JP5206199B2 - Vacuum device parts and manufacturing method thereof - Google Patents

Vacuum device parts and manufacturing method thereof Download PDF

Info

Publication number
JP5206199B2
JP5206199B2 JP2008194046A JP2008194046A JP5206199B2 JP 5206199 B2 JP5206199 B2 JP 5206199B2 JP 2008194046 A JP2008194046 A JP 2008194046A JP 2008194046 A JP2008194046 A JP 2008194046A JP 5206199 B2 JP5206199 B2 JP 5206199B2
Authority
JP
Japan
Prior art keywords
film
powder
sprayed
tin
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008194046A
Other languages
Japanese (ja)
Other versions
JP2010031317A (en
Inventor
修 松永
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008194046A priority Critical patent/JP5206199B2/en
Publication of JP2010031317A publication Critical patent/JP2010031317A/en
Application granted granted Critical
Publication of JP5206199B2 publication Critical patent/JP5206199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体等の製造における成膜装置、プラズマ処理装置(プラズマエッチング装置)等の真空装置において用いられる真空装置用部品に係わるものである。本発明の真空装置用部品は、成膜、プラズマ処理の際に装置内の部品に付着する膜状物質の剥離による発塵を防止するものである。   The present invention relates to a vacuum apparatus component used in a vacuum apparatus such as a film forming apparatus or a plasma processing apparatus (plasma etching apparatus) in the manufacture of a semiconductor or the like. The vacuum device component of the present invention prevents dust generation due to peeling of a film-like substance adhering to a component in the device during film formation and plasma processing.

半導体等の製品基板に対して、成膜処理、プラズマ処理を実施すると、当該処理に使用した材料等に起因するパーティクルが、その装置内部に設置された部品表面に付着・堆積し、膜状物質を形成する。このような状態で成膜処理、プラズマ処理を連続で行うと、付着した膜状物質が厚くなり、それらがやがて剥離して装置内の発塵となり、装置内及び製品基板を汚染することが知られている。   When a film formation process or plasma process is performed on a product substrate such as a semiconductor, particles resulting from the material used for the process adhere to and deposit on the surface of the component installed inside the apparatus, and the film-like substance Form. It is known that when film formation and plasma treatment are continuously performed in such a state, the attached film-like substances become thick and eventually peel off to generate dust in the apparatus and contaminate the apparatus and the product substrate. It has been.

この膜状物質の剥離による発塵を低減する手法としては、従来から複数の報告があり、例えば、真空装置のチャンバ内における内部露呈面にプラズマ溶射膜を形成すること(例えば、特許文献1参照)、真空装置の成膜室内に配置された部品の表面部の素材として、前記表面部に堆積する膜状物質の熱膨張率と同等または近似した熱膨張率を有する素材を用いること(例えば、特許文献2参照)や、真空装置の構成部品として、その表面に、JISB0601−1994で規定する局部山頂の平均間隔Sが50〜150μmの範囲、最大谷深さRvおよび最大山高さRpがそれぞれ20〜70μmの範囲である表面粗さを有する溶射膜を形成すること等が知られている(例えば、特許文献3参照)。   As a technique for reducing dust generation due to peeling of the film-like substance, there have been a plurality of reports, for example, forming a plasma sprayed film on an internal exposed surface in a chamber of a vacuum apparatus (for example, see Patent Document 1). ), A material having a coefficient of thermal expansion equal to or close to the coefficient of thermal expansion of the film-like substance deposited on the surface part is used as the material of the surface part of the component disposed in the film forming chamber of the vacuum apparatus (for example, As a component of a vacuum apparatus), the surface of the local mountain peaks defined by JISB0601-1994 is within a range of 50 to 150 μm, and the maximum valley depth Rv and the maximum mountain height Rp are 20 respectively. It is known to form a sprayed film having a surface roughness in the range of ˜70 μm (see, for example, Patent Document 3).

特開昭60−120515号公報(特許請求の範囲)Japanese Patent Laid-Open No. 60-120515 (Claims) 特開平03−87358号公報(特許請求の範囲)Japanese Patent Laid-Open No. 03-87358 (Claims) 特開2001−247957号公報(特許請求の範囲)JP 2001-247957 A (Claims)

真空装置に用いられる部品においては、膜状物質の付着性を更に向上させて、成膜処理又はプラズマ処理をより長時間連続的に実施可能とする技術を、市場から常に要求されてきた。   In parts used in vacuum devices, there has always been a demand from the market for a technique that can further improve the adhesion of a film-like substance and can continuously perform a film forming process or a plasma process for a longer time.

