JP2006265619A - Corrosion resistant member and method for producing the same - Google Patents

Corrosion resistant member and method for producing the same Download PDF

Info

Publication number
JP2006265619A
JP2006265619A JP2005084507A JP2005084507A JP2006265619A JP 2006265619 A JP2006265619 A JP 2006265619A JP 2005084507 A JP2005084507 A JP 2005084507A JP 2005084507 A JP2005084507 A JP 2005084507A JP 2006265619 A JP2006265619 A JP 2006265619A
Authority
JP
Japan
Prior art keywords
corrosion
resistant member
group
plasma
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005084507A
Other languages
Japanese (ja)
Inventor
Masanori Abe
昌則 阿部
Koyata Takahashi
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005084507A priority Critical patent/JP2006265619A/en
Publication of JP2006265619A publication Critical patent/JP2006265619A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems with members used for a CVD system, plasma treatment system, etc., such as consumption of the members by reaction with corrosive gases or etching with plasma, contamination of products due to particle generation, and degradation in a yield and productivity, and also, a high cost of glass having resistance to the corrosive gases and plasma. <P>SOLUTION: The corrosion resistant member comprises a base material and a sprayed coating formed thereon. The corrosion resistant member comprising the sprayed coating composed of Si, O, N and group 2a element, and at least one element selected from the group consisting of B, Zr and Ti has high corrosion resistance to corrosive gas and plasma and heat resistant strength, and has reduced generation of particles. The corrosion resistant member can be produced, e.g., by thermally spraying a powdery mixture of silicon nitride, silica, group 2a element oxide powder and zirconia powder on a base material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体等の製造におけるCVD(Chemical Vapor Deposition)装置、プラズマ処理装置(プラズマエッチング装置)等に用いる部材であり、特に腐食性ガス又はプラズマに対する耐蝕性が高い溶射膜からなる耐蝕性部材に関するものである。   The present invention is a member used for a CVD (Chemical Vapor Deposition) apparatus, a plasma processing apparatus (plasma etching apparatus), etc. in the manufacture of semiconductors and the like, and in particular, a corrosion-resistant member comprising a sprayed film having high corrosion resistance against corrosive gas or plasma. It is about.

半導体等の製造工程におけるプラズマエッチングや、CVD装置のクリーニング用途には腐食性ガスが多用されている。これら腐食性ガスにはフッ素系、塩素系ガス等が用いられている。フッ素系ガスではCF、C、C、CHF/CF、SF等が用いられており、塩素系ガスでは、Cl、BCl、CCl等が用いられている。さらにHF、F、NFを用いることも提案されている。 Corrosive gas is frequently used for plasma etching in the manufacturing process of semiconductors and the like and for cleaning of CVD apparatuses. For these corrosive gases, fluorine-based or chlorine-based gases are used. CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 / CF 4 , SF 6, etc. are used for the fluorine-based gas, and Cl 2 , BCl 3 , CCl 4, etc. are used for the chlorine-based gas. Yes. It has also been proposed to use HF, F 2 , NF 3 .

このような腐食性ガスを用いる装置の容器、内壁、部品等、上記ガス或いは上記ガスを含むプラズマに接触する部分には、石英、アルミナ、窒化アルミニウム等のセラミックス又はアルミニウム、ステンレス等の金属が使用されている。しかし、これら部材は、短時間に消耗することや、装置内のパーティクル発生の原因となるという問題があった。   Quartz, alumina, ceramics such as aluminum nitride, and metals such as aluminum and stainless steel are used for the parts that come into contact with the gas or plasma containing the gas, such as containers, inner walls, and components of such corrosive gases. Has been. However, these members have a problem that they are consumed in a short time and cause generation of particles in the apparatus.

例えば、石英の部材はフッ素ガスと反応してSiFを生成して昇華して消耗する。またアルミナ、窒化アルミニウム等のセラミックス部材では、アルミニウムのフッ化物AlFは昇華し難いが、物理的なスパッタ等による消耗が発生し、同時にプラズマ等の部材の粒界や気孔において選択的に腐蝕が進行し、結晶粒子脱落によりパーティクルが発生する。 For example, a quartz member reacts with fluorine gas to produce SiF 4 and sublimates and wears out. Also, in ceramic members such as alumina and aluminum nitride, aluminum fluoride AlF 3 is difficult to sublimate, but wear due to physical sputtering occurs, and at the same time, it is selectively corroded at grain boundaries and pores of members such as plasma. Proceeds, and particles are generated by dropping the crystal particles.

この様な問題を解決する方法として、結晶粒界を無くしてパーティクルの発生を押さえると同時に窒素を導入することで耐蝕性を向上させる方法として、Si−Al−O−N元素で構成されたガラスが提案されている(例えば、特許文献1参照)。しかし、これらの耐蝕性ガラスを製造するために還元雰囲気又は不活性雰囲気中が必要であるため、装置が大規模になり、結果的に耐蝕性部材が高価になる傾向があった。また、この組成では、耐蝕性も必ずしも十分ではなかった。   As a method for solving such a problem, glass composed of Si—Al—O—N element is used as a method for improving the corrosion resistance by eliminating the grain boundaries and simultaneously introducing nitrogen while eliminating the grain boundaries. Has been proposed (see, for example, Patent Document 1). However, since a reducing atmosphere or an inert atmosphere is necessary to produce these corrosion-resistant glasses, the apparatus becomes large-scale, and as a result, the corrosion-resistant members tend to be expensive. In addition, this composition does not always have sufficient corrosion resistance.

一方、基材を保護するために基材表面に溶射膜を形成する技術が知られており、上述の耐蝕性のガラスを基材の上に溶射・被覆することが考えられる。しかし、従来の溶射技術では、緻密質な窒素含有溶射膜形成が困難であり、従来の溶射による保護膜の形成は主に金属或いは酸化物セラミックスを用いるものであった。   On the other hand, a technique for forming a sprayed film on the surface of the base material in order to protect the base material is known, and it is conceivable to spray and coat the above-mentioned corrosion-resistant glass on the base material. However, with the conventional spraying technique, it is difficult to form a dense nitrogen-containing sprayed film, and the formation of a protective film by conventional spraying has mainly used metal or oxide ceramics.

