JP2007321183A - Plasma resistant member - Google Patents

Plasma resistant member Download PDF

Info

Publication number
JP2007321183A
JP2007321183A JP2006151017A JP2006151017A JP2007321183A JP 2007321183 A JP2007321183 A JP 2007321183A JP 2006151017 A JP2006151017 A JP 2006151017A JP 2006151017 A JP2006151017 A JP 2006151017A JP 2007321183 A JP2007321183 A JP 2007321183A
Authority
JP
Japan
Prior art keywords
film
plasma
sio
resistant member
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006151017A
Other languages
Japanese (ja)
Inventor
Chikashi Saito
千可士 齊藤
Masahito Iguchi
真仁 井口
Yukio Kishi
幸男 岸
Masaru Sodeoka
賢 袖岡
Masahito Suzuki
雅人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon Ceratec Co Ltd
Priority to JP2006151017A priority Critical patent/JP2007321183A/en
Publication of JP2007321183A publication Critical patent/JP2007321183A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, an ordinary Y<SB>2</SB>O<SB>3</SB>-sprayed film can not maintain its adhesion after the exposure of the corrosive gas to cause a film peeling when an electronic device is produced by using a gas high in corrosiveness such as Cl<SB>2</SB>. <P>SOLUTION: An Y<SB>2</SB>O<SB>3</SB>-sprayed film is formed by using an Y<SB>2</SB>O<SB>3</SB>raw material containing 0.2 to 5.0% SiO<SB>2</SB>, thereby obtaining the Y<SB>2</SB>O<SB>3</SB>-sprayed film hardly being corroded to a gas high in corrosiveness while maintaining plasma resistance, and having excellent adhesion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高密度プラズマや腐食性ガスに対して高い耐食性を有する耐プラズマ部材に関し、特に、半導体、液晶等の電子デバイス製造装置に使用される耐プラズマ部材に関する。   The present invention relates to a plasma-resistant member having high corrosion resistance against high-density plasma and corrosive gas, and more particularly to a plasma-resistant member used in an electronic device manufacturing apparatus such as a semiconductor and a liquid crystal.

一般に、半導体、液晶等の電子装置を製造する製造装置では、チャンバー内にプラズマを発生させることにより、ウェハ等をエッチング、成膜、クリーニング等の処理が行われている。これらの処理で使用されるチャンバー壁のうち、高密度プラズマに曝される部位には、従来、耐プラズマ性に優れたAl2O3セラミックスやAlの表面にアルマイト被膜を施すことが行われている。しかし、近年のデバイスの高性能化に伴い、より高密度のプラズマが使用されるようになると、Al2O3セラミックやアルマイト被膜では激しくエッチングされパーティクルの発生量も多くなり、所望の特性を有する電子デバイスが得られない状況にある。 In general, in a manufacturing apparatus that manufactures an electronic device such as a semiconductor or a liquid crystal, processing such as etching, film formation, and cleaning is performed on a wafer or the like by generating plasma in a chamber. Of the chamber walls used in these processes, Al 2 O 3 ceramics with excellent plasma resistance and alumite coatings have been applied to the surface of Al in the areas exposed to high-density plasma. Yes. However, with higher device performance in recent years, when higher density plasma is used, Al 2 O 3 ceramics and anodized coatings are violently etched and the amount of particles generated increases, which has the desired characteristics. An electronic device cannot be obtained.

そこで、最近Al2O3より耐プラズマ性に優れた材料として、Y2O3が検討されており採用が進んでいる。さらに、セラミック焼結体ではコストが掛かり、また、ウェハの大型化対応としての部材の大型化には成型や焼結等の製造上の技術的課題が多いため、安価で大型部材が作製できる方法が必要となり、その一つとして基材表面にY2O3被膜を形成する方法が検討されている。 Therefore, Y 2 O 3 has recently been studied and adopted as a material having better plasma resistance than Al 2 O 3 . Furthermore, a ceramic sintered body is costly, and since there are many technical problems in manufacturing such as molding and sintering in order to increase the size of a member to cope with an increase in the size of a wafer, a method for manufacturing a large-sized member at a low cost As one of them, a method of forming a Y 2 O 3 film on the surface of a substrate has been studied.