とりわけTiN、TaN、WN等の窒化膜の成膜においては、半導体製品における要求性能が高まるごとに、細かい溝にスパッタ膜を形成することが要求されるため、その解決策としてスパッタ原子のイオン化率を高める工夫がされてきた。その結果、窒化膜の応力も大きくなってしまい、膜状物質がより剥離しやすくなってきている。また、成膜時間の増加と共に、真空装置部品表面に堆積する膜厚も増加するが、真空装置部品表面に形成された溶射膜上に、窒化膜の異常成長粒子が生成し、その異常成長粒子が溶射膜から脱落してパーティクルが発生し、真空装置部品の寿命低下につながることがわかってきた。   In particular, in the formation of nitride films such as TiN, TaN, WN, etc., as the required performance of semiconductor products increases, it is required to form a sputtered film in a fine groove. Has been devised to increase As a result, the stress of the nitride film also increases, and the film-like substance is more easily peeled off. In addition, as the film formation time increases, the film thickness deposited on the surface of the vacuum device component also increases, but abnormally grown particles of the nitride film are generated on the sprayed film formed on the surface of the vacuum device component, and the abnormally grown particles Has fallen from the sprayed film and particles are generated, which has been found to lead to a reduction in the life of vacuum device parts.

更に、Ta/TaN等のメタルのバリア材成膜工程において、膜状物質の付着力効果を上げるためにAlやTiを溶射した部材がシールド用部材として使用され、特に、シールド部材の温度が高くなる場合には耐熱性に優れたTi溶射を施したシールド部材が広く使用されている。   Furthermore, in the film forming process of a barrier material of a metal such as Ta / TaN, a member sprayed with Al or Ti is used as a shielding member in order to increase the adhesion effect of the film-like substance, and the temperature of the shielding member is particularly high. In this case, a shield member subjected to Ti spraying having excellent heat resistance is widely used.

Tiを大気中でシールドに溶射する場合、Ti材料が溶射中に容易に窒化してTiNとなりやすい。TiNはセラミックとしての性質を有するようになるため、金属Tiより硬くなり、膜状物質の応力を緩和しにくくなるため、シールド材料として好ましくはない。このため、Tiの窒化反応を防止するために、一般的には溶射時の雰囲気を不活性の減圧状態にした減圧プラズマ溶射やコールドスプレー法が用いられる。しかしながら、減圧プラズマ溶射では、溶射膜の窒化を抑制することができるが、装置が大掛かりとなるためコスト高となる。また、コールドスプレー法では、溶射粉末の温度が上がりにくく、さらにTiの融点が高いため粉末が溶融しにくくなり、密着性のよい膜が得られにくい。   When Ti is sprayed on the shield in the atmosphere, the Ti material is easily nitrided during spraying to become TiN. Since TiN has properties as a ceramic, it becomes harder than metal Ti and it is difficult to relieve stress of the film-like substance. For this reason, in order to prevent the nitriding reaction of Ti, generally, low-pressure plasma spraying or a cold spray method in which the atmosphere during spraying is set to an inert reduced pressure state is used. However, the low pressure plasma spraying can suppress the nitriding of the sprayed film, but the cost becomes high because the apparatus becomes large. In the cold spray method, the temperature of the sprayed powder is difficult to increase, and since the melting point of Ti is high, the powder is difficult to melt and it is difficult to obtain a film with good adhesion.

そこで本発明は、半導体等の製品基板の成膜処理装置やプラズマ処理装置に用いる真空装置の部品において、膜状物質の付着性が高く、しかも異常成長による粒子の脱落がなく、長時間の連続使用が可能な優れた部品を提供するものであり、又、従来のシールド部材の寿命低下問題を解決し、Tiの窒化反応を抑制した溶射膜をより簡便に製造可能となる真空装置用部品を提供するものである。   Therefore, the present invention is a vacuum apparatus component used in a film processing apparatus or a plasma processing apparatus for a product substrate such as a semiconductor, and has a high adhesion of a film-like substance, and does not drop off particles due to abnormal growth, and continues for a long time. A vacuum device component that provides excellent components that can be used, solves the problem of reducing the life of conventional shield members, and makes it easier to manufacture a sprayed film that suppresses the nitriding reaction of Ti. It is to provide.

