JP2007081218A - Member for vacuum device - Google Patents

Member for vacuum device Download PDF

Info

Publication number
JP2007081218A
JP2007081218A JP2005268413A JP2005268413A JP2007081218A JP 2007081218 A JP2007081218 A JP 2007081218A JP 2005268413 A JP2005268413 A JP 2005268413A JP 2005268413 A JP2005268413 A JP 2005268413A JP 2007081218 A JP2007081218 A JP 2007081218A
Authority
JP
Japan
Prior art keywords
plasma
sprayed film
spraying
sprayed
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005268413A
Other languages
Japanese (ja)
Inventor
Masanori Abe
昌則 阿部
Koyata Takahashi
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005268413A priority Critical patent/JP2007081218A/en
Publication of JP2007081218A publication Critical patent/JP2007081218A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member, to be used for a plasma treatment device (plasma cleaning device, ashing device, sputtering device and the like) in manufacturing a semiconductor or the like, in which wearing is remarkably decreased and particle generation caused by contact with plasma is also reduced. <P>SOLUTION: The present invention relates to a member for vacuum device coated, on its surface, with a corrosion-resistant glass spraying film comprised of at least Si, O, 3a base element or 2A base and Zr. Said member improves corrosion resistance for plasma and reduces particle generation. Such a corrosion-resistant member can be manufactured by spraying, to a base material, a powder mixing a silicon-nitride, silica and 3a base oxide powder and a zirconia powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体等の製造におけるプラズマ処理装置(プラズマクリーニング装置、アッシング装置、スパッタ装置)等に用いる真空装置用部材に係るものであり、不活性ガスや、N、H、Oガスのプラズマによる消耗が少なく、パーティクル発生も少ない部材に関するものである。 The present invention relates to a vacuum apparatus member used in a plasma processing apparatus (plasma cleaning apparatus, ashing apparatus, sputtering apparatus) or the like in the manufacture of semiconductors and the like, and includes inert gas, N 2 , H 2 , and O 2 gas. The present invention relates to a member that consumes less plasma and generates less particles.

半導体等の製造工程におけるプラズマ処理装置では、不活性ガスや、N、H、Oガスのプラズマにより、ウエハやチャンバーのクリーニング、アッシング、スパッタ成膜等を行っている。 In a plasma processing apparatus in a manufacturing process of semiconductors and the like, cleaning of wafers and chambers, ashing, sputtering film formation, and the like are performed using plasma of an inert gas or N 2 , H 2 , or O 2 gas.

このようなプラズマを用いる装置の容器、内壁、部品等、プラズマに接触する部分には、石英ガラスや、アルミナや窒化アルミニウム等のセラミックス又はアルミニウム、ステンレス等の金属が使用されている。   Quartz glass, ceramics such as alumina and aluminum nitride, or metals such as aluminum and stainless steel are used for the parts that come into contact with plasma, such as containers, inner walls, and components of the apparatus using such plasma.

しかし、これら部材は、プラズマ処理による消耗や、装置内のパーティクル発生の原因となるという問題があった。プラズマ処理による消耗に関して、石英ガラスに対してアルミナや窒化アルミニウム等は消耗が少ないが、さらに消耗が少ないイットリアが提案されている(例えば、特許文献1参照)。また、部材へ付着した堆積膜が剥離して生じるパーティクルを防止するため石英ガラス部材に特定の表面状態を有するアルミナ溶射膜を施すことも提案されている(例えば、特許文献2参照)。また、FやCl系のハロゲンガスを用いたプラズマに対しては、消耗が少なく、パーティクル発生を抑える溶射膜も提案されている(例えば、特許文献3参照)。   However, these members have a problem that they are consumed by plasma processing and cause generation of particles in the apparatus. Regarding the consumption due to the plasma treatment, alumina, aluminum nitride, and the like are less consumed than quartz glass, but yttria is further less consumed (see, for example, Patent Document 1). In addition, it has also been proposed to apply an alumina sprayed film having a specific surface state to a quartz glass member in order to prevent particles generated by peeling off a deposited film attached to the member (see, for example, Patent Document 2). Also, a thermal sprayed film that suppresses generation of particles with little wear against plasma using F or Cl-based halogen gas has been proposed (see, for example, Patent Document 3).

特開平10−004083号公報JP-A-10-004083 特開2003−212598号公報JP 2003-212598 A 特開2004−253793号公報JP 2004-253793 A

以上説明した様に、半導体等の製造プロセスにおいて不活性ガスや、N、H、Oガスのプラズマを用いる工程では、プラズマ処理による部材の消耗や堆積膜の剥離から生じるパーティクル発生、それに伴う製品汚染、歩留まり低下等の問題があった。 As described above, in a process using an inert gas or plasma of N 2 , H 2 , or O 2 gas in a manufacturing process of a semiconductor or the like, generation of particles resulting from consumption of a member due to plasma treatment or peeling of a deposited film, There were problems such as product contamination and yield reduction.

また、本発明らがパーティクル発生について調べた結果では、プラズマ処理においてはプラズマによる部材消耗や堆積膜の付着が無くても、部材にプラズマが接することにより発生するパーティクルがあることもわかった。   In addition, as a result of examining the generation of particles by the present inventors, it has been found that in plasma processing, there are particles generated by the contact of plasma with the member even if the member is not consumed by the plasma and the deposited film is not attached.

本発明の目的は、不活性ガスや、N、H、Oガスを用いたプラズマ処理による消耗が少なく、部材消耗及びプラズマとの接触によるパーティクル発生が少ないガラス質の耐蝕性溶射膜を表面にコーティングした真空装置用部材を与えるものである。 It is an object of the present invention to provide a glassy corrosion-resistant sprayed coating that is less consumed by plasma treatment using an inert gas, N 2 , H 2 , or O 2 gas, and that is less consumed by members and less particles due to contact with plasma. A vacuum device member coated on the surface is provided.