このY2O3被膜を形成する方法としては、CVD法やPVD法など数多く提案されている。しかしながら、これらの形成方法では、コスト、最大膜厚、成膜速度等において実用的でない為、経済的に且つ迅速な厚膜形成方法として、溶射法も検討されている。この溶射法で形成された保護膜を耐プラズマ被膜として使用する場合、その緻密性と密着力が重要となる。一般的な溶射法で形成されたY2O3膜は、多くの気孔を有し低緻密であり、特に基材まで気孔が連続である場合は、プラズマ処理中に使用される腐食性ガスが膜内部に侵入し基材まで達することにより基材と膜の界面で腐食される。これにより密着力の低下、最悪の場合では膜剥離が発生し、パーティクル発生源となる。また、基材露出による基材の金属成分のウェハへの汚染も懸念される。 Many methods such as CVD and PVD have been proposed as methods for forming this Y 2 O 3 coating. However, since these forming methods are not practical in terms of cost, maximum film thickness, film forming speed, etc., a thermal spraying method is also considered as an economical and quick method for forming a thick film. When a protective film formed by this thermal spraying method is used as a plasma-resistant coating film, its denseness and adhesion are important. The Y 2 O 3 film formed by the general thermal spraying method has many pores and low density. Especially when the pores are continuous to the substrate, the corrosive gas used during the plasma treatment is Corrosion occurs at the interface between the substrate and the film by entering the film and reaching the substrate. As a result, the adhesion force is reduced, and in the worst case, film peeling occurs and becomes a particle generation source. Further, there is a concern about contamination of the wafer with the metal component of the base material due to the exposure of the base material.

Y2O3溶射膜の気孔発生の原因としては、Y2O3が高融点であることによる。すなわち融点が2400℃と高く現状の溶射方法では完全にY2O3原料を溶融したまま膜の形成はできず、実際には基材に到達する前に凝固が始まってしまい、その結果形成されたY2O3膜には、10%以上もの気孔が生じてしまうと考えられる。 The cause of the generation of pores in the Y 2 O 3 sprayed film is that Y 2 O 3 has a high melting point. In other words, the melting point is as high as 2400 ° C, and with the current thermal spraying method, it is impossible to form a film while the Y 2 O 3 raw material is completely melted. In fact, solidification starts before reaching the base material, resulting in the formation of the film. It is considered that 10% or more of pores are generated in the Y 2 O 3 film.

そこで、解決手段として、特許文献1には、フッ素プラズマに曝される部位を周期表3a族金属とSiを含む複合酸化物の焼結体によって構成することが開示されている。具体的に云えば、この複合酸化物は、YAG,YAM,YAPなどのガーネット型、単斜晶型およびペロブスカイト型結晶、ならびにシリケートなどの焼結体である。更に、特許文献1には、PVD法、CVD法等の薄膜形成方法、及び、ゾルゲル法を用いて、所定の基体上に複合酸化物の薄膜を形成することも開示されている。即ち、特許文献1は、Y2O3膜を焼結法、PVD法、CVD法、或いは、ゾルゲル法を用いて形成することを示唆している。 Thus, as a solution, Patent Document 1 discloses that a portion exposed to fluorine plasma is constituted by a sintered body of a complex oxide containing a group 3a metal of periodic table and Si. Specifically, this composite oxide is a garnet type such as YAG, YAM, YAP, monoclinic type and perovskite type crystals, and a sintered body such as silicate. Further, Patent Document 1 discloses that a thin film of a complex oxide is formed on a predetermined substrate by using a thin film forming method such as a PVD method and a CVD method, and a sol-gel method. That is, Patent Document 1 suggests that the Y 2 O 3 film is formed using a sintering method, a PVD method, a CVD method, or a sol-gel method.

特許文献2には、溶射によって保護膜を形成すること、及び、Y2O3の融点を下げて均一溶射を可能にするために、Y2O3結晶にSiが固溶しているY2O3を保護膜として使用することが開示されている。即ち、特許文献2は、Y2O3結晶にSiが100〜1000 ppm固溶している厚さ10μm以上のY2O3保護膜を形成している。 Patent Document 2, forming a protective film by spraying, and, Y 2 by lowering the melting point of O 3 in order to allow uniform spray, Y 2 O 3 crystal Si is a solid solution Y 2 The use of O 3 as a protective film is disclosed. That is, Patent Document 2 forms a Y 2 O 3 protective film having a thickness of 10 μm or more in which Si is dissolved in 100 to 1000 ppm in a Y 2 O 3 crystal.