本発明者は、上述のような現状に鑑み、鋭意検討を行った結果、実質的にTiおよびTiの窒化物(TiN)から構成される溶射膜を基材上に形成した真空装置用部品であって、該溶射膜の算術平均粗さRaが15〜30μmの範囲にあり、かつ該溶射膜におけるTi(101)とTiN(112)(X=0.61)のX線回折強度の比I(ITiN/ITi)が0.05〜0.3の範囲にあることを特徴とする真空装置用部品においては、堆積する膜状物質の付着性が従来よりも更に優れることを見出し、本発明を完成させるに至ったものである。 As a result of intensive studies in view of the above-described present situation, the present inventor has formed a thermal spray film substantially composed of Ti and a nitride of Ti (TiN x ) on a base material. The arithmetic average roughness Ra of the sprayed film is in the range of 15 to 30 μm, and the X-ray diffraction intensity of Ti (101) and TiN X (112) (X = 0.61) in the sprayed film is It has been found that the adhesion of a film-like substance to be deposited is more excellent than the conventional one in a vacuum apparatus component characterized in that the ratio I (I TiN / I Ti ) is in the range of 0.05 to 0.3. The present invention has been completed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、実質的にTiおよびTiの窒化物(TiN)から構成される溶射膜を基材上に形成した真空装置用部品であって、該溶射膜の算術平均粗さRaが15〜30μmの範囲にあり、かつ該溶射膜におけるTi(101)とTiNx(112)(X=0.61)とのX線回折強度の比I(ITiN/ITi)が0.05〜0.3の範囲にあることを特徴とする真空装置用部品に関するものである。 The present invention is a component for a vacuum apparatus in which a sprayed coating substantially composed of Ti and Ti nitride (TiN x ) is formed on a substrate, and the arithmetic average roughness Ra of the sprayed coating is 15 to 15 The ratio I (I TiN / I Ti ) of the X-ray diffraction intensity between Ti (101) and TiNx (112) (X = 0.61) in the sprayed film is 0.05-0. The present invention relates to a vacuum device component characterized by being in the range of 3.

本発明における、「実質的にTiおよびTiの窒化物(TiN)から構成される溶射膜」との意味は、その溶射時に、Ti粉末が基材上に堆積したもの、およびTiの一部が大気中の窒素と窒化反応を起こしてTiNの形で堆積したもので、溶射膜の構造がTiとTiNから構成されており、Ti粉末中の不可避不純物を含有するものをいう。 In the present invention, the meaning of “a sprayed film substantially composed of Ti and Ti nitride (TiN x )” means that Ti powder is deposited on a substrate at the time of spraying, and a part of Ti Is deposited in the form of TiN X by causing a nitriding reaction with nitrogen in the atmosphere, and the structure of the sprayed film is composed of Ti and TiN X and contains inevitable impurities in the Ti powder.

本発明における溶射膜において、Tiの(101)面は、Cu−Kα線を用いたX線回折測定において、2θ:40.2度の位置に観測されるものであり、TiNx(x=0.61)の(112)面は、2θ:36.8度の位置に観測されるものである。そして、これらのX線回折強度の比I(ITiN/ITi)が0.05〜0.3にあるものである。X線回折強度の比Iが0.3を超える場合、溶射膜が硬くなり、堆積した膜状物質の応力を緩和しにくくなるので、堆積膜が剥がれ易くなる。一方、Iが0.05より小さくなる場合、溶射膜はほぼ金属の性質を有するので溶射膜としては好ましいが、大気圧のプラズマ溶射では、Tiの窒化度を小さくすることが現実的に困難である。経済的な溶射条件を考慮した場合、より好ましくは0.1〜0.2の範囲である。 In the sprayed film of the present invention, the (101) plane of Ti is observed at a position of 2θ: 40.2 degrees in X-ray diffraction measurement using Cu—Kα rays, and TiNx (x = 0.0). The (112) plane of 61) is observed at a position of 2θ: 36.8 degrees. The ratio of these X-ray diffraction intensity I (I TiN / I Ti) is intended to be 0.05 to 0.3. When the ratio I of the X-ray diffraction intensity exceeds 0.3, the sprayed film becomes hard and it becomes difficult to relieve the stress of the deposited film-like substance, so that the deposited film is easily peeled off. On the other hand, when I is smaller than 0.05, the sprayed film is preferable as a sprayed film because it has almost metallic properties. However, it is practically difficult to reduce the degree of nitriding of Ti by atmospheric plasma spraying. is there. When economical spraying conditions are considered, the range of 0.1 to 0.2 is more preferable.

なお、本発明の溶射膜において、チタン窒化物は種々の組成を有していると考えられるが、溶射膜の規定にTiN0.61を選択した理由は、TiN0.61の(112)面回折角が表れる位置・その回折強度等との関係で、Ti(101)面のX線回折強度との比Iが再現性よく得られるためである。 In the thermal sprayed film of the present invention, titanium nitride is considered to have various compositions. The reason why TiN 0.61 was selected for the definition of the thermal sprayed film is the (112) plane of TiN 0.61. This is because the ratio I with the X-ray diffraction intensity of the Ti (101) plane can be obtained with good reproducibility in relation to the position where the diffraction angle appears, its diffraction intensity, and the like.