窒素を含有する溶射膜作製の先行技術としては、例えば、Si、Al、YにAlN、SiO、MgOの混合粉体を爆発溶射にて溶射してアモルファス層とYAG層を形成する技術(例えば、非特許文献1参照)やSi、Al、ZrO、TiOの混合粉末を熱処理して得たβサイアロンおよびχサイアロン粉末の爆発溶射による窒化珪素溶射膜を形成したものや、Si、Al、Yの混合粉体について、プラズマ溶射によるα窒化珪素を形成したものが報告されている。しかし、これらの溶射膜は溶射粉末の融点が高いため、溶射粉末がよく溶けずに基板に付着することで、溶射膜個々の粒子同士の結合が弱く、気孔が多くなってしまい、密度が低く、プラズマエッチング時に溶射膜の粒界や気孔において選択的に腐蝕が進行し、結晶粒子脱落によるパーティクルが発生しやすい傾向にあった。また、溶射膜の腐蝕性ガス、プラズマに対する耐蝕性も充分ではなかった。さらに、爆発溶射に用いる装置は高価であり、溶射膜の堆積効率が悪く、爆発時の風圧でアルミニウムなど金属基板が変形してしまうこともあった。 As a prior art for producing a sprayed film containing nitrogen, for example, a mixed powder of AlN, SiO 2 and MgO is sprayed on Si 3 N 4 , Al 2 O 3 and Y 2 O 3 by explosion spraying to form an amorphous layer And YAG layer forming technology (for example, see Non-Patent Document 1) and explosive spraying of β sialon and χ sialon powder obtained by heat treatment of mixed powder of Si 3 N 4 , Al 2 O 3 , ZrO 2 , TiO 2 A silicon nitride sprayed film formed by the method described above and a mixed powder of Si 3 N 4 , Al 2 O 3 , Y 2 O 3 formed by α spraying silicon nitride by plasma spraying have been reported. However, since these sprayed films have a high melting point, the sprayed powder does not melt well and adheres to the substrate, resulting in weak bonds between the individual particles of the sprayed film, increasing the number of pores, and low density. During plasma etching, corrosion progresses selectively at the grain boundaries and pores of the sprayed film, and particles are likely to be generated due to dropping of crystal grains. Further, the corrosion resistance of the sprayed film to the corrosive gas and plasma was not sufficient. Furthermore, the apparatus used for explosive spraying is expensive, the deposition efficiency of the sprayed film is poor, and the metal substrate such as aluminum may be deformed by the wind pressure at the time of the explosion.

すなわち、従来、一般的な溶射法を用いた窒素含有の緻密質で個々の粒子同士が良く結合し、さらに非常に高い耐蝕性を備えた溶射膜を作製する技術は更なる改善が求められており、プラズマエッチング時に結晶粒子脱落によるパーティクルが発生せず、腐食性ガス又はプラズマに対して良好な耐蝕性を有する耐蝕性部材が望まれていた。   In other words, there is a need for further improvement in the technology for producing a sprayed film having a very high corrosion resistance, in which individual particles are well bonded with a dense nitrogen-containing material using a general spraying method. Therefore, there has been a demand for a corrosion-resistant member that does not generate particles due to falling off of crystal particles during plasma etching and has good corrosion resistance against corrosive gas or plasma.

特開平11−228172号公報JP-A-11-228172 R.B.Heimann、S.Thiele、L.M.Berger、M.Herrmann、M.Nebelung、B.Wielage、T.M.Schnick、P.Vuoristo,“Thermally Sprayed Silicon Nitride−Based Coatings on Steel for Application in Severe Operation Environments:Preliminary Results”Microstructural Science Vol.26,389(1998)R. B. Heimann, S .; Thiele, L.M. M.M. Berger, M.M. Herrmann, M.M. Nebelung, B.M. Wielage, T.W. M.M. Schnick, P.A. Vuoristo, “Thermally Sprayed Silicon Nitride-Based Coatings on Steel for Application in Severe Operation Environments: Preliminary Results Vs. 26,389 (1998)

以上説明した様に、半導体製造プロセスにおいて腐食性ガスやプラズマを用いる工程では、部材の腐蝕によるパーティクル発生、それに伴う製品汚染、歩留まり低下等の問題があった。さらに、部材の低い耐蝕性による部材の寿命の低下という問題もあった。この様な問題を抑制するSi−Al−O−N元素で構成されたガラス質の耐蝕性部材が提案されているが、耐蝕性は必ずしも十分ではなかった。一方、Si−Al−Y系での溶射は可能であるが、溶射膜の密度が低く、パーティクルの問題を解決する必要があった。 As described above, in the process using a corrosive gas or plasma in the semiconductor manufacturing process, there are problems such as generation of particles due to corrosion of members, product contamination associated therewith, and yield reduction. Further, there is a problem that the life of the member is reduced due to the low corrosion resistance of the member. A vitreous corrosion-resistant member composed of a Si—Al—O—N element that suppresses such problems has been proposed, but the corrosion resistance is not always sufficient. On the other hand, although spraying with the Si 3 N 4 —Al 2 O 3 —Y 2 O 3 system is possible, the density of the sprayed film is low, and it is necessary to solve the problem of particles.

本発明の目的は、耐蝕性が高く、パーティクルが少なく、製造が容易で窒素を含有したガラス質溶射膜からなる耐蝕性部材を与えるものである。   The object of the present invention is to provide a corrosion-resistant member comprising a glassy sprayed film having high corrosion resistance, few particles, easy production and containing nitrogen.

本発明者らは、上述のような現状に鑑み、鋭意検討を行った結果、Si、O、Nおよび2a族元素とB、ZrおよびTiからなる群より選ばれる少なくとも1つの元素によって構成された材料が溶射に適しており、基材にこの材料を溶射することで粒子同士の結合が良く、緻密な溶射膜ができ、その結果、部材の耐蝕性が著しく向上し、パーティクルの発生も少ないことを見出し、本発明を完成するに至ったものである。   As a result of intensive studies in view of the current situation as described above, the present inventors have been composed of at least one element selected from the group consisting of Si, O, N and 2a group elements and B, Zr and Ti. The material is suitable for thermal spraying, and by spraying this material on the base material, the bonding between particles is good and a dense thermal sprayed film can be formed. And the present invention has been completed.

以下、本発明の耐蝕性部材について詳細に説明する。
(第1発明)
本発明のうち、第1の発明は、基材とその上に形成された溶射膜からなる耐蝕性部材であって、プラズマ又は腐食性ガスに曝される部位がSi、O、Nおよび2a族と、B、ZrおよびTiからなる群より選ばれる少なくとも1つの元素によって構成された溶射膜であることを特徴とする耐蝕性部材である。
Hereinafter, the corrosion-resistant member of the present invention will be described in detail.
(First invention)
Of the present invention, the first invention is a corrosion-resistant member comprising a base material and a sprayed film formed thereon, and the part exposed to plasma or corrosive gas is Si, O, N and 2a group And a sprayed coating composed of at least one element selected from the group consisting of B, Zr and Ti.