特開平10-45467JP 10-45467 特開2005-60827JP2005-60827

特許文献1は複合酸化物の薄膜を形成することを開示しているものの、厚膜化の可能な溶射によってY2O3の保護膜を形成することについて何等指摘していない。また、特許文献1で指摘されたPVD法やCVD法、及びゾルゲル法などの薄膜形成法を使用した場合、Y2O3膜の成膜速度が遅く、また、厚膜化や複雑形状に成膜することが困難であるため、電子デバイス製造装置用の耐プラズマ材の製造には適していない。 Although Patent Document 1 discloses forming a thin film of a complex oxide, it does not point out that a protective film of Y 2 O 3 is formed by thermal spraying capable of increasing the film thickness. In addition, when using thin film formation methods such as the PVD method, CVD method, and sol-gel method pointed out in Patent Document 1, the film formation rate of the Y 2 O 3 film is slow, and the film is thickened or formed into a complicated shape. Since it is difficult to form a film, it is not suitable for manufacturing a plasma-resistant material for an electronic device manufacturing apparatus.

他方、特許文献2は、Y2O3被膜にSiを100〜1000 ppm固溶した保護膜を溶射によって形成することを開示している。また、特許文献2はSiが1000 ppmを超えて多くなると、Siは第二相を形成してしまい、このSiの第二相は耐プラズマ特性を劣化させることを指摘している。換言すれば、特許文献2は1000 ppm以上Siを添加した場合におけるY2O3膜の気孔が減少することにより基材腐食が抑制されることなどは記載されておらず、改善する手法については全く示唆していない。つまり、Cl2等の反応性の高いガスに暴露した場合、気孔からのガス浸入による基材腐食並びに密着力低下が懸念されていた。 On the other hand, Patent Document 2 discloses forming a protective film in which 100 to 1000 ppm of Si is dissolved in a Y 2 O 3 film by thermal spraying. Patent Document 2 points out that when Si exceeds 1000 ppm, Si forms a second phase, and this second phase of Si deteriorates the plasma resistance. In other words, Patent Document 2 does not describe that the corrosion of the base material is suppressed by reducing the pores of the Y 2 O 3 film when Si is added in an amount of 1000 ppm or more. Not suggest at all. That is, when exposed to a highly reactive gas such as Cl 2 , there has been a concern about corrosion of the base material due to gas intrusion from pores and a decrease in adhesion.

本発明の課題は、Siを1000 ppm以上、つまり、SiO2換算で0.2%以上含有させても良好な特性を得ることができる耐プラズマ部材を提供することである。 An object of the present invention is to provide a plasma-resistant member capable of obtaining good characteristics even when Si is contained at 1000 ppm or more, that is, 0.2% or more in terms of SiO 2 .

つまり過酷なプラズマ条件においてもエッチングされにくいY2O3溶射膜によって形成される耐プラズマ部材を提供するとともにClのような腐食性ガスに曝露されても高い密着力を保つことができる耐プラズマ部材を提供することである。 In other words, it provides a plasma-resistant member formed by a Y 2 O 3 sprayed film that is difficult to be etched even under severe plasma conditions, and can also maintain high adhesion even when exposed to a corrosive gas such as Cl 2. It is to provide a member.

本発明の一態様によれば、プラズマに曝露する部位に0.2〜5.0%のSiO2成分を含む厚さ10〜500μmのY2O3保護膜を有することを特徴とする耐プラズマ部材が得られる。 According to one aspect of the present invention, there is obtained a plasma-resistant member having a Y 2 O 3 protective film having a thickness of 10 to 500 μm containing 0.2 to 5.0% SiO 2 component at a site exposed to plasma. .

本発明の別の態様によれば、前記保護膜は、0.2〜5.0%のSiO2成分を含むY2O3からなる造粒粉末を溶射して形成された溶射膜を備えていることを特徴とする耐プラズマ部材が得られる。 According to another aspect of the present invention, the protective film includes a sprayed film formed by spraying a granulated powder made of Y 2 O 3 containing 0.2 to 5.0% of SiO 2 component. A plasma-resistant member is obtained.

更に、本発明の態様によれば、前記保護膜を含む二層以上の多層膜を有することを特徴とする耐プラズマ部材が得られる。   Furthermore, according to the aspect of the present invention, a plasma-resistant member having a multilayer film including two or more layers including the protective film can be obtained.

更に、本発明の他の態様によれば、上記した耐プラズマ部材を含む電子デバイス製造装置が得られる。   Furthermore, according to the other aspect of this invention, the electronic device manufacturing apparatus containing the above-mentioned plasma-resistant member is obtained.