本発明でいう算術平均粗さRaとは、JISB0601:2001及びJISB0633:2001で規定されるRaのことである。本発明の溶射膜におけるRa値は、15〜30μmにあるものである。Raが15μmより小さい場合、溶射膜上に成長する窒化物の粒子が小さくなり、膜状物質の溶射膜への保持性が低下する。また、Raが30μmより大きい場合、溶射膜上に成長する窒化物の粒子が大きくなりすぎて、その粗大粒子が脱落しパーティクル発生の原因となる。好ましいRaの値としては、18〜25μmである。なお、Raは前記のJISB0601:2001及びJISB0633:2001に基づき、例えば株式会社ミツトヨ製の表面粗さ測定器、商品名「SV−3100」等を使用して測定することができる。   The arithmetic average roughness Ra as used in the present invention is Ra defined by JISB0601: 2001 and JISB0633: 2001. The Ra value in the sprayed coating of the present invention is 15 to 30 μm. When Ra is smaller than 15 μm, the nitride particles grown on the sprayed film become small, and the retention of the film-like substance on the sprayed film decreases. On the other hand, when Ra is larger than 30 μm, the nitride particles growing on the sprayed film become too large, and the coarse particles fall off, causing generation of particles. A preferable value of Ra is 18 to 25 μm. Ra can be measured based on the above-mentioned JISB0601: 2001 and JISB0633: 2001 using, for example, a surface roughness measuring instrument manufactured by Mitutoyo Corporation, trade name “SV-3100” and the like.

本発明における溶射膜は、真空装置用部品の中でもシールド、スパッタリングターゲット等のようなプラズマ処理装置の、少なくとも膜状物質が付着する可能性がある部分に対して、その部分を被覆するように形成すればよい。膜厚としては、特に限定されないが、50〜1000μmであることが好ましく、100〜400μmであることがさらに好ましい。   The sprayed coating in the present invention is formed so as to cover at least a portion where a film-like substance may adhere to a plasma processing apparatus such as a shield or a sputtering target among vacuum device parts. do it. Although it does not specifically limit as a film thickness, It is preferable that it is 50-1000 micrometers, and it is more preferable that it is 100-400 micrometers.

本発明における基材としては、一般ガラスや石英ガラス、アルミニウム、ステンレス、チタン等の金属、アルミナ、ジルコニア、ムライト等のセラミック等、いかなる物でも用いることができる。溶射膜と基材は同じ材質であっても良いが、それぞれ異なる材質でも良い。溶射された粉末が基材上によく溶融して、溶射膜が均一に生成しやすくなるように、基材の上に下地層を施してもよい。下地の種類、材質、膜厚については特に限定されないが、例えば、基材と同じ材質の材料をプラズマ溶射法により、溶射条件もしくは溶射粉末を変えて成膜したり、Ni−Cr合金層をスパッタリングや電解めっき等の方法により成膜してもよい。   As the base material in the present invention, any materials such as general glass, quartz glass, metals such as aluminum, stainless steel and titanium, ceramics such as alumina, zirconia and mullite can be used. The sprayed film and the substrate may be made of the same material, but may be made of different materials. An undercoat layer may be provided on the base material so that the sprayed powder is well melted on the base material and a sprayed film is easily formed uniformly. The type, material, and film thickness of the substrate are not particularly limited. For example, a material of the same material as the base material is formed by changing the spraying conditions or the sprayed powder by plasma spraying, or sputtering a Ni-Cr alloy layer. Alternatively, the film may be formed by a method such as electroplating.

続いて、本発明の真空装置用部品の製造方法の一例につき詳細に説明する。   Next, an example of a method for manufacturing a vacuum device component according to the present invention will be described in detail.

溶射に使用するチタン原料粉末としては、平均粒径(一次粒径)として50〜100μmであることが好ましく、60〜80μmであることがさらに好ましい。さらに、粉末の粒度分布としては、90wt%以上が30〜120μmの範囲に入っていることが好ましく、95wt%以上が40〜100μmの範囲に入っていることがさらに好ましい。なお、チタン粉末の純度は99wt%以上が好ましい。   The titanium raw material powder used for thermal spraying preferably has an average particle size (primary particle size) of 50 to 100 μm, and more preferably 60 to 80 μm. Furthermore, as the particle size distribution of the powder, 90 wt% or more is preferably in the range of 30 to 120 μm, and 95 wt% or more is more preferably in the range of 40 to 100 μm. The purity of the titanium powder is preferably 99 wt% or more.

平均粒径が50μmより小さい場合、粉末が容易に窒化しやすくなる傾向にあり、平均粒径が100μmを超える場合には、溶射時に溶射粉末が溶融しにくくなり溶射膜の堆積効率が低下する場合がある。こうした平均粒径及び粒度分布を持つ溶射粉末を使用することにより、Ti溶射膜の窒化反応をより抑制し、効率よく溶射膜を製造することが可能となる。粉末の形状は球形もしくは、限りなく球形に近いことが好ましい。球状