本発明者らは、上述のような現状に鑑み、鋭意検討を行った結果、基材表面にガラス相を含む溶射膜を形成することで、真空装置用部材の消耗が著しく減少し、部材消耗及びプラズマとの接触によるパーティクル発生も少ないことを見出し、本発明を完成するに至ったものである。   As a result of intensive investigations in view of the above-described situation, the present inventors have formed a thermal spray film containing a glass phase on the surface of the substrate, thereby significantly reducing the consumption of the vacuum device member, and the member consumption. In addition, the inventors have found that the generation of particles due to contact with plasma is small, and have completed the present invention.

以下、本発明の真空装置用部材について詳細に説明する。   Hereinafter, the vacuum device member of the present invention will be described in detail.

本発明のうち、第1の発明は、不活性ガス、N、H、Oの中から選ばれるプラズマに曝される真空装置用部材において、該部材表面に溶射膜が施されており、該溶射膜が少なくともSi、O及び3a族及び/又は2a族元素で構成されるガラス相を含むことを特徴とする真空装置用部材である。 Among the present inventions, the first invention is a vacuum apparatus member exposed to plasma selected from an inert gas, N 2 , H 2 , and O 2 , and a sprayed film is applied to the surface of the member. The sprayed film includes a glass phase composed of at least Si, O, and Group 3a and / or Group 2a elements.

本発明の第1発明における真空装置用部材は、不活性ガス、N、H、Oの中から選ばれるガスのプラズマを用いるプラズマクリーニング装置、アッシング装置、スパッタ装置等に用いられる。不活性ガスとは、希ガスのことである。これら部材に対して基材表面に少なくともSi、O及び3a族及び/又は2a族元素で構成されるガラス相を含む溶射膜を形成する。この溶射膜はガラス相を含むことで結晶粒界が少なく、プラズマによるクリーニング、アッシング時に結晶粒界の侵食による当該結晶粒子の脱落によるパーティクル発生が抑制される。また、ガラス相を含むことで溶射膜を構成する溶射原料粉末が溶射過程で溶融して基材に衝突することにより形成されたスプラットが良く溶融し、スプラットの表面が滑らかであるため脱離しやすい粒子が付着しにくく、プラズマとの接触によるパーティクル発生も少ない。 The vacuum apparatus member according to the first aspect of the present invention is used in a plasma cleaning apparatus, an ashing apparatus, a sputtering apparatus, and the like using a plasma of a gas selected from an inert gas, N 2 , H 2 , and O 2 . An inert gas is a noble gas. A sprayed film including a glass phase composed of at least Si, O and 3a group and / or 2a group element is formed on the surface of the base material for these members. The sprayed film contains a glass phase, so that there are few crystal grain boundaries, and generation of particles due to erosion of the crystal grains due to erosion of the crystal grain boundaries during cleaning and ashing by plasma is suppressed. In addition, the sprayed raw material powder constituting the thermal spray film by containing the glass phase melts in the thermal spraying process and collides with the base material, so that the splat formed is melted well and the surface of the splat is smooth so that it is easily detached. Particles are difficult to adhere, and there is little particle generation due to contact with plasma.

ここで、3a族とは、Sc、Yとランタノイド元素のことである。また、ここで言う2a族とは、Mg、Ca、Sr、Ba元素のことである。3a族や2a族元素を含む材料は、原子間の結合力が強く、プラズマによるスパッタを抑制し、部材の消耗を減らす効果がある。   Here, 3a group is Sc, Y, and a lanthanoid element. Moreover, the 2a group said here is Mg, Ca, Sr, Ba element. A material containing a 3a group element or a 2a group element has a strong bonding force between atoms, and has an effect of suppressing spattering by plasma and reducing wear of members.

本発明の真空装置用部材表面の溶射膜中の3a族元素の濃度としては、金属元素の原子数比で10%以上78%以下、Si元素の濃度としては20%以上88%以下の組成範囲が好ましい。また、本発明の真空装置用部材表面の溶射膜中の2a族元素の濃度としては、Si:2a族元素の原子数比率が75:25から15:85であることが好ましい。   The concentration of the group 3a element in the sprayed film on the surface of the vacuum device member of the present invention is a composition range of 10% to 78% in terms of the atomic ratio of the metal element, and 20% to 88% as the concentration of Si element. Is preferred. Moreover, as a density | concentration of 2a group element in the sprayed film of the member for vacuum devices of this invention, it is preferable that the atomic ratio of Si: 2a group element is 75:25 to 15:85.

また、第2の発明では、不活性ガス、N、H、Oの中から選ばれるガスのプラズマに曝される真空装置用部材において、該部材表面に溶射膜が施されており、該溶射膜がSi、O及び3a族及び/又は2a族元素とNで構成されるガラス相を含むことを特徴とする真空装置用部材である。 In the second invention, in the vacuum device member exposed to plasma of a gas selected from an inert gas, N 2 , H 2 , and O 2 , a sprayed film is applied to the surface of the member. The vacuum spraying member is characterized in that the sprayed film contains a glass phase composed of Si, O and 3a group and / or 2a group element and N.

Si,O,N及び3a及び/又は2a族元素で構成される溶射膜はNを含んでいることでガラス化がより進んでおり、スパッタ耐性に優れると同時に、結晶粒界がより少なく、プラズマによるクリーニング、アッシング時に結晶粒界での侵食による当該結晶粒子の脱落によるパーティクル発生がさらに抑制される。また、ガラス相を含むことで溶射膜を構成する溶射原料粉末が溶射過程で溶融して基材に衝突することにより形成されたスプラットが良く溶融し、スプラットの表面が滑らかであるため脱離しやすい粒子が付着しにくく、プラズマとの接触によるパーティクル発生も少ない。   The sprayed film composed of Si, O, N, and 3a and / or 2a group elements is more vitrified because it contains N, has excellent sputter resistance, has fewer crystal grain boundaries, and plasma. The generation of particles due to the dropping of the crystal grains due to the erosion at the crystal grain boundaries during cleaning and ashing due to is further suppressed. In addition, the sprayed raw material powder constituting the thermal spray film by containing the glass phase melts in the thermal spraying process and collides with the base material, so that the splat formed is melted well and the surface of the splat is smooth so that it is easily detached. Particles are difficult to adhere, and there is little particle generation due to contact with plasma.