本発明でいう2a族元素とは元素周期律表2a族元素であり、具体的には、Be、Mg、Ca、Sr、Baである。本発明の耐蝕性部材を構成する溶射膜は、ガラスが主成分となるため、腐蝕性ガス或いはそのプラズマとの反応性が低く、仮に腐食性ガス中のフッ素と反応が生じたとしても反応生成物はプラズマにエッチングされにくい高沸点化合物であり、プラズマや腐蝕性ガスによるエッチングを抑制する効果があり、特に好ましい2a族元素はMgである。   The group 2a element in the present invention is a group 2a element of the periodic table of elements, and specifically, Be, Mg, Ca, Sr, and Ba. Since the sprayed coating constituting the corrosion-resistant member of the present invention is mainly composed of glass, the reactivity with the corrosive gas or its plasma is low, and even if it reacts with fluorine in the corrosive gas, the reaction is generated. The substance is a high boiling point compound that is difficult to be etched by plasma, has an effect of suppressing etching by plasma or corrosive gas, and a particularly preferable group 2a element is Mg.

本発明の第1の発明において、耐食性部材の組成としては、Zrを用いる場合、Zr:Siの原子数比率が5:95から70:30の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Zr+Si:2a族元素の原子数比率が75:25から40:60であることが好ましい。   In the first aspect of the present invention, the composition of the corrosion-resistant member is such that when Zr is used, the atomic ratio of Zr: Si ranges from 5:95 to 70:30, and the atomic ratio of O: N is 99.9. Is in the range of 0.1 to 60:40, and the atomic ratio of the Zr + Si: 2a group element is preferably 75:25 to 40:60.

また、Tiを用いる場合、Ti:Siの原子数比率が5:95から80:20の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Ti+Si:2a族元素の原子数比率が85:15から40:60であることが好ましい。   When Ti is used, the atomic ratio of Ti: Si is in the range of 5:95 to 80:20, the atomic ratio of O: N is in the range of 99.9: 0.1 to 60:40, and Ti + Si : The atomic ratio of the group 2a element is preferably 85:15 to 40:60.

また、Bを用いる場合、B:Siの原子数比率が5:95から70:30の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、B+Si:2a族元素の原子数比率が85:15から40:60であることが好ましい。   When B is used, the atomic ratio of B: Si is in the range of 5:95 to 70:30, the atomic ratio of O: N is in the range of 99.9: 0.1 to 60:40, and B + Si : The atomic ratio of the group 2a element is preferably 85:15 to 40:60.

上記したZr、Ti又はBを用いる場合、2a族元素を酸化物として導入した場合には、酸化物に含まれている酸素は含めないこととする。   When using Zr, Ti, or B described above, oxygen contained in the oxide is not included when the group 2a element is introduced as an oxide.

また、本発明の耐食性部材は、Si、O、Nおよび2a族と、B、ZrおよびTiからなる群より選ばれる少なくとも1つの元素によって構成された溶射膜の主成分がガラスであることを特徴とするものである。Si、O、Nおよび2a族元素で構成されるガラス相は耐蝕性に優れると同時に、ガラスであるため結晶粒界が無く、腐蝕性ガスや腐食性ガスを含むプラズマによるエッチング時に結晶粒界での腐蝕による当該結晶粒子の脱落によるパーティクル発生が抑制される。そして、このガラス相は、Nが添加されることでガラス化が促進され、さらに、耐蝕性が増す。   Further, the corrosion-resistant member of the present invention is characterized in that the main component of the sprayed film composed of Si, O, N and 2a groups and at least one element selected from the group consisting of B, Zr and Ti is glass. It is what. The glass phase composed of Si, O, N and 2a group elements is excellent in corrosion resistance, and at the same time, there is no crystal grain boundary because it is glass. Generation of particles due to dropping of the crystal particles due to corrosion of the steel is suppressed. And this glass phase is vitrified by adding N, and further the corrosion resistance is increased.

さらに、本発明の耐蝕性部材は、少なくともSi、O、Nおよび2a族元素で構成されるガラス相とB、ZrおよびTiからなる群より選ばれる少なくとも一つの元素を含む結晶相とで構成される溶射膜である。Si、O、Nおよび2a族元素で構成されるガラス相の特徴は前述の通りであるが、この組成が共晶組成であることで、溶射粉末の融点が低くなり、堆積する溶射膜が緻密となる。また、Zrおよび/又はTiを含む結晶相は、腐蝕性ガスや腐蝕性ガスを含むプラズマとの反応物の沸点が高いことから耐蝕性に優れている。   Furthermore, the corrosion-resistant member of the present invention is composed of a glass phase composed of at least Si, O, N and 2a group elements and a crystal phase containing at least one element selected from the group consisting of B, Zr and Ti. It is a sprayed film. The characteristics of the glass phase composed of Si, O, N, and Group 2a elements are as described above. However, since this composition is a eutectic composition, the melting point of the sprayed powder is lowered, and the deposited sprayed film is dense. It becomes. Further, the crystal phase containing Zr and / or Ti is excellent in corrosion resistance because the boiling point of the reactant with the corrosive gas or the plasma containing the corrosive gas is high.

この共晶組成として、Zrを含む結晶相が2a族酸化物を固溶した立方晶酸化ジルコニウムである溶射膜を例示することができる。立方晶酸化ジルコニウム結晶相中の2a族元素、Zrは共に腐蝕性ガスやプラズマとの反応物の沸点が高いことから耐蝕性に優れている。2a族を固溶した立方晶酸化ジルコニウムの溶射膜としては、例えば、酸化マグネシウムを固溶した立方晶酸化ジルコニウムを挙げることができる。   As this eutectic composition, a sprayed film in which the crystal phase containing Zr is cubic zirconium oxide in which a group 2a oxide is dissolved can be exemplified. Both the group 2a element and Zr in the cubic zirconium oxide crystal phase are excellent in corrosion resistance since the boiling point of the reaction product with the corrosive gas or plasma is high. Examples of the sprayed film of cubic zirconium oxide in which Group 2a is dissolved include cubic zirconium oxide in which magnesium oxide is dissolved.

また、Bを含む結晶相としては、窒化ホウ素が挙げられる。この窒化ホウ素とSi、O、Nおよび2a族元素で構成されるガラス相とが共晶組成であることで、溶射粉末の融点が低くなり、堆積する溶射膜が緻密となる。   An example of the crystal phase containing B is boron nitride. The boron nitride and the glass phase composed of Si, O, N, and 2a group elements have a eutectic composition, so that the melting point of the sprayed powder is lowered and the deposited sprayed film becomes dense.

