08-29 1991-04-09 Shinetsu Sekiei Kk Synthetic quartz glass member having excellent heat resistance
JPH06252074A (en) * 1993-02-26 1994-09-09 Shinetsu Quartz Prod Co Ltd Semiconductor heat treating device
JPH06329438A (en) * 1993-05-20 1994-11-29 Mitsubishi Heavy Ind Ltd Nitride oxide glass and its production
JPH0967138A (en) * 1995-06-22 1997-03-11 Toshiba Corp Quartz for production of semiconductor and apparatus for production therefor and its production
JPH11228172A (en) * 1998-02-17 1999-08-24 Kobe Steel Ltd Plasma corrosion resistant glass and device using the same
JP2000252260A (en) * 1999-02-26 2000-09-14 Kyocera Corp Plasma process equipment member and manufacture thereof
JP2002080954A (en) * 2000-06-29 2002-03-22 Shin Etsu Chem Co Ltd Thermal-spraying powder and thermal-sprayed film
JP2002121047A (en) * 2000-10-13 2002-04-23 Shinetsu Quartz Prod Co Ltd Plasma corrosion-resistant glass member
JP2002193634A (en) * 2000-12-26 2002-07-10 Shinetsu Quartz Prod Co Ltd Quartz glass having excellent resistance to plasma corrosion and quartz glass jig
JP2002356346A (en) * 2001-03-26 2002-12-13 Tosoh Corp Quarts glass having high durability and member and apparatus using the same
JP2002356345A (en) * 2001-06-01 2002-12-13 Tosoh Corp Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass
JP2004253793A (en) * 2003-01-28 2004-09-09 Tosoh Corp Corrosion-resistant material and method for producing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415352A (en) * 1987-07-08 1989-01-19 Shinagawa Refractories Co Repeculator tube and its production
JPH0350169A (en) * 1989-07-14 1991-03-04 Nakashima:Kk Formation of glass coating film
JPH0383833A (en) * 1989-08-29 1991-04-09 Shinetsu Sekiei Kk Synthetic quartz glass member having excellent heat resistance
JPH06252074A (en) * 1993-02-26 1994-09-09 Shinetsu Quartz Prod Co Ltd Semiconductor heat treating device
JPH06329438A (en) * 1993-05-20 1994-11-29 Mitsubishi Heavy Ind Ltd Nitride oxide glass and its production
JPH0967138A (en) * 1995-06-22 1997-03-11 Toshiba Corp Quartz for production of semiconductor and apparatus for production therefor and its production
JPH11228172A (en) * 1998-02-17 1999-08-24 Kobe Steel Ltd Plasma corrosion resistant glass and device using the same
JP2000252260A (en) * 1999-02-26 2000-09-14 Kyocera Corp Plasma process equipment member and manufacture thereof
JP2002080954A (en) * 2000-06-29 2002-03-22 Shin Etsu Chem Co Ltd Thermal-spraying powder and thermal-sprayed film
JP2002121047A (en) * 2000-10-13 2002-04-23 Shinetsu Quartz Prod Co Ltd Plasma corrosion-resistant glass member
JP2002193634A (en) * 2000-12-26 2002-07-10 Shinetsu Quartz Prod Co Ltd Quartz glass having excellent resistance to plasma corrosion and quartz glass jig
JP2002356346A (en) * 2001-03-26 2002-12-13 Tosoh Corp Quarts glass having high durability and member and apparatus using the same
JP2002356345A (en) * 2001-06-01 2002-12-13 Tosoh Corp Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass
JP2004253793A (en) * 2003-01-28 2004-09-09 Tosoh Corp Corrosion-resistant material and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045699A (en) * 2005-07-11 2007-02-22 Shinetsu Quartz Prod Co Ltd Quartz glass member
JP2008056533A (en) * 2006-08-31 2008-03-13 Shinetsu Quartz Prod Co Ltd Quartz glass and method of manufacturing the same
JP2009221540A (en) * 2008-03-17 2009-10-01 Nakashima:Kk Method for manufacturing roll body having glassy film formed thereon, glassy thermal spray material used for the same, and silent discharge electrode for ozone-generating device according to the manufacturing method
US9175169B2 (en) 2010-07-09 2015-11-03 Teknologian Tutkimuskeskus Vtt Thermally sprayed completely amorphic oxide coating
CN103282536A (en) * 2010-07-09 2013-09-04 Vtt科技研究中心 Thermally sprayed completely amorphic oxide coating
WO2012004454A1 (en) * 2010-07-09 2012-01-12 Teknologian Tutkimuskeskus Vtt Thermally sprayed completely amorphic oxide coating
JP2013216977A (en) * 2013-05-30 2013-10-24 Nakashima:Kk Vitreous flame spraying material for metal base roll body, metal base roll body with vitreous film, and ozonizer
CN105431926A (en) * 2014-05-16 2016-03-23 应用材料公司 Plasma spray coating design using phase and stress control
KR20170005784A (en) * 2014-05-16 2017-01-16 어플라이드 머티어리얼스, 인코포레이티드 Plasma spray coating design using phase and stress control
JP2017515985A (en) * 2014-05-16 2017-06-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma spray coating design using phase and stress control
US10604831B2 (en) 2014-05-16 2020-03-31 Applied Materials, Inc. Plasma spray coating design using phase and stress control
JP7033919B2 (en) 2014-05-16 2022-03-11 アプライド マテリアルズ インコーポレイテッド Plasma spray coating design using phase and stress control
KR102410645B1 (en) * 2014-05-16 2022-06-16 어플라이드 머티어리얼스, 인코포레이티드 Plasma spray coating design using phase and stress control
US11578398B2 (en) 2014-05-16 2023-02-14 Applied Materials, Inc. Plasma spray coating design using phase and stress control

Similar Documents

Publication Publication Date Title
JP4606121B2 (en) Corrosion-resistant film laminated corrosion-resistant member and manufacturing method thereof
TW200307652A (en) Quartz glass thermal sprayed parts and method for producing the same
JP6929716B2 (en) Yttrium oxyfluoride sprayed film, its manufacturing method, and sprayed members
KR102266655B1 (en) The method of producing thermal spray coating using the yittrium powder and the yittrium coating produced by the mothod
KR102266656B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP2003212598A (en) Quartz glass and ceramic part, and manufacturing method
EP1589128A1 (en) Corrosion-resistant member and method for producing same
JP3618048B2 (en) Components for semiconductor manufacturing equipment
TW202222737A (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
US6670294B2 (en) Corrosion-resistive ceramic materials and members for semiconductor manufacturing
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2007081218A (en) Member for vacuum device
US7504164B2 (en) Corrosion-resistant member and process of producing the same
JP4367142B2 (en) Corrosion resistant member and manufacturing method thereof
JP2006097114A (en) Corrosion-resistant spray deposit member
KR100972567B1 (en) Plasma resistant part and manufacturing method the same
JP2006265619A (en) Corrosion resistant member and method for producing the same
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
KR102395660B1 (en) Powder for thermal spray and thermal spray coating using the same
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
JP2006124825A (en) Corrosion-resistant member and its production method
JP2008248345A (en) Member for plasma treatment apparatus, and method for producing the same
JP4651145B2 (en) Corrosion resistant ceramics
JP5206199B2 (en) Vacuum device parts and manufacturing method thereof
JP4012714B2 (en) Corrosion resistant material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100609