本発明の真空装置用部材表面の溶射膜中の元素濃度としては、3a族元素を含む場合、窒素の濃度は0.01〜15wt%の範囲であることが好ましい。また、2a族元素を含む場合、O:Nの原子数比率が99.9:0.1から60:40の範囲であることが好ましい。   As the element concentration in the sprayed film on the surface of the vacuum device member of the present invention, the nitrogen concentration is preferably in the range of 0.01 to 15 wt% when a group 3a element is included. When the group 2a element is included, the O: N atomic ratio is preferably in the range of 99.9: 0.1 to 60:40.

第3の発明は、本真空装置用部材表面の溶射膜は第1の発明、第2の発明で用いられる溶射膜で、Zrを含むものである。Si、O及び3a族及び/又は2a族元素で構成される溶射膜にZrを添加することで、溶射粉末の融点が低くなり、堆積する溶射膜が緻密となり、プラズマエッチングによる消耗が減り、プラズマに接触したときのスプラットの表面がより滑らかになる。本発明の真空装置用部材表面の溶射膜中の元素濃度としては、3a族元素を含む場合、Zr元素の濃度としては金属元素の原子数比で2%以上70%以下が好ましい。また、2a元素を含む場合、Zr:Siの原子数比率が5:95から70:30の範囲であり、Zr+Si:2a族元素の原子数比率が75:25から20:80であることが好ましい。   In the third invention, the sprayed film on the surface of the vacuum device member is a sprayed film used in the first invention and the second invention, and contains Zr. By adding Zr to a sprayed film composed of Si, O and Group 3a and / or Group 2a elements, the melting point of the sprayed powder is lowered, the deposited sprayed film becomes dense, and consumption by plasma etching is reduced. The surface of the splat becomes smoother when it touches. The element concentration in the sprayed film on the surface of the vacuum device member of the present invention is preferably 2% or more and 70% or less in terms of the atomic ratio of the metal element when the group 3a element is included. When the 2a element is included, the atomic ratio of Zr: Si is preferably in the range of 5:95 to 70:30, and the atomic ratio of the Zr + Si: 2a group element is preferably 75:25 to 20:80. .

本発明で用いる真空装置用部材の材質は特に限定はないが、石英ガラスなどの耐熱ガラスやアルミニウム、ステンレス等の金属、アルミナ、ムライト等のセラミックス、ポリイミド、ポリカーボネートなどの樹脂が挙げられる。   The material of the vacuum device member used in the present invention is not particularly limited, and examples thereof include heat-resistant glass such as quartz glass, metals such as aluminum and stainless steel, ceramics such as alumina and mullite, resins such as polyimide and polycarbonate.

本発明の真空装置用部材表面の溶射膜の膜厚に限定はないが、0.01〜3mm、特に0.01〜0.5mmであることが好ましい。膜厚が3mmを超えて厚くなると、基材との熱膨張率の差によって溶射膜のひび割れ、剥離が発生し易い場合があり、一方、0.01mm未満では保護膜として不十分である場合がある。膜厚は、部材の断面を顕微鏡で観察するか、部材の断面をEPMA(X線マイクロアナライザー)による構成元素の組成分析を行うこと等で確認することができる。   The film thickness of the sprayed film on the surface of the vacuum device member of the present invention is not limited, but is preferably 0.01 to 3 mm, particularly preferably 0.01 to 0.5 mm. If the film thickness exceeds 3 mm, the thermal spray film may be easily cracked or peeled off due to the difference in thermal expansion coefficient with the base material. On the other hand, if it is less than 0.01 mm, it may be insufficient as a protective film. is there. The film thickness can be confirmed by observing the cross section of the member with a microscope or by analyzing the composition of constituent elements using an EPMA (X-ray microanalyzer).

本発明の真空装置用部材表面の溶射膜の表面粗さRaは0.01〜10μm、特に8μm以下であることが好ましい。溶射膜表面が荒れたものであると、溶射膜表面に形成された突起形状の特にエッジの部分がプラズマによって選択的にエッチングされたり、脱離しやすい粒子が溶射膜表面に付着してプラズマと接することによりパーティクルが発生し易い。   The surface roughness Ra of the sprayed film on the surface of the vacuum device member of the present invention is preferably 0.01 to 10 μm, particularly preferably 8 μm or less. If the surface of the sprayed coating is rough, the protrusions formed on the surface of the sprayed coating are etched selectively, especially at the edges, or particles that easily leave are attached to the surface of the sprayed coating and come into contact with the plasma. As a result, particles are easily generated.

本発明の真空装置用部材は、不活性ガス、N、H、Oの中から選ばれるガスのプラズマを用いるプラズマクリーニング装置、アッシング装置、スパッタ装置等に用いられる。 The member for a vacuum device of the present invention is used in a plasma cleaning device, an ashing device, a sputtering device, or the like that uses plasma of a gas selected from an inert gas, N 2 , H 2 , and O 2 .

第4の発明は、前記溶射膜が施された真空装置用部材が処理基板を載せる台又は処理基板を載せる台の周辺部材であって、不活性ガス、N、H、Oの中から選ばれるガスのプラズマに曝されてバイアス電圧によりエッチングされる部位を含むことを特徴とする真空装置用部材である。 A fourth invention, the sprayed film is a vacuum apparatus member that has been subjected to a peripheral member of the platform for mounting the base or substrate mounting the substrate, an inert gas, in the N 2, H 2, O 2 A member for a vacuum apparatus including a portion exposed to plasma of a gas selected from the above and etched by a bias voltage.

プラズマクリーニング装置やアッシング装置等では処理基板を載せる台又は処理基板を載せる台の周辺部材がプラズマに曝されてバイアス電圧によりエッチングされる部位を含むことがあり、プラズマエッチング及びプラズマと接することによるパーティクル発生が見られ、本発明はそれを低減することができる。また、堆積膜の剥離によるパーティクル発生も低減できる。   In a plasma cleaning device, an ashing device, or the like, there are cases where a stage on which a processing substrate is placed or a peripheral member of the stage on which the processing substrate is placed includes a portion that is exposed to plasma and etched by a bias voltage. Occurrence is seen and the present invention can reduce it. In addition, particle generation due to peeling of the deposited film can be reduced.