本発明で用いる基材は特に限定はないが、石英ガラスなどの耐熱ガラスやアルミニウム、ステンレス等の金属、アルミナ、ムライト等のセラミックス、ポリイミド、ポリカーボネートなどの樹脂が挙げられる。   The substrate used in the present invention is not particularly limited, and examples thereof include heat-resistant glass such as quartz glass, metals such as aluminum and stainless steel, ceramics such as alumina and mullite, resins such as polyimide and polycarbonate.

用いる基材の表面は、表面粗さRaが1〜50μmであることが好ましい。その中でも、溶射膜と基材との良好な密着性を保つためには1〜15μmであることが好ましい。表面粗さRaが1μm未満では、基材と溶射膜が剥離し易い場合があり、基材の上に耐蝕性ガラス溶射膜を均一に被覆することが難しい場合がある。一方、表面粗さRaが50μmを超えると、溶射膜の表面を平滑にすることが難しく、プラズマや腐蝕性ガスによるエッチングを抑制することが難しい場合がある。基材表面の表面粗さRaを1〜50μmとする方法としては、その様な表面粗さの溶射膜を基材に予め溶射する方法、基材自身をブラスト処理する方法又はブラスト処理とフッ酸等による化学的エッチングを併せて施す方法等を例示できる。   The surface of the substrate used preferably has a surface roughness Ra of 1 to 50 μm. Among these, in order to maintain good adhesion between the sprayed film and the substrate, the thickness is preferably 1 to 15 μm. If the surface roughness Ra is less than 1 μm, the substrate and the sprayed coating may be easily peeled off, and it may be difficult to uniformly coat the corrosion-resistant glass sprayed coating on the substrate. On the other hand, when the surface roughness Ra exceeds 50 μm, it is difficult to smooth the surface of the sprayed film, and it may be difficult to suppress etching by plasma or corrosive gas. As a method of setting the surface roughness Ra of the substrate surface to 1 to 50 μm, a method of spraying a sprayed film having such a surface roughness on the substrate in advance, a method of blasting the substrate itself, or a blasting treatment and hydrofluoric acid The method etc. which perform the chemical etching by etc. collectively can be illustrated.

本発明の耐蝕性部材の溶射膜厚に限定はないが、0.01〜3mm、特に0.01〜0.5mmであることが好ましい。耐蝕性部材の溶射膜厚が3mmを超えて厚くなると、基材との熱膨張率の差によって溶射膜のひび割れ、剥離が発生し易い場合があり、一方、0.01mm未満では保護膜として不十分である場合がある。耐蝕性部材の溶射膜厚は、部材の断面を顕微鏡で観察するか、部材の断面をEPMA(X線マイクロアナライザー)による構成元素の組成分析を行うこと等で確認することができる。   Although there is no limitation in the sprayed film thickness of the corrosion-resistant member of this invention, it is preferable that it is 0.01-3 mm, especially 0.01-0.5 mm. If the sprayed coating thickness of the corrosion-resistant member exceeds 3 mm, the sprayed coating may be easily cracked or peeled off due to the difference in thermal expansion coefficient with the base material. May be sufficient. The sprayed film thickness of the corrosion-resistant member can be confirmed by observing the cross section of the member with a microscope or by analyzing the composition of constituent elements using an EPMA (X-ray microanalyzer).

本発明の耐蝕性部材の溶射膜の表面粗さRaは0.01〜10μm、特に8μm以下であることが好ましい。溶射膜の表面平滑性が悪く荒れたものであると、溶射膜表面に形成された突起形状の特にエッジの部分がプラズマ或いは腐食性ガスによって選択的にエッチングされ、パーティクルが発生し易い。   The surface roughness Ra of the sprayed coating of the corrosion-resistant member of the present invention is preferably 0.01 to 10 μm, particularly preferably 8 μm or less. If the surface smoothness of the sprayed film is poor and rough, the protrusions formed on the surface of the sprayed film, particularly the edge portions, are selectively etched by plasma or corrosive gas, and particles are likely to be generated.

表面の粗さが粗いと、パーティクルが発生しやすくなるが、この評価方法としては、溶射膜の表面を研磨し、研磨面をプラズマエッチングした上で、プラズマエッチング前後の表面粗さRaを測定することで評価できる。プラズマエッチング前後のRaの差が大きいとエッチングによって表面が荒れるためパーティクルが多く発生することが予想される。
(第2発明)
次に、第2の発明として、第1の発明の耐蝕性部材の製造方法を説明する。
Particles are likely to be generated if the surface is rough, but this evaluation method is to measure the surface roughness Ra before and after plasma etching after polishing the surface of the sprayed film and plasma etching the polished surface. Can be evaluated. If the difference in Ra before and after plasma etching is large, the surface is roughened by etching, and it is expected that many particles are generated.
(Second invention)
Next, as a second invention, a method for producing a corrosion-resistant member according to the first invention will be described.

本発明の耐蝕性部材は、溶射によって耐蝕性溶射膜を形成することによって製造できる。   The corrosion-resistant member of the present invention can be produced by forming a corrosion-resistant sprayed film by thermal spraying.

本発明で用いる溶射法はプラズマ溶射であることが好ましい。図1に一般的なプラズマ溶射装置を示す。プラズマ溶射装置はアノード11とカソード10との間に流れたプラズマガス12がアーク放電にすることによって形成されるプラズマジェットを熱源として、溶射粉末13を溶融し、溶融した溶射粉末はプラズマガスの流速で基材15にぶつかり堆積するものである。   The thermal spraying method used in the present invention is preferably plasma spraying. FIG. 1 shows a general plasma spraying apparatus. The plasma spraying apparatus melts the sprayed powder 13 by using a plasma jet formed by the plasma gas 12 flowing between the anode 11 and the cathode 10 as arc discharge as a heat source, and the melted sprayed powder has a flow velocity of the plasma gas. In this case, the bumps are deposited on the substrate 15.