本発明では、Y2O3に対してSiO2の形で0.2〜5.0%添加されたY2O3原料を用いて、溶射膜を基材上に形成すると、Y2O3 の融点が低くなるためY2O3結晶間に存在する気孔が減少し緻密なY2O3膜が得られる。これと共に、特許文献2に記載されたY2O3膜に比較して多量のSiを含んでいるにも拘わらず、Cl等の腐食性ガスに曝露した後、または、プラズマ環境下でも気孔が減少し基材腐食を抑制するため、密着性を維持したY2O3溶射膜が得られた。即ち、本発明は、易溶融化によりY2O3結晶粒子間の気孔が減少しプラズマプロセスの際の腐食性ガスを遮断し基材を保護するものであると同時にプラズマ耐性を損なうことのないY2O3溶射膜を形成できる。 In the present invention, using Y 2 O 3 raw material which is added 0.2 to 5.0% in the form of SiO 2 with respect to Y 2 O 3, to form a sprayed film on a substrate, a low melting point of the Y 2 O 3 Therefore, pores existing between the Y 2 O 3 crystals are reduced, and a dense Y 2 O 3 film can be obtained. At the same time, although it contains a larger amount of Si compared to the Y 2 O 3 film described in Patent Document 2, it is exposed to a corrosive gas such as Cl 2 or even in a plasma environment. As a result, the Y 2 O 3 sprayed film maintaining adhesion was obtained. That is, according to the present invention, pores between Y 2 O 3 crystal particles are reduced due to easy melting, and the corrosive gas in the plasma process is cut off to protect the substrate, and at the same time, the plasma resistance is not impaired. Y 2 O 3 sprayed film can be formed.

本発明に係る耐プラズマ部材に対しては、処理の高度化と共に、プラズマ処理容器内部材の損傷、ハロゲンガスによる化学的腐食による損傷、及び、プラズマエロージョンによる損傷を極力抑制することが要求されている。これは、これらの損傷によって製造される電子デバイスに、損傷によって生じる汚染物質が付着し、電子デバイスの特性が劣化してしまうからである。   With respect to the plasma-resistant member according to the present invention, it is required to suppress damage to the member in the plasma processing vessel, damage due to chemical corrosion by halogen gas, and damage due to plasma erosion as much as possible with the advancement of processing. Yes. This is because contaminants generated by the damage adhere to the electronic device manufactured by these damages, and the characteristics of the electronic device are deteriorated.

本発明の実施の形態では、まず、金属、セラミックなどの基材を用意する。他方、SiO2を0.2〜5.0%含有しているY2O3原料を使用して、当該基材表面に溶射法によって保護膜を形成した。このように、SiOの形で、比較的多量のSiを含んだY2O3溶射膜では、特許文献2に記述されたようなSiの第二相が生じることはなかった。ただし、純度が95%以下のSiO2を含むY2O3原料により形成した溶射膜の場合、含有アルカリ等の不純物が粒界に偏析し第二相を形成しやすくなるため好ましくない。また、SiO2粒子の粒径が0.1〜10μm分布内で収まっていない場合、原料中のSiO2が均一に混合できず第二相が析出しやすくなるため好ましくない。 In the embodiment of the present invention, first, a base material such as metal or ceramic is prepared. On the other hand, using a Y 2 O 3 raw material containing 0.2 to 5.0% of SiO 2 , a protective film was formed on the surface of the substrate by a thermal spraying method. Thus, in the Y 2 O 3 sprayed film containing a relatively large amount of Si in the form of SiO 2 , the second phase of Si as described in Patent Document 2 did not occur. However, in the case of a sprayed film formed from a Y 2 O 3 raw material containing SiO 2 having a purity of 95% or less, impurities such as contained alkali are segregated at the grain boundaries, and it is not preferable. Moreover, when the particle diameter of the SiO 2 particles is not within the range of 0.1 to 10 μm, it is not preferable because SiO 2 in the raw material cannot be uniformly mixed and the second phase is likely to precipitate.

本発明者等の実験によれば、Y2O3にSiO2を0.2%以上含有させることによりY2O3のみでは多く存在していた気孔を減少させることができた。このため、Clガス等のような腐食性ガス環境下で剥離してしまうY2O3のみの膜に比べ、SiO2を含有したY2O3溶射膜では基材腐食が抑制され高密着力を維持できた。 According to experiments of the present inventors, the SiO 2 was able to reduce the pores existed many only Y 2 O 3 by containing 0.2% or more in the Y 2 O 3. For this reason, the Y 2 O 3 sprayed film containing SiO 2 suppresses the corrosion of the base material and has a higher adhesion force than the Y 2 O 3 only film that peels off in a corrosive gas environment such as Cl 2 gas. Was able to be maintained.