第5の発明は、前記溶射膜が施された真空装置用部材が処理基板を上面及び/又は側面から覆うドーム状、シリンダー状、又は平板状の部材であることを特徴とする真空装置用部材である。   According to a fifth aspect of the present invention, there is provided a vacuum device member, wherein the vacuum device member provided with the sprayed coating is a dome-shaped, cylinder-shaped, or flat-plate-shaped member that covers the processing substrate from an upper surface and / or a side surface. It is.

これらの部材ではプラズマと接することによるパーティクル発生が見られ、本発明はそれを低減すると同時に、堆積膜の剥離によるパーティクル発生も低減できる。   In these members, generation of particles due to contact with plasma is observed, and the present invention can reduce the generation of particles, and at the same time, can also reduce generation of particles due to peeling of the deposited film.

次に本発明の真空装置用部材の製造方法を説明する。   Next, the manufacturing method of the member for vacuum devices of this invention is demonstrated.

本発明の真空装置用部材は、部材表面プラズマ溶射法、フレーム溶射法、高速フレーム溶射法等の溶射法によって溶射膜を形成することによって製造できる。   The vacuum apparatus member of the present invention can be manufactured by forming a sprayed film by a spraying method such as a member surface plasma spraying method, a flame spraying method, or a high-speed flame spraying method.

本発明で用いる溶射原料は、Si、O及び3a族及び/又は2a族元素を含む原料や、Si、O、N及び3a及び/又は2a族元素を含む原料、Si、O及び3a族及び/又は2a族元素を含む原料とZr元素を含む組成の原料、Si、O、N及び3a族及び/又は2a族元素とZr元素を含む組成の原料であり、粉末形状の原料を用いることが好ましい。   The thermal spraying raw material used in the present invention is a raw material containing Si, O and 3a group and / or 2a group element, a raw material containing Si, O, N and 3a and / or 2a group element, Si, O and 3a group and / or Or a raw material containing a group 2a element and a raw material having a composition containing a Zr element, a raw material having a composition containing Si, O, N and 3a group and / or a group 2a element and a Zr element, and preferably using a powdery raw material. .

このような原料としては、例えば、シリカ、窒化ケイ素及び3a族酸化物とジルコニアとから少なくともなる粉末顆粒の混合物や、シリカ、及び2a族酸化物とジルコニアとから少なくともなる粉末を所定の割合で混合し、焼結や溶融したインゴットを作成した後、粉砕することによって調製することができる。この場合、窒素を含む組成の場合では焼結や溶融するときには加圧若しくは常圧の還元雰囲気下等で行う必要がある。またシリカ、窒化ケイ素及び2a族酸化物とジルコニアを少なくとも含んでなる混合粉末をスラリー化し、当該混合スラリーをスプレードライ法で顆粒を作成した後、顆粒を焼結する等の方法で得ることも出来る。上述した各方法において、必要に応じてアクリル系等のバインダーを添加しても良い。   As such a raw material, for example, a mixture of powder granules composed of at least silica, silicon nitride and 3a group oxide and zirconia, or a powder composed of silica and at least composed of group 2a oxide and zirconia are mixed in a predetermined ratio. It can be prepared by pulverizing after producing a sintered or melted ingot. In this case, in the case of a composition containing nitrogen, it is necessary to carry out under a reducing atmosphere under pressure or normal pressure when sintering or melting. It is also possible to obtain a mixed powder comprising at least silica, silicon nitride, 2a group oxide and zirconia, and then granulating the mixed slurry by a spray drying method, and then obtaining the granulated powder by a method such as sintering the granule. . In each method described above, an acrylic binder or the like may be added as necessary.

溶射に用いる原料粉末の粒径に限定はないが、平均粒径(2次粒径)で5〜100μmであることが好ましい。平均粒径5μm未満では原料粉末自身に十分な流動性がないため溶射フレーム中に原料を均一に供給することが難しい場合がある。また、平均粒径が100μmを超えると、溶射粒子の溶融が不均一となり、得られる溶射膜の基材に対する密着性が悪くなりやすい場合がある。   Although there is no limitation on the particle size of the raw material powder used for thermal spraying, the average particle size (secondary particle size) is preferably 5 to 100 μm. If the average particle size is less than 5 μm, the raw material powder itself does not have sufficient fluidity, and it may be difficult to uniformly supply the raw material into the thermal spray frame. On the other hand, if the average particle size exceeds 100 μm, the sprayed particles may not be melted uniformly, and the adhesion of the resulting sprayed film to the substrate may be likely to deteriorate.

本発明では真空装置用部材表面への溶射の際、基材表面の温度をあらかじめ予熱して溶射することが好ましい。基材表面をあらかじめ予熱することは、溶射の際に、熱ショックによる基材の割れ防止、並びに密着性の高い溶射膜を得るために有効である。予熱温度は用いる基材の種類によっても異なるが、例えば石英ガラス基材の場合50〜800℃、金属基材の場合50〜500℃、樹脂基材の場合50〜200℃の範囲が好ましい。   In the present invention, it is preferable that the temperature of the substrate surface be preheated and sprayed in advance when spraying on the surface of the vacuum device member. Preheating the substrate surface in advance is effective for preventing thermal cracking of the substrate due to heat shock and obtaining a sprayed film with high adhesion. Although the preheating temperature varies depending on the type of substrate used, for example, a range of 50 to 800 ° C. for a quartz glass substrate, 50 to 500 ° C. for a metal substrate, and 50 to 200 ° C. for a resin substrate is preferable.