プラズマ溶射装置では、プラズマガスとして、N、Ar等不活性ガスもしくはH等還元性ガス又はこれらの混合ガスを用いることができる。窒素含有物質の溶射では、プラズマガスに酸素が含有すると溶射中に分解してしまい、溶射膜から窒素が消失することで耐蝕性が低下するため、プラズマガスとして不活性ガス、還元性ガスを用いることが出来るプラズマ溶射法が好ましい。その溶射ガス流量として、50SLM(Standard Litter per Minuts)以上とすることが好ましい。溶射膜中の窒素の含有量については、溶射膜表面に蛍光X線分析やEPMA分析を行うことや、少量削り取った溶射膜を加熱分解した後に発生する窒素ガスについて熱伝導率測定を行うことで測定する窒素分析装置を用いることで分析する。 In the plasma spraying apparatus, an inert gas such as N 2 or Ar, a reducing gas such as H 2, or a mixed gas thereof can be used as the plasma gas. In thermal spraying of nitrogen-containing materials, if oxygen is contained in the plasma gas, it decomposes during thermal spraying, and the corrosion resistance decreases due to the disappearance of nitrogen from the sprayed film. Therefore, an inert gas or a reducing gas is used as the plasma gas. A plasma spraying method that can be used is preferable. The spray gas flow rate is preferably 50 SLM (Standard Litter Per Minutes) or more. Regarding the nitrogen content in the sprayed film, the surface of the sprayed film is subjected to fluorescent X-ray analysis or EPMA analysis, or the thermal conductivity of nitrogen gas generated after thermally decomposing a small amount of the sprayed film is measured. Analyze by using a nitrogen analyzer to measure.

また、プラズマ溶射法の他に一般的な溶射法としてフレーム溶射や高速フレーム溶射によっても本発明の溶射膜を製造することも可能である。この場合、通常のフレーム溶射条件で作成することもできるが、酸素等に対して燃料を過剰とした還元雰囲気のフレームで溶射することが好ましい。   In addition to the plasma spraying method, the sprayed film of the present invention can also be manufactured by flame spraying or high-speed flame spraying as a general spraying method. In this case, it can be created under normal flame spraying conditions, but it is preferable to spray in a flame in a reducing atmosphere in which the fuel is excessive with respect to oxygen or the like.

本発明の溶射において、溶射フレームを基材に溶射する際の投入する溶射パワーは用いる装置によっても異なるが、例えば図1に示すようなプラズマ溶射装置の場合、溶射パワーを20kW以上とするような条件が例示できる。   In the thermal spraying of the present invention, the thermal spraying power to be applied when spraying the thermal spraying frame onto the base material varies depending on the apparatus used. For example, in the case of a plasma thermal spraying apparatus as shown in FIG. Conditions can be exemplified.

本発明の耐蝕性部材の製造時、常圧下での溶射ガン先端と基板との間の距離である溶射距離は、40〜150mmが好ましい。溶射距離が150mmをこえると基板に溶射材が付着するまでに冷却されてしまい、基板上に溶射膜が堆積されない場合があり、溶射距離が40mmより短いと基材、溶射膜両方の温度が上昇してしまい、溶射材である窒化物の分解によって窒素の消失が発生し、耐蝕性が低下する場合がある。   When manufacturing the corrosion-resistant member of the present invention, the spraying distance, which is the distance between the tip of the spray gun and the substrate under normal pressure, is preferably 40 to 150 mm. If the spraying distance exceeds 150 mm, the sprayed material will cool down before adhering to the substrate, and the sprayed film may not be deposited on the substrate. If the spraying distance is shorter than 40 mm, the temperature of both the substrate and the sprayed film will rise. As a result, the disappearance of nitrogen may occur due to the decomposition of the nitride, which is the thermal spray material, and the corrosion resistance may decrease.

本発明で用いる溶射原料は、Si、O、Nおよび2a族元素と、B、ZrおよびTiからなる群より選ばれる少なくとも1つの元素を含む組成の原料であり、粉末形状の原料を用いることが好ましい。このような原料としては、ジルコニアを例にすると、シリカ、窒化ケイ素および2a族酸化物とジルコニアとから少なくともなる粉末顆粒の混合物や、シリカ、窒化ケイ素および2a族酸化物とジルコニアとから少なくともなる粉末を所定の割合で混合し、加圧若しくは常圧の還元雰囲気下等で焼結や溶融したインゴットを作成した後、粉砕することによって調製することができる。またシリカ、窒化ケイ素および2a族酸化物とジルコニアを少なくとも含んでなる混合粉末をスラリー化し、当該混合スラリーをスプレードライ法で顆粒を作成した後、顆粒を焼結する等の方法で得ることも出来る。上述した各方法において、必要に応じてアクリル系等のバインダーを添加しても良い。   The thermal spraying raw material used in the present invention is a raw material having a composition containing Si, O, N and Group 2a elements and at least one element selected from the group consisting of B, Zr and Ti. preferable. Examples of such raw materials include, for example, zirconia, a mixture of powder granules composed of at least silica, silicon nitride, group 2a oxide and zirconia, and powder composed of at least silica, silicon nitride, group 2a oxide and zirconia. Can be prepared by mixing in a predetermined ratio, preparing an ingot sintered or melted under a reducing atmosphere under pressure or normal pressure, and then pulverizing. It is also possible to obtain a mixed powder comprising at least silica, silicon nitride, group 2a oxide, and zirconia, and then granulating the mixed slurry by a spray-drying method, followed by sintering the granule. . In each method described above, an acrylic binder or the like may be added as necessary.

溶射に用いる原料粉末の粒径に限定はないが、平均粒径(2次粒径)で10〜100μmであることが好ましい。平均粒径10μm未満では原料粉末自身に十分な流動性がないため溶射フレーム中に原料を均一に供給することが難しい場合がある。また、平均粒径が100μmを超えると、溶射粒子の溶融が不均一となり、得られる溶射膜の基材に対する密着性が悪くなりやすい場合がある。   Although there is no limitation on the particle size of the raw material powder used for thermal spraying, the average particle size (secondary particle size) is preferably 10 to 100 μm. If the average particle size is less than 10 μm, the raw material powder itself does not have sufficient fluidity, and it may be difficult to uniformly supply the raw material into the thermal spray frame. On the other hand, if the average particle size exceeds 100 μm, the sprayed particles may not be melted uniformly, and the adhesion of the resulting sprayed film to the substrate may be likely to deteriorate.

本発明では溶射被膜の形成の際、基材表面の温度をあらかじめ予熱して溶射することが好ましい。基材表面をあらかじめ予熱することは、溶射の際に、熱ショックによる基材の割れ防止、並びに密着性の高い耐蝕性部材を得るために有効である。予熱温度は用いる基材の種類によっても異なるが、例えば石英ガラス基材の場合100〜800℃、アルミニウム基材の場合50〜500℃、樹脂基材の場合50〜200℃の範囲が好ましい。   In the present invention, it is preferable to perform thermal spraying by preheating the surface of the base material in advance when forming the sprayed coating. Preheating the substrate surface in advance is effective for preventing cracking of the substrate due to heat shock and obtaining a corrosion-resistant member having high adhesion during thermal spraying. The preheating temperature varies depending on the type of substrate used, but for example, a range of 100 to 800 ° C. for a quartz glass substrate, 50 to 500 ° C. for an aluminum substrate, and 50 to 200 ° C. for a resin substrate is preferable.