また、SiO2の含有量が0.2〜5.0%まではY2O3の持つ高プラズマ耐性を維持できた。これは第二相の析出が無く、且つエッチングの基点と考えられる気孔が減少することにより、エッチング並びに基材腐食が抑制されたと考えられる。しかしながら、SiO含有量が6%になると、第二相が多数析出し選択的に削られプラズマ耐性は大きく劣化してしまうことが確認された。このため、SiO2含有量は0.2〜5.0%の範囲が好ましい。 Further, the high plasma resistance of Y 2 O 3 could be maintained up to the SiO 2 content of 0.2 to 5.0%. This is thought to be because etching and substrate corrosion were suppressed because there was no precipitation of the second phase and the pores considered to be the starting point of etching decreased. However, it was confirmed that when the SiO 2 content was 6%, a large number of second phases precipitated and were selectively scraped, and the plasma resistance was greatly deteriorated. For this reason, the SiO 2 content is preferably in the range of 0.2 to 5.0%.

また、SiO2以外の金属元素の酸化物ではプラズマによりエッチングされパーティクルを発生した場合、製造された半導体の製品不良を招くため好ましくない。 In addition, when an oxide of a metal element other than SiO 2 is etched by plasma and particles are generated, it is not preferable because it causes a defective product of the manufactured semiconductor.

更に、本発明の態様によれば、膜構成をSiO2+Y2O3溶射膜を含む二層以上の多層膜によって形成されていても良い。例えば、耐ハロゲン腐食性ガスを向上させたい場合に、SiO2+Y2O3膜のアンダーコート材としてNi+Alなどを用いて多層膜を形成しても良い。また、SiOを含むY2O3溶射膜をアンダーコートとして使用し、当該アンダーコート上に表面層(トップコート)を形成し、これによって、より滑らかな表面層を有する多層膜を得ることができる。 Furthermore, according to the aspect of the present invention, the film structure may be formed of a multilayer film including two or more layers including a SiO 2 + Y 2 O 3 sprayed film. For example, when it is desired to improve the halogen corrosion resistance gas, a multilayer film may be formed using Ni + Al or the like as an undercoat material for the SiO 2 + Y 2 O 3 film. Further, a Y 2 O 3 sprayed film containing SiO 2 is used as an undercoat, and a surface layer (top coat) is formed on the undercoat, thereby obtaining a multilayer film having a smoother surface layer. it can.

図1に示すように、Al基材試験片10の片面をブラスト処理により粗面化した後、SiO2を含有したY2O3原料をプラズマ溶射法により膜厚200μmの被膜11を形成した。その後、これらの基材上に成膜した溶射膜の気孔率、ガス曝露試験後の密着力を測定した。 As shown in FIG. 1, after roughening one surface of an Al base test piece 10 by blasting, a coating 11 having a thickness of 200 μm was formed from a Y 2 O 3 raw material containing SiO 2 by plasma spraying. Thereafter, the porosity of the sprayed film formed on these substrates and the adhesion after the gas exposure test were measured.

尚、プラズマ溶射法の条件は出力:30kW、溶射ガン-基材間距離:100mm、プラズマガス種:Arとし、ガス曝露条件は圧力:0.3 MPa、温度:200℃、濃度: Cl2 (100%) ガス、保持時間:24時間とした。 The conditions for plasma spraying are: output: 30 kW, distance between spray gun and substrate: 100 mm, plasma gas type: Ar, gas exposure conditions: pressure: 0.3 MPa, temperature: 200 ° C., concentration: Cl 2 (100% ) Gas, retention time: 24 hours.

なおこの溶射条件は一例であり、以下の記述を含め請求範囲を制限するものではない。   This thermal spraying condition is an example, and does not limit the scope of claims including the following description.

表1は、SiO2の含有量別でこれらの試験結果をまとめたものである。 Table 1 summarizes these test results for each SiO 2 content.