予熱温度を上げすぎると、窒素を含む溶射膜を作成する場合、溶射膜中の窒素が分解してしまうため好ましくない。予熱は、基材を外部ヒーターで加熱する、或いは原料を供給せずに溶射フレームを基材に照射すること等で行えば良い。予熱温度は、基材の裏面からの熱電対による測定、或いは非接触の放射温度計等で測定できる。   If the preheating temperature is raised too much, when creating a sprayed film containing nitrogen, nitrogen in the sprayed film is decomposed, which is not preferable. Preheating may be performed by heating the substrate with an external heater, or irradiating the substrate with a thermal spray frame without supplying raw materials. The preheating temperature can be measured with a thermocouple from the back surface of the substrate or with a non-contact radiation thermometer.

本発明で用いられる溶射膜は、溶射過程で粉末を良く溶融することが好ましいので、プラズマ溶射法で形成されることが好ましい。図1に一般的なプラズマ溶射装置を示す。プラズマ溶射装置はアノード11とカソード10との間に流れたプラズマガス12がアーク放電にすることによって形成される1万度程度の高温のプラズマジェットを熱源として、溶射粉末13を溶融し、溶融した溶射粉末をプラズマジェットに乗せて加速し、基材15に衝突、瞬時に扁平・冷却させて堆積するものである。   The sprayed film used in the present invention is preferably formed by a plasma spraying method because the powder is preferably melted well during the spraying process. FIG. 1 shows a general plasma spraying apparatus. The plasma spraying apparatus melted and melted the thermal spray powder 13 using a high-temperature plasma jet of about 10,000 degrees formed by the plasma gas 12 flowing between the anode 11 and the cathode 10 being arc discharge. The sprayed powder is put on a plasma jet, accelerated, collides with the base material 15, and is instantly flattened and cooled to be deposited.

本発明の真空装置用部材表面の溶射膜は溶射膜中に窒素を含むものを作成する場合、N、Ar等不活性ガスあるいはH等還元性ガスを溶射ガスとして用いたものであることが好ましい。窒素含有物質の溶射では、プラズマガスに酸素が含有すると溶射中に酸化してしまい、溶射膜から窒素が消失することで耐蝕性が低下する。溶射膜中の窒素の含有量については、溶射膜表面に蛍光X線分析やEPMA分析を行うことや、少量削り取った溶射膜を加熱分解した後に発生する窒素ガスについて熱伝導率測定を行うことで測定する窒素分析装置を用いることで分析する。窒素を含まない溶射膜を作成する場合は、空気等のガスを溶射ガスとして用いることが出来る。 When the sprayed film on the surface of the vacuum device member of the present invention is one containing nitrogen in the sprayed film, an inert gas such as N 2 or Ar or a reducing gas such as H 2 is used as the spray gas. Is preferred. In the thermal spraying of a nitrogen-containing substance, if oxygen is contained in the plasma gas, it is oxidized during the thermal spraying, and the corrosion resistance is lowered by the disappearance of nitrogen from the sprayed film. Regarding the nitrogen content in the sprayed film, the surface of the sprayed film is subjected to fluorescent X-ray analysis or EPMA analysis, or the thermal conductivity of nitrogen gas generated after thermally decomposing a small amount of the sprayed film is measured. Analyze by using a nitrogen analyzer to measure. When creating a sprayed film that does not contain nitrogen, a gas such as air can be used as the sprayed gas.

また、プラズマ溶射法の他に一般的な溶射法としてフレーム溶射や高速フレーム溶射によっても本発明の溶射膜を製造することも可能である。この場合、窒素含有溶射膜を作製するときには、通常のフレーム溶射条件で作成することもできるが、酸素等に対して燃料を過剰とした還元雰囲気のフレームで溶射することが好ましい。   In addition to the plasma spraying method, the sprayed film of the present invention can also be manufactured by flame spraying or high-speed flame spraying as a general spraying method. In this case, when the nitrogen-containing sprayed film is produced, it can be produced under normal flame spraying conditions, but it is preferable to perform the spraying in a reducing atmosphere flame in which the fuel is excessive with respect to oxygen or the like.

本発明の真空装置用部材表面の溶射膜の製造時、常圧下での溶射ガン先端と基板との間の距離である溶射距離は、40〜150mmが好ましい。溶射距離が150mmをこえると基板に溶射材が付着するまでに冷却されてしまい、基板上に溶射膜が堆積されない場合があり、溶射距離が40mmより短いと基材、溶射膜両方の温度が上昇してしまい、溶射膜の割れの原因となることがあり、さらに窒素を含む溶射膜を作成する場合には溶射粉末中の窒化物の分解によって窒素の消失が発生し、耐蝕性が低下する場合がある。   When manufacturing the sprayed film on the surface of the vacuum apparatus member of the present invention, the spraying distance, which is the distance between the tip of the spraying gun and the substrate under normal pressure, is preferably 40 to 150 mm. If the spraying distance exceeds 150 mm, the sprayed material will cool down before adhering to the substrate, and the sprayed film may not be deposited on the substrate. If the spraying distance is shorter than 40 mm, the temperature of both the substrate and the sprayed film will rise. May cause cracking of the sprayed film, and when creating a sprayed film containing nitrogen, the loss of nitrogen occurs due to the decomposition of the nitride in the sprayed powder, resulting in reduced corrosion resistance. There is.

本発明の溶射において、溶射フレームを基材に溶射する際の投入する溶射パワーは用いる装置によっても異なるが、例えば図1に示すようなプラズマ溶射装置の場合、溶射パワーを20kW以上とするような条件が例示できる。   In the thermal spraying of the present invention, the thermal spraying power to be applied when spraying the thermal spraying frame onto the base material varies depending on the apparatus used. For example, in the case of a plasma thermal spraying apparatus as shown in FIG. 1, the thermal spraying power is set to 20 kW or more. Conditions can be exemplified.