予熱温度を上げすぎると溶射膜中の窒素が分解してしまうため好ましくない。予熱は、基材を外部ヒーターで加熱する、或いは原料を供給せずに溶射フレームを基材に照射すること等で行えば良い。予熱温度は、基材の裏面からの熱電対による測定、或いは非接触の放射温度計等で測定できる。   If the preheating temperature is increased too much, nitrogen in the sprayed film is decomposed, which is not preferable. Preheating may be performed by heating the substrate with an external heater, or irradiating the substrate with a thermal spray frame without supplying raw materials. The preheating temperature can be measured with a thermocouple from the back surface of the substrate or with a non-contact radiation thermometer.

本発明の耐蝕性部材の製造時、大気圧下における不活性ガスあるいは還元性ガスを用いたプラズマ溶射の場合、基材温度としては、100〜800℃が好ましいが、基板の種類にもよるが、ガラスやセラミックスの場合では、50〜800℃が好ましい。基材温度が50℃より低いと溶射材が基材に付着時に冷却がされてしまい、基板上の溶射膜の膜質が悪くなる場合があり、基材温度が800℃よりも高いと、溶射材である窒化物の分解によって窒素の消失が発生し、耐蝕性が低下する場合がある。また、樹脂基材の場合、樹脂の種類にもよるが、基材温度としては50〜300℃が好ましい。   In the production of the corrosion-resistant member of the present invention, in the case of plasma spraying using an inert gas or a reducing gas under atmospheric pressure, the substrate temperature is preferably 100 to 800 ° C., although depending on the type of substrate. In the case of glass or ceramics, 50 to 800 ° C. is preferable. If the substrate temperature is lower than 50 ° C., the sprayed material is cooled when adhering to the substrate, and the film quality of the sprayed film on the substrate may be deteriorated. If the substrate temperature is higher than 800 ° C., the sprayed material is Decomposition of the nitride may cause disappearance of nitrogen and decrease corrosion resistance. In the case of a resin base material, although it depends on the type of resin, the base material temperature is preferably 50 to 300 ° C.

本発明の耐蝕性部材は、成膜装置又はプラズマ処理装置の容器や部品等に用いることが出来る。耐蝕性部材の使用方法としては、これらの装置の中で腐食性ガスやプラズマに接触する部位に用いることができ、より具体的にはリング状部材やベルジャーとして用いることが挙げられる。   The corrosion-resistant member of the present invention can be used for a container or a part of a film forming apparatus or a plasma processing apparatus. As a method of using the corrosion-resistant member, it can be used in a part that comes into contact with corrosive gas or plasma in these apparatuses, and more specifically, it can be used as a ring-shaped member or a bell jar.

ここでいう成膜装置とは、例えばCVD装置やPVD(Physical Vapor Deposition)装置等である。これらの装置の反応管やベルジャー等は、使用後の洗浄にフッ素系ガスによる洗浄を行なわれており、当該洗浄による腐食やそれに起因するパーティクル発生が問題であったが、本発明の耐蝕性部材を用いればそれらの問題が解決される。   The film forming apparatus here is, for example, a CVD apparatus or a PVD (Physical Vapor Deposition) apparatus. The reaction tubes and bell jars of these devices are cleaned with fluorine-based gas for cleaning after use, and corrosion due to the cleaning and the generation of particles due to the cleaning have been a problem. Those problems are solved by using.

またここでいうプラズマ処理装置とは、例えばプラズマエッチング装置、プラズマクリーニング装置であり、装置内に設置した製品にプラズマを照射し、製品の表面を剥離、あるいは清浄化する装置をさす。これら装置のリング状フォーカスリング又はベルジャー等でもフッ素系プラズマによってエッチングが行なわれるため、装置内の部品で腐食性ガスやプラズマと接触する部位では、パーティクルの発生が問題であった。この場合も同様に、本発明の耐蝕性部材を用いれば腐食されにくく、パーティクルの発生が少ない。   The plasma processing apparatus here is, for example, a plasma etching apparatus or a plasma cleaning apparatus, and refers to an apparatus that irradiates a product placed in the apparatus with plasma and peels or cleans the surface of the product. Since the ring-shaped focus ring or bell jar of these apparatuses is also etched by fluorine-based plasma, the generation of particles is a problem in the parts in the apparatus that come into contact with corrosive gas or plasma. Similarly, in this case, if the corrosion-resistant member of the present invention is used, it is difficult to corrode and the generation of particles is small.

本発明の耐蝕性部材は、CVD装置、プラズマ処理装置等の腐食性ガス、プラズマを用いる装置に使用した際、耐蝕性が高く、パーティクル発生が少ないため、製品への汚染がなく、高い製品留まりで連続運転が可能である。   The corrosion-resistant member of the present invention has high corrosion resistance and less particle generation when used in an apparatus using a corrosive gas or plasma, such as a CVD apparatus or a plasma processing apparatus. Can be operated continuously.

本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
実施例
1)溶射基材の調製
ブラストにより表面粗さRaを6μmとした石英ガラスに対し、24%フッ酸で1時間処理して表面粗さRaを10μmとした石英ガラス基材を調製した。
The present invention will be described in detail based on examples, but the present invention is not limited only to these examples.
Example 1) Preparation of Thermal Sprayed Substrate A quartz glass substrate having a surface roughness Ra of 10 μm was prepared by blasting quartz glass having a surface roughness Ra of 6 μm for 1 hour with 24% hydrofluoric acid.

2)溶射用原料粉末の調製
表1に示す2a族元素の酸化物、ジルコニア、チタニアおよびホウ酸からなる群より選ばれる化合物と、シリカと、窒化珪素または窒化ホウ素とを表1の組成になるように調製し、それら粉末にバインダーを混合した後、スプレードライにより、平均粒径50μmの造粒粉末を得た。この造粒粉末について、500℃2時間の脱脂後、1200℃2時間の焼結を行い、平均粒径50μmの焼結粉末を得た。
2) Preparation of thermal spraying raw material powder A compound selected from the group consisting of Group 2a oxide, zirconia, titania and boric acid shown in Table 1, silica, silicon nitride or boron nitride has the composition shown in Table 1. Then, after mixing the binder with these powders, a granulated powder having an average particle size of 50 μm was obtained by spray drying. The granulated powder was degreased at 500 ° C. for 2 hours and then sintered at 1200 ° C. for 2 hours to obtain a sintered powder having an average particle size of 50 μm.