Figure 2007321183
Figure 2007321183

本発明に適合する被膜であるSiO2含有品を備えた耐プラズマ部材は、通常のY2O3溶射膜と比べて気孔率において低く、ガス曝露後における膜の剥離は観測できなかった。このことから、本発明に係る被膜は、ガス曝露後も高い密着力を維持しており、このことから高い腐食ガス耐性であることを示すことが判明した。即ち、表1に示されているように、SiOの含有量が0%のY2O3 溶射膜は気孔率11.5 %であるが、0.3 MPaのCl(100%)ガスに24時間曝した場合、溶射膜自体が基体から剥離してしまうことが判る。また、0.2%のSiOを含むY2O3溶射膜は、腐食性ガス曝露後も、12.3 MPaの密着強度を示している。 The plasma-resistant member provided with the SiO 2 -containing product, which is a coating conforming to the present invention, has a lower porosity than a normal Y 2 O 3 sprayed film, and no film peeling after gas exposure could be observed. From this, it was found that the coating film according to the present invention maintains high adhesion even after gas exposure, and thus shows high corrosion gas resistance. That is, as shown in Table 1, the Y 2 O 3 sprayed film with a SiO 2 content of 0% has a porosity of 11.5% but is exposed to 0.3 MPa of Cl 2 (100%) gas for 24 hours. In this case, it can be seen that the sprayed film itself peels off from the substrate. In addition, the Y 2 O 3 sprayed film containing 0.2% SiO 2 shows an adhesion strength of 12.3 MPa even after exposure to corrosive gas.

この実施例では、50 mm × 50 mm × 5 mm厚のAl基材試験片を用いて、実施例1と同条件の表面処理を行った後、それぞれの基材から寸法10 mm × 10 mm × 5 mmの試験片を切り出し、さらに表面処理面が10 mm × 5 mm × 5 mmの範囲が露出するように他の部分をマスクした。この試験片に対して、下記条件にて2時間照射しプラズマエロージョンによる損傷量を減肉厚さとして求めた。   In this example, an Al substrate test piece having a thickness of 50 mm × 50 mm × 5 mm was used, and after surface treatment under the same conditions as in Example 1, the dimensions of each substrate were 10 mm × 10 mm × A 5 mm test piece was cut out, and the other part was masked so that the surface-treated surface was exposed to a range of 10 mm × 5 mm × 5 mm. The test piece was irradiated for 2 hours under the following conditions, and the amount of damage caused by plasma erosion was determined as the reduced thickness.

(1)ガス雰囲気と流量条件
NF3とArの混合ガスの割合を下記条件の雰囲気とした。
NF3/Ar = 10 / 90
(2)プラズマ照射出力
Bias : -300 V
圧力 : 20mTorr
その結果を表1に示した。
(1) Gas atmosphere and flow rate conditions
The ratio of the mixed gas of NF 3 and Ar was the atmosphere under the following conditions.
NF 3 / Ar = 10/90
(2) Plasma irradiation output
Bias: -300 V
Pressure: 20mTorr
The results are shown in Table 1.

表1に示す結果から明らかなように、SiO2を1.0%まで含有させたY2O3被膜ではほぼ通常のY2O3被膜と同等のエッチングレートであり、また、1.0〜5.0%の含有量の場合でも若干の低下は見られるが高いプラズマ耐性を維持している。しかしながら、6.0%のSiOを含むY2O3溶射膜はプラズマエッチングレートが8.9 nm/minとなり、0.2〜5.0%のSiOを含むY2O3溶射膜におけるエッチングレート(1.3〜2.6 nm/min)から大きく変化していることが判る。即ち、SiOの含有量が6%にもなるとエッチングレートが通常の7倍にもなりプラズマ耐性の低下が見られるため6.0%以上の含有量は好ましくないことが判る。 As is apparent from the results shown in Table 1, the Y 2 O 3 film containing SiO 2 up to 1.0% has an etching rate almost the same as that of a normal Y 2 O 3 film, and the content is 1.0 to 5.0%. Even in the case of the amount, a slight decrease is observed, but high plasma resistance is maintained. However, the Y 2 O 3 sprayed film containing 6.0% SiO 2 has a plasma etching rate of 8.9 nm / min, and the etching rate in the Y 2 O 3 sprayed film containing 0.2 to 5.0% SiO 2 (1.3 to 2.6 nm / min) From min), it can be seen that there is a significant change. That is, when the SiO 2 content is as high as 6%, the etching rate becomes 7 times the normal rate, and the plasma resistance is lowered.

次に、図2を参照して、本発明の他の実施例3に係る耐プラズマ部材を説明する。実施例1及び2で示した耐プラズマ部材は、SiOを含むY2O3溶射層を一層だけ含む保護層を有しているが、図2には、SiOを含むY2O3溶射層11を表面層(トップコート)として備えると共に、当該トップコートの下地に設けられるアンダーコートとして他の層12を含む多層構造からなる保護膜が示されている。また、SiOを含むY2O3溶射層は、トップコートとして使用されるだけでなく、多層構造の中間層、或いは、アンダーコートとして設けられても良い。 Next, with reference to FIG. 2, the plasma-resistant member which concerns on other Example 3 of this invention is demonstrated. The plasma-resistant members shown in Examples 1 and 2 have a protective layer including only one Y 2 O 3 sprayed layer containing SiO 2 , but FIG. 2 shows Y 2 O 3 sprayed containing SiO 2 . A protective film having a multilayer structure including the layer 11 as a surface layer (top coat) and including another layer 12 as an undercoat provided on the base of the top coat is shown. The Y 2 O 3 sprayed layer containing SiO 2 is not only used as a top coat, but may be provided as an intermediate layer having a multilayer structure or an undercoat.