溶射膜の下地として用いる真空装置用部材表面は、表面粗さRaが1〜15μmであることが好ましい。表面粗さRaが1μm未満では、基材と溶射膜が剥離し易い場合があり、基材の上に耐蝕性ガラス溶射膜を均一に被覆することが難しい場合がある。一方、表面粗さRaが15μmを超えると、プラズマによるエッチングを抑制することが難しい場合がある。基材表面の表面粗さRaを1〜15μmとする方法としては、その様な表面粗さの溶射膜を基材に予め溶射する方法、基材自身をブラスト処理する方法又はブラスト処理とフッ酸等による化学的エッチングを併せて施す方法等を例示できる。   The surface roughness Ra of the surface of the vacuum device member used as the base of the sprayed film is preferably 1 to 15 μm. If the surface roughness Ra is less than 1 μm, the substrate and the sprayed coating may be easily peeled off, and it may be difficult to uniformly coat the corrosion-resistant glass sprayed coating on the substrate. On the other hand, if the surface roughness Ra exceeds 15 μm, it may be difficult to suppress etching by plasma. As a method of setting the surface roughness Ra of the substrate surface to 1 to 15 μm, a method of spraying a sprayed film having such a surface roughness on the substrate in advance, a method of blasting the substrate itself, or a blasting treatment and hydrofluoric acid The method etc. which perform the chemical etching by etc. collectively can be illustrated.

本発明の真空装置用部材は、半導体等の製造におけるプラズマ処理装置(プラズマクリーニング装置、アッシング装置、スパッタ装置)等プラズマを用いる装置に使用した際、消耗が少なく、プラズマとの接触や堆積膜剥離によるパーティクル発生も少ないため、製品への汚染がなく、高い製品留まりで連続運転が可能である。   The vacuum device member of the present invention is less consumed when used in a plasma processing apparatus such as a plasma processing apparatus (plasma cleaning apparatus, ashing apparatus, sputtering apparatus) in the manufacture of semiconductors, etc. Since there is little particle generation due to, there is no contamination of the product and continuous operation is possible with a high product yield.

本発明を実施例に基づき詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。   The present invention will be described in detail based on examples, but the present invention is not limited to these examples.

実施例1
1)溶射用原料粉末の調製
シリカ、ジルコニアと表1に示す3a族又は2a族酸化物、窒素を含む場合は窒化ケイ素を表1の組成になるように調製し、それら粉末にバインダーを混合した後、スプレードライにより、平均粒径50μmの造粒粉末を得た。この造粒粉末について、500℃2時間の脱脂後、1200℃2時間の焼結を行い、平均粒径50μmの焼結粉末を得た。
Example 1
1) Preparation of thermal spraying raw material powder When silica, zirconia, 3a group or 2a group oxide shown in Table 1 and nitrogen are included, silicon nitride is prepared to have the composition shown in Table 1, and a binder is mixed into these powders. Thereafter, a granulated powder having an average particle diameter of 50 μm was obtained by spray drying. The granulated powder was degreased at 500 ° C. for 2 hours and then sintered at 1200 ° C. for 2 hours to obtain a sintered powder having an average particle size of 50 μm.

2)真空装置用部材調整
プラズマクリーニング装置の処理基板を載せる台の周辺部材(石英ガラス製)の外周部にアルミナによるブラストを実施し、表面粗さを6μmとした。
2) Member adjustment for vacuum apparatus The outer peripheral part of the peripheral member (made of quartz glass) on which the processing substrate of the plasma cleaning apparatus is placed was blasted with alumina to make the surface roughness 6 μm.

3)耐蝕性溶射膜の形成
1)で調製した基材を用い、常圧にて、図1に示すプラズマ溶射装置を用いて、プラズマガスとして窒素40SLM(Standard Litter per Minite)と水素12SLM流し、溶射距離を60mmとし、溶射ガンを400mm/秒の速度で移動させながら、30kWのパワーでプラズマを生成し、原料粉末を供給することなく、基材の予熱を行った。
3) Formation of corrosion-resistant sprayed film Using the substrate prepared in 1) and using the plasma spraying apparatus shown in FIG. 1 at normal pressure, nitrogen 40 SLM (Standard Litter per Minute) and hydrogen 12 SLM were passed as plasma gases. While the spraying distance was 60 mm and the spray gun was moved at a speed of 400 mm / sec, plasma was generated at a power of 30 kW, and the base material was preheated without supplying raw material powder.

次に2)で調製した溶射用原料粉末を供給量7g/分とし、速度を400mm/秒、ピッチ4mm、溶射距離60mmで溶射ガンを移動させながら15回溶射し、溶射膜を形成した。   Next, the spraying raw material powder prepared in 2) was supplied at a feed rate of 7 g / min, sprayed 15 times while moving the spray gun at a speed of 400 mm / second, a pitch of 4 mm, and a spray distance of 60 mm to form a sprayed film.

溶射膜形成後、クリーンルームで部材を純水により超音波洗浄し、オーブンで乾燥した。   After forming the sprayed film, the member was ultrasonically cleaned with pure water in a clean room and dried in an oven.

4)性能評価
3)で得られた真空装置用部材(処理基板を載せる台の周辺部材)を、プラズマクリーニング装置内に取り付け、300枚のシリコンウエハーをロードロック室から送り、1枚づつArガスのプラズマでクリーニングを施した。また、50枚毎にウエハ上のパーティクル数(0.2μm以上で処理前後の差)を調べた。全ウエハのプラズマクリーニング終了後、真空装置用部材の厚さを測定した。それぞれの真空装置用部材の窒素含有量、削れ量及び平均パーティクル数を表1に示す。いずれの真空装置用部材も削れ量は測定限界の5μm以下と小さく、平均パーティクル数も3個以内と少なく、優れていた。
4) Performance evaluation The vacuum device members (peripheral members on the stage on which the processing substrate is placed) obtained in 3) are mounted in the plasma cleaning device, 300 silicon wafers are sent from the load lock chamber, and Ar gas is supplied one by one. The plasma was cleaned. Further, the number of particles on the wafer (difference before and after the treatment at 0.2 μm or more) was examined every 50 sheets. After the plasma cleaning of all the wafers was completed, the thickness of the vacuum device member was measured. Table 1 shows the nitrogen content, scraping amount, and average number of particles of each vacuum device member. All of the vacuum device members were excellent because the amount of scraping was as small as 5 μm or less, the average number of particles was as small as 3 or less.