3)溶射膜の形成
1)で調製した基材を用い、常圧にて、図1に示すプラズマ溶射装置を用いて、プラズマガスとして窒素40SLMと水素12SLMとを流し、溶射距離を60mmとし、溶射ガンを400mm/秒の速度で移動させながら、30kWのパワーでプラズマを生成し、原料粉末を供給することなく、基材の予熱を行った。
3) Formation of sprayed film Using the base material prepared in 1) and using the plasma spraying apparatus shown in FIG. 1 at normal pressure, nitrogen 40 SLM and hydrogen 12 SLM are flowed as plasma gases, the spraying distance is 60 mm, While moving the spray gun at a speed of 400 mm / sec, plasma was generated at a power of 30 kW, and the base material was preheated without supplying raw material powder.

次に2)で調製した溶射用原料粉末を供給量7g/分とし、速度を400mm/秒、ピッチ4mm、溶射距離60mmで溶射ガンを移動させながら15回溶射し、溶射膜を形成した。   Next, the spraying raw material powder prepared in 2) was supplied at a feed rate of 7 g / min, sprayed 15 times while moving the spray gun at a speed of 400 mm / second, a pitch of 4 mm, and a spray distance of 60 mm to form a sprayed film.

4)性能評価
3)で得られた各種組成の溶射膜に対し、接触式表面粗さ計による表面粗さRaの測定、X線回折法による構成相、ガラス相の確認、断面のSEM観察による気孔率の測定、削り取った溶射膜を炉によって分解した後に発生する窒素ガスについての熱伝導率測定による窒素含有量の測定、フッ素系ガスを含むプラズマに曝した時のエッチング速度とパーティクル量の測定試験を行った。
4) Performance evaluation For sprayed coatings of various compositions obtained in 3), measurement of surface roughness Ra with a contact surface roughness meter, confirmation of constituent phases and glass phases by X-ray diffraction method, and SEM observation of cross section Measurement of porosity, measurement of nitrogen content by measuring thermal conductivity of nitrogen gas generated after cracked sprayed film is decomposed by furnace, measurement of etching rate and amount of particles when exposed to plasma containing fluorine gas A test was conducted.

エッチング条件は、反応処理室内の圧力1torr、反応ガスにCFガスを用い、電極板間に300Wの高周波電力を印加することによりプラズマを発生させた。エッチングを行う溶射膜の表面は、研磨によってRaを0.1μm以下とした。エッチング厚みは段差測定法を用いて測定し、パーティクル発生はエッチング時に試験サンプル隣に置いた石英ガラスの表面観察によって行なった。 As etching conditions, plasma was generated by applying a high-frequency power of 300 W between the electrode plates using a pressure of 1 torr in the reaction processing chamber, CF 4 gas as the reaction gas. The surface of the thermal sprayed film to be etched was made to have a Ra of 0.1 μm or less by polishing. Etching thickness was measured using a step measurement method, and particle generation was performed by observing the surface of quartz glass placed next to the test sample during etching.

表面粗さRa、構成相、気孔率、窒素含有量、エッチング速度とパーティクル量については結果を表1に示した。いずれの耐蝕性部材も緻密でエッチングレートは0.1μm/hr以下と小さく、耐食性に優れ、パーティクルの発生が少なかった。
比較例
表1に比較例として示す組成の溶射用原料粉末から、1)〜3)と同様な方法で溶射膜を形成し、4)と同様にして性能評価を行った。
The results of the surface roughness Ra, the constituent phase, the porosity, the nitrogen content, the etching rate and the particle amount are shown in Table 1. All of the corrosion-resistant members were dense and the etching rate was as small as 0.1 μm / hr or less, excellent in corrosion resistance, and generating less particles.
Comparative Example A thermal spray film was formed by the same method as in 1) to 3) from the raw material powder for thermal spraying having the composition shown in Table 1 as a comparative example, and performance evaluation was performed in the same manner as in 4).

比較例1の石英ガラス部材では、ガラス質であることを確認したが、エッチング速度が耐蝕性部材と比較して大きく、耐蝕性が不良であった。比較例102のAl溶射膜ではエッチング速度は小さかったが、実施例のガラス質の耐蝕性部材に比べてパーティクルの発生が多かった。造粒した酸化マグネシウム粉末を用いた比較例103の部材では、エッチング速度が本発明の耐蝕性部材と比較して高く、また、パーティクルが多く発生した。市販の溶射用部分安定化ジルコニア粉末を用いた比較例104の部材では、エッチング速度が本発明の耐蝕性部材と比較して高く、また、パーティクルが多く発生した。シリカ、ジルコニア、マグネシア粉末を表1の組成にて調製した溶射用原料粉末を用いた比較例105の部材では、エッチング速度が本発明の耐蝕性部材と比較して高く、また、パーティクルが多く発生した。 The quartz glass member of Comparative Example 1 was confirmed to be glassy, but the etching rate was larger than that of the corrosion resistant member, and the corrosion resistance was poor. In the Al 2 O 3 sprayed film of Comparative Example 102, the etching rate was low, but more particles were generated than the glassy corrosion-resistant member of the Example. In the member of Comparative Example 103 using the granulated magnesium oxide powder, the etching rate was higher than that of the corrosion-resistant member of the present invention, and many particles were generated. In the member of Comparative Example 104 using a commercially available partially stabilized zirconia powder for thermal spraying, the etching rate was higher than that of the corrosion-resistant member of the present invention, and many particles were generated. In the member of Comparative Example 105 using the thermal spraying raw material powder prepared with the composition of Table 1, silica, zirconia, and magnesia powder, the etching rate is higher than that of the corrosion-resistant member of the present invention, and more particles are generated. did.

Figure 2006265619
Figure 2006265619

プラズマ溶射装置の一例を示す図である。It is a figure which shows an example of a plasma spraying apparatus.