上記した多層構造の具体的な例として、表1には、SiOを含むY2O3溶射層を表面層(即ち、トップコート)として備え、当該トップコートの下地にアンダーコートを形成した例及びその特性も示されている。この例の場合、アンダーコートとして80%Ni+20%Alを100μm溶射し、トップコートとしてSiO2+Y2O3を200μm溶射することによって多層構造が形成されている。このように、アンダーコート上に設けられるトップコートとして、SiOを含むY2O3溶射層を形成した多層構造の耐プラズマ部材に対して、実施例1,2と同様の条件で腐食性ガス曝露後の密着力、プラズマエッチングレートを評価した。その結果、多層構造によってもSiO2+Y2O3の腐食ガス耐性や耐プラズマ性が低下することは無く十分な性能を発揮できることが、表1によって確認できる。 As a specific example of the multilayer structure described above, Table 1 shows an example in which a Y 2 O 3 sprayed layer containing SiO 2 is provided as a surface layer (ie, a top coat), and an undercoat is formed on the base of the top coat. And its characteristics are also shown. In this example, a multilayer structure is formed by spraying 100 μm of 80% Ni + 20% Al as an undercoat and spraying 200 μm of SiO 2 + Y 2 O 3 as a topcoat. Thus, as a top coat provided on the undercoat, a corrosive gas is formed under the same conditions as in Examples 1 and 2 for the plasma-resistant member having a multilayer structure in which the Y 2 O 3 sprayed layer containing SiO 2 is formed. The adhesion after exposure and the plasma etching rate were evaluated. As a result, it can be confirmed from Table 1 that even with a multilayer structure, the corrosion gas resistance and plasma resistance of SiO 2 + Y 2 O 3 are not lowered and sufficient performance can be exhibited.

本発明は、半導体、液晶等の電子デバイスを製造する製造装置の各部分、特に、真空雰囲気でプラズマに曝されるような部材に適用することができる。   The present invention can be applied to each part of a manufacturing apparatus for manufacturing an electronic device such as a semiconductor or a liquid crystal, particularly to a member that is exposed to plasma in a vacuum atmosphere.

本発明の実施例1に係る耐プラズマ部材の構成を示す図である。FIG. 2 is a diagram showing a configuration of a plasma-resistant member according to Example 1 of the present invention. 本発明の実施例2に係る耐プラズマ部材の構成を示す図である。It is a figure which shows the structure of the plasma-resistant member which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

10 基材
11 保護層を形成するSiO含有Y2O3溶射膜
12 他の層
10 Substrate
11 SiO 2 -containing Y 2 O 3 sprayed film for forming protective layer
12 other layers

Claims (4)

プラズマに曝露される部位に0.2〜5.0%のSiO2成分を含む厚さ10〜500μmのY2O3保護膜を有することを特徴とする耐プラズマ部材。 A plasma-resistant member comprising a Y 2 O 3 protective film having a thickness of 10 to 500 μm containing a SiO 2 component of 0.2 to 5.0% at a site exposed to plasma. 前記保護膜は、0.2〜5.0%のSiO2成分を含むY2O3からなる造粒粉末を溶射して形成された溶射膜であることを特徴とする請求項1記載の耐プラズマ部材。 The protective film is plasma-resistant member according to claim 1, characterized in that a sprayed coating formed by spraying the granulated powder composed of Y 2 O 3 containing 0.2 to 5.0% of the SiO 2 component. 0.2〜5.0%のSiO2成分を含む厚さ10〜500μmのY2O3保護膜、若しくは0.2〜5.0%のSiO2成分を含むY2O3からなる造粒粉末を溶射して形成された溶射膜を含む二層以上の多層膜を有することを特徴とする耐プラズマ部材。 The thickness 10~500μm of Y 2 O 3 protective film containing 0.2 to 5.0% of the SiO 2 component, or formed by spraying the granulated powder composed of Y 2 O 3 containing 0.2 to 5.0% of the SiO 2 component A plasma-resistant member comprising a multilayer film including two or more layers including a sprayed film. 請求項1〜3のいずれかに記載の耐プラズマ部材を含む電子デバイス製造装置。
The electronic device manufacturing apparatus containing the plasma-resistant member in any one of Claims 1-3.
JP2006151017A 2006-05-31 2006-05-31 Plasma resistant member Pending JP2007321183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006151017A JP2007321183A (en) 2006-05-31 2006-05-31 Plasma resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006151017A JP2007321183A (en) 2006-05-31 2006-05-31 Plasma resistant member