比較例1
プラズマクリーニング装置の処理基板を載せる台の周辺部材(石英ガラス製)の外周部にアルミナによるブラストを実施し、表面粗さを6μmとした。この部材をクリーンルームで純水により超音波洗浄し、オーブンで乾燥した。
次に、実施例1と同様の方法でプラズマクリーニングを実施した。プラズマクリーニング実施後、真空装置部材の厚さを測定した。コーティングされていない真空装置用部材の削れ量は10μmと大きく、消耗が大きく、平均パーティクル数は10個と実施例より多かった。
Comparative Example 1
Blasting with alumina was performed on the outer peripheral portion of the peripheral member (made of quartz glass) on which the processing substrate of the plasma cleaning apparatus is placed, and the surface roughness was set to 6 μm. This member was ultrasonically cleaned with pure water in a clean room and dried in an oven.
Next, plasma cleaning was performed in the same manner as in Example 1. After the plasma cleaning, the thickness of the vacuum device member was measured. The amount of scraping of the uncoated member for the vacuum apparatus was as large as 10 μm, the consumption was large, and the average number of particles was 10, which was larger than in the example.

比較例2
アルミナ溶射膜を実施例1と同様な方法でプラズマクリーニング装置の処理基板を載せる台の周辺部材に施し、実施例1と同様の方法でプレクリーンを実施した。プレクリーン実施後、部材の厚さを測定した。真空装置用部材の削れ量は検出限界の5μm以下と比較的小さいものであったが、平均パーティクル数は8個と実施例1より多かった。
Comparative Example 2
The alumina sprayed film was applied to the peripheral member of the stage on which the processing substrate of the plasma cleaning apparatus was placed in the same manner as in Example 1, and precleaning was performed in the same manner as in Example 1. After pre-cleaning, the thickness of the member was measured. The amount of scraping of the vacuum device member was relatively small at a detection limit of 5 μm or less, but the average number of particles was 8, which was larger than Example 1.

実施例2
アッシング装置のシリンダー部材(石英ガラス製)の内側にアルミナによるブラストを実施し、表面粗さを5μmとした。さらに、耐蝕性溶射膜を実施例1と同様の方法で形成し、その後、クリーンルームで純水により超音波洗浄し、オーブンで乾燥した。
Example 2
Blasting with alumina was performed inside the cylinder member (made of quartz glass) of the ashing device, and the surface roughness was 5 μm. Further, a corrosion-resistant sprayed film was formed by the same method as in Example 1, and then ultrasonically cleaned with pure water in a clean room and dried in an oven.

このシリンダー部材をアッシング装置に装着し、20枚のウエハをアッシングして実施例1と同様の条件でパーティクル数を調べたところ、平均で2個であった。   This cylinder member was mounted on an ashing device, 20 wafers were ashed, and the number of particles was examined under the same conditions as in Example 1. The number was 2 on average.

比較例3
アッシング装置のシリンダー部材(石英ガラス製)の内側にアルミナによるブラストを実施し、表面粗さを5μmとした。その後、クリーンルームで純水により超音波洗浄し、オーブンで乾燥した。
Comparative Example 3
Blasting with alumina was performed inside the cylinder member (made of quartz glass) of the ashing device, and the surface roughness was 5 μm. Then, it ultrasonically cleaned with pure water in a clean room and dried in an oven.

このシリンダー部材をアッシング装置に装着し、20枚のウエハをアッシングして実施例1と同様の条件でパーティクル数を調べたところ、平均で7個であった。   This cylinder member was mounted on an ashing device, 20 wafers were ashed, and the number of particles was examined under the same conditions as in Example 1. As a result, the number was 7 on average.

比較例4
アッシング装置のシリンダー部材(石英ガラス製)の内側にアルミナによるブラストを実施し、表面粗さを5μmとした。さらに、アルミナ溶射膜を実施例1と同様の方法で形成し、その後、クリーンルームで純水により超音波洗浄し、オーブンで乾燥した。
Comparative Example 4
Blasting with alumina was performed inside the cylinder member (made of quartz glass) of the ashing device, and the surface roughness was 5 μm. Further, an alumina sprayed film was formed by the same method as in Example 1, and then ultrasonically cleaned with pure water in a clean room and dried in an oven.

このシリンダー部材をアッシング装置に装着し、20枚のウエハをアッシングして実施例1と同様の条件でパーティクル数を調べたところ、平均で11個であった。   This cylinder member was mounted on an ashing device, 20 wafers were ashed, and the number of particles was examined under the same conditions as in Example 1. The number was 11 on average.

Figure 2007081218
Figure 2007081218

プラズマ溶射装置の一例を示す図である。It is a figure which shows an example of a plasma spraying apparatus.

符号の説明Explanation of symbols

10:カソード
11:アノード
12:プラズマガス
13:溶射粉末(供給口)
14:溶射距離
15:基材
16:溶射膜
17:電源
10: Cathode 11: Anode 12: Plasma gas 13: Thermal spray powder (supply port)
14: Thermal spray distance 15: Base material 16: Thermal spray film 17: Power supply

Claims (5)