符号の説明Explanation of symbols

10:カソード
11:アノード
12:プラズマガス
13:溶射粉末(供給口)
14:溶射距離
15:基材
16:溶射膜
17:電源
10: Cathode 11: Anode 12: Plasma gas 13: Thermal spray powder (supply port)
14: Thermal spray distance 15: Base material 16: Thermal spray film 17: Power supply

Claims (9)

基材とその上に形成された溶射膜からなる耐蝕性部材であって、プラズマ又は腐食性ガスに曝される部位がSi、O、Nおよび2a族と、B、ZrおよびTiからなる群より選ばれる少なくとも1つの元素によって構成された溶射膜であることを特徴とする耐蝕性部材。 A corrosion-resistant member comprising a base material and a sprayed film formed thereon, wherein the portion exposed to plasma or corrosive gas is from the group consisting of Si, O, N and 2a group, and B, Zr and Ti A corrosion-resistant member, characterized by being a sprayed coating composed of at least one element selected. 溶射膜の主成分がガラスであることを特徴とする請求項1に記載の耐食性部材。 The corrosion-resistant member according to claim 1, wherein the main component of the sprayed film is glass. 溶射膜が少なくともSi、O、Nおよび2a族元素で構成されるガラス相と、B、ZrおよびTiからなる群より選ばれる少なくとも一つの元素を含む結晶相とで構成されることを特徴とする請求項1に記載の耐蝕性部材。 The thermal spray film is characterized by being composed of a glass phase composed of at least Si, O, N and 2a group elements and a crystal phase comprising at least one element selected from the group consisting of B, Zr and Ti. The corrosion-resistant member according to claim 1. 溶射膜の結晶相が2a族酸化物を固溶した立方晶酸化ジルコニウムであることを特徴とする請求項3に記載の耐食性部材 The corrosion-resistant member according to claim 3, wherein the crystal phase of the sprayed film is cubic zirconium oxide in which a group 2a oxide is solid-dissolved. 耐蝕性部材の組成がZr:Siの原子数比率が5:95から70:30の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Zr+Si:2a族元素の原子数比率が75:25から40:60である請求項1に記載の耐蝕性部材。 The composition of the corrosion-resistant member has a Zr: Si atomic ratio in the range of 5:95 to 70:30, an O: N atomic ratio in the range of 99.9: 0.1 to 60:40, and Zr + Si: The corrosion-resistant member according to claim 1, wherein the atomic ratio of the Group 2a element is 75:25 to 40:60. 耐蝕性部材の組成がTi:Siの原子数比率が5:95から80:20の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、Ti+Si:2a族元素の原子数比率が85:15から40:60である請求項1に記載の耐蝕性部材。 The composition of the corrosion-resistant member has a Ti: Si atomic ratio ranging from 5:95 to 80:20, an O: N atomic ratio ranging from 99.9: 0.1 to 60:40, and Ti + Si: The corrosion-resistant member according to claim 1, wherein the atomic ratio of the group 2a element is 85:15 to 40:60. 耐蝕性部材の組成がB:Siの原子数比率が5:95から70:30の範囲、O:Nの原子数比率が99.9:0.1から60:40の範囲であり、B+Si:2a族元素の原子数比率が85:15から40:60である請求項1に記載の耐蝕性部材。 The composition of the corrosion resistant member has a B: Si atomic ratio in the range of 5:95 to 70:30, an O: N atomic ratio in the range of 99.9: 0.1 to 60:40, and B + Si: The corrosion-resistant member according to claim 1, wherein the atomic ratio of the group 2a element is 85:15 to 40:60. 結晶相が窒化ホウ素であることを特徴とする請求項3に記載の耐蝕性部材。 The corrosion-resistant member according to claim 3, wherein the crystal phase is boron nitride. 不活性ガス又は不活性ガスと還元性ガスの混合ガスを用いた大気圧プラズマ溶射を用い、溶射ガスの総流量を50SLM以上とすることを特徴とする、基材とその上に形成された溶射膜からなる耐蝕性部材であって、プラズマ又は腐食性ガスに曝される部位がSi、O、Nおよび2a族と、B、ZrおよびTiからなる群より選ばれる少なくとも1つの元素によって構成された溶射膜である耐蝕性部材の製造方法。
A base material and a thermal spray formed thereon, characterized by using atmospheric pressure plasma spraying using an inert gas or a mixed gas of an inert gas and a reducing gas, and having a total flow rate of the sprayed gas of 50 SLM or more A corrosion-resistant member made of a film, wherein the portion exposed to plasma or corrosive gas is composed of Si, O, N and 2a groups and at least one element selected from the group consisting of B, Zr and Ti A method for producing a corrosion-resistant member which is a sprayed film.
JP2005084507A 2005-03-23 2005-03-23 Corrosion resistant member and method for producing the same Withdrawn JP2006265619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005084507A JP2006265619A (en) 2005-03-23 2005-03-23 Corrosion resistant member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005084507A JP2006265619A (en) 2005-03-23 2005-03-23 Corrosion resistant member and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006265619A true JP2006265619A (en) 2006-10-05

Family

ID=37201888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084507A Withdrawn JP2006265619A (en) 2005-03-23 2005-03-23 Corrosion resistant member and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006265619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496404A (en) * 2014-01-26 2015-04-08 符素玲 Novel crystal zirconium processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496404A (en) * 2014-01-26 2015-04-08 符素玲 Novel crystal zirconium processing device
CN104496404B (en) * 2014-01-26 2019-01-15 符素玲 A kind of crystal zirconium processing unit (plant)

Similar Documents

Publication Publication Date Title
JP4606121B2 (en) Corrosion-resistant film laminated corrosion-resistant member and manufacturing method thereof
TW202311202A (en) Y2o3-zro2erosion resistant material for chamber components in plasma environments
TW200307652A (en) Quartz glass thermal sprayed parts and method for producing the same
JP6929716B2 (en) Yttrium oxyfluoride sprayed film, its manufacturing method, and sprayed members
KR102266655B1 (en) The method of producing thermal spray coating using the yittrium powder and the yittrium coating produced by the mothod
TW202223119A (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP2003212598A (en) Quartz glass and ceramic part, and manufacturing method
WO2004070076A1 (en) Corrosion-resistant member and method for producing same
TWI786884B (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
US7504164B2 (en) Corrosion-resistant member and process of producing the same
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2007081218A (en) Member for vacuum device
JP2006097114A (en) Corrosion-resistant spray deposit member
JP4367142B2 (en) Corrosion resistant member and manufacturing method thereof
JP2006265619A (en) Corrosion resistant member and method for producing the same
JP2009280483A (en) Corrosion resistant member, method for producing the same and treatment device
KR102395660B1 (en) Powder for thermal spray and thermal spray coating using the same
US20240043982A1 (en) Thermal spray material, thermal spray coating, method for forming thermal spray coating, and component for plasma etching device
JP2006124825A (en) Corrosion-resistant member and its production method
KR100972567B1 (en) Plasma resistant part and manufacturing method the same
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP4942963B2 (en) Corrosion-resistant member and manufacturing method thereof
JP2008248345A (en) Member for plasma treatment apparatus, and method for producing the same
JP5206199B2 (en) Vacuum device parts and manufacturing method thereof
JP7122206B2 (en) thermal spray film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100104