Publications (1)

Publication Number Publication Date
JP2007321183A true JP2007321183A (en) 2007-12-13

Family

ID=38854257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006151017A Pending JP2007321183A (en) 2006-05-31 2006-05-31 Plasma resistant member

Country Status (1)

Country Link
JP (1) JP2007321183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212293A (en) * 2008-03-04 2009-09-17 Tokyo Electron Ltd Component for substrate treatment apparatus, and substrate treatment apparatus
WO2020208801A1 (en) * 2019-04-12 2020-10-15 株式会社日立ハイテクノロジーズ Plasma processing device, internal member for plasma processing device, and method for manufacturing said internal member
CN114045455A (en) * 2020-12-10 2022-02-15 Komico有限公司 Yttrium thermal spray coating film using yttrium particle powder and method for producing same
WO2022054837A1 (en) * 2020-09-09 2022-03-17 三菱マテリアル株式会社 Plasma-resistant coating film, sol gel liquid for forming said film, method for forming plasma-resistant coating film, and substrate with plasma-resistant coating film
TWI802789B (en) * 2020-03-06 2023-05-21 南韓商綠色資源公司 Chamber coating material and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240171A (en) * 2004-01-29 2005-09-08 Kyocera Corp Corrosion resistant member and its production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240171A (en) * 2004-01-29 2005-09-08 Kyocera Corp Corrosion resistant member and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212293A (en) * 2008-03-04 2009-09-17 Tokyo Electron Ltd Component for substrate treatment apparatus, and substrate treatment apparatus
WO2020208801A1 (en) * 2019-04-12 2020-10-15 株式会社日立ハイテクノロジーズ Plasma processing device, internal member for plasma processing device, and method for manufacturing said internal member
KR20200120601A (en) 2019-04-12 2020-10-21 주식회사 히타치하이테크 Plasma treatment device, inner member of plasma treatment device, and method of manufacturing the inner member
CN112088424A (en) * 2019-04-12 2020-12-15 株式会社日立高新技术 Plasma processing apparatus, internal member of plasma processing apparatus, and method for manufacturing internal member
TWI802789B (en) * 2020-03-06 2023-05-21 南韓商綠色資源公司 Chamber coating material and method for manufacturing the same
WO2022054837A1 (en) * 2020-09-09 2022-03-17 三菱マテリアル株式会社 Plasma-resistant coating film, sol gel liquid for forming said film, method for forming plasma-resistant coating film, and substrate with plasma-resistant coating film
CN114045455A (en) * 2020-12-10 2022-02-15 Komico有限公司 Yttrium thermal spray coating film using yttrium particle powder and method for producing same

Similar Documents

Publication Publication Date Title
JP5674479B2 (en) Yttrium-containing ceramic coating resistant to reducing plasma
TWI724150B (en) Yttrium fluoride sprayed coating, spray material therefor, and corrosion resistant coating including sprayed coating
JP4985928B2 (en) Multi-layer coated corrosion resistant member
TWI654160B (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
KR101491437B1 (en) Coating semiconductor processing apparatus with protective yttrium-containing coatings which reduce arcing and corrosion within a processing chamber
JP4643478B2 (en) Manufacturing method of ceramic covering member for semiconductor processing equipment
JP4571561B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP5324029B2 (en) Ceramic coating for semiconductor processing equipment
JP2007115973A (en) Corrosion resistant member
JP2005240171A (en) Corrosion resistant member and its production method
JP2009081223A (en) Electrostatic chuck member
TWI546415B (en) Thermal spray powder and coating containing rare earth element and member with the coating
JP2007131951A (en) Spray deposit film covered member having excellent plasma erosion resistance, and its manufacturing method
JP4894158B2 (en) Vacuum equipment parts
JP2007321183A (en) Plasma resistant member
JP2005060827A (en) Plasma resistant member
JP2007081218A (en) Member for vacuum device
KR102356172B1 (en) Method for Producing Plasma-Resistant Coating Layer
JP2006097114A (en) Corrosion-resistant spray deposit member
JP2007119924A (en) High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same
JP2012036053A (en) Anticorrosive member
JP2012129549A (en) Electrostatic chuck member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120509