不活性ガス、N、H、Oの中から選ばれるガスのプラズマに曝される真空装置用部材において、該部材表面に溶射膜が施されており、該溶射膜が少なくともSi、O及び3a族及び/又は2a族元素で構成されるガラス相を含むことを特徴とする真空装置用部材。 In a vacuum device member that is exposed to plasma of a gas selected from an inert gas, N 2 , H 2 , and O 2 , a sprayed film is applied to the surface of the member, and the sprayed film is at least Si, O And a glass phase member comprising a group 3a and / or a group 2a element. 前記溶射膜にNが含まれることを特徴とする請求項1に記載の真空装置用部材。 The vacuum apparatus member according to claim 1, wherein N is contained in the sprayed film. 前記溶射膜にZrが含まれることを特徴とする請求項1又は2に記載の真空装置用部材。 The member for a vacuum apparatus according to claim 1 or 2, wherein the sprayed film contains Zr. 前記溶射膜が施された真空装置用部材が処理基板を載せる台又は処理基板を載せる台の周辺部材であって、不活性ガス、N、H、Oの中から選ばれるガスのプラズマに曝されてバイアス電圧によりエッチングされる部位を含むことを特徴とする請求項1〜3のいずれかに記載の真空装置用部材。 The vacuum apparatus member to which the sprayed film is applied is a stage on which a processing substrate is placed or a peripheral member of a stage on which a processing substrate is placed, and a plasma of a gas selected from an inert gas, N 2 , H 2 , and O 2 The member for a vacuum apparatus according to claim 1, wherein the member includes a portion that is exposed to the surface and etched by a bias voltage. 前記溶射膜が施された真空装置用部材が処理基板を上面及び/又は側面から覆うドーム状、シリンダー状、又は平板状の部材であることを特徴とする請求項1〜3のいずれかに記載の真空装置用部材。
4. The vacuum apparatus member to which the sprayed film is applied is a dome-shaped, cylinder-shaped, or flat-plate-shaped member that covers the processing substrate from the upper surface and / or the side surface. For vacuum equipment.
JP2005268413A 2005-09-15 2005-09-15 Member for vacuum device Withdrawn JP2007081218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268413A JP2007081218A (en) 2005-09-15 2005-09-15 Member for vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268413A JP2007081218A (en) 2005-09-15 2005-09-15 Member for vacuum device

Publications (1)

Publication Number Publication Date
JP2007081218A true JP2007081218A (en) 2007-03-29

Family

ID=37941178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268413A Withdrawn JP2007081218A (en) 2005-09-15 2005-09-15 Member for vacuum device

Country Status (1)

Country Link
JP (1) JP2007081218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536590A (en) * 2010-08-27 2013-09-19 アプライド マテリアルズ インコーポレイテッド Gas distribution showerhead with high emissivity surface
JP2017150085A (en) * 2014-09-17 2017-08-31 東京エレクトロン株式会社 Manufacturing method of component of plasma treatment apparatus
CN109256326A (en) * 2017-07-13 2019-01-22 东京毅力科创株式会社 Plasma processing apparatus component and its method of spray plating
JP7162153B1 (en) 2022-04-01 2022-10-27 テクノクオーツ株式会社 Quartz glass base material with improved adhesion of thermal spray coating, method for producing same, and method for producing quartz glass parts having thermal spray coating

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536590A (en) * 2010-08-27 2013-09-19 アプライド マテリアルズ インコーポレイテッド Gas distribution showerhead with high emissivity surface
JP2017150085A (en) * 2014-09-17 2017-08-31 東京エレクトロン株式会社 Manufacturing method of component of plasma treatment apparatus
JP2018193616A (en) * 2014-09-17 2018-12-06 東京エレクトロン株式会社 Production method of component of plasma treatment apparatus
CN109256326A (en) * 2017-07-13 2019-01-22 东京毅力科创株式会社 Plasma processing apparatus component and its method of spray plating
KR20190008126A (en) * 2017-07-13 2019-01-23 도쿄엘렉트론가부시키가이샤 Method for spraying parts for plasma processing apparatus and parts for plasma processing apparatus
JP2019021708A (en) * 2017-07-13 2019-02-07 東京エレクトロン株式会社 Component for plasma processing device and spraying method thereof
US11328905B2 (en) 2017-07-13 2022-05-10 Tokyo Electron Limited Thermal spraying method of component for plasma processing apparatus and component for plasma processing apparatus
JP7224096B2 (en) 2017-07-13 2023-02-17 東京エレクトロン株式会社 Thermal spraying method for parts for plasma processing apparatus and parts for plasma processing apparatus
CN109256326B (en) * 2017-07-13 2023-07-07 东京毅力科创株式会社 Member for plasma processing apparatus and sputtering method thereof
KR102632150B1 (en) * 2017-07-13 2024-01-31 도쿄엘렉트론가부시키가이샤 Method for spraying parts for plasma processing apparatus and parts for plasma processing apparatus
JP7162153B1 (en) 2022-04-01 2022-10-27 テクノクオーツ株式会社 Quartz glass base material with improved adhesion of thermal spray coating, method for producing same, and method for producing quartz glass parts having thermal spray coating
JP2023152197A (en) * 2022-04-01 2023-10-16 テクノクオーツ株式会社 Quartz glass base material capable of enhancing adhesion of thermal spray coating, method for manufacturing the same and method for manufacturing quartz glass component including thermal spray coating

Similar Documents

Publication Publication Date Title
JP2007247043A (en) Method for producing ceramic-coated member for semiconductor working apparatus
JP2007247042A (en) Ceramic covered member for semi-conductor machining apparatus
JP6929716B2 (en) Yttrium oxyfluoride sprayed film, its manufacturing method, and sprayed members
KR102266655B1 (en) The method of producing thermal spray coating using the yittrium powder and the yittrium coating produced by the mothod
KR102266656B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP6926096B2 (en) Material for thermal spraying
WO2004070076A1 (en) Corrosion-resistant member and method for producing same
TWI786884B (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP2007138302A (en) Sprayed coating-coated member having excellent plasma erosion resistance and its production method
JP2007081218A (en) Member for vacuum device
JP6926095B2 (en) Material for thermal spraying
JP2005060827A (en) Plasma resistant member
JP2007321183A (en) Plasma resistant member
US7504164B2 (en) Corrosion-resistant member and process of producing the same
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2008274342A (en) Plasma corrosion-resistant material, and member containing the same
TWI779071B (en) Material for thermal spray, thermal spray coating using the same and manufacture methods thereof
US20240043982A1 (en) Thermal spray material, thermal spray coating, method for forming thermal spray coating, and component for plasma etching device
JP4367142B2 (en) Corrosion resistant member and manufacturing method thereof
JP2006097114A (en) Corrosion-resistant spray deposit member
JP4604640B2 (en) Vacuum device parts, manufacturing method thereof, and apparatus using the same
JP2008248345A (en) Member for plasma treatment apparatus, and method for producing the same
JP2006265619A (en) Corrosion resistant member and method for producing the same
JP5206199B2 (en) Vacuum device parts and manufacturing method thereof
JP2006104496A (en) Part for vacuum film-forming apparatus, and vacuum film-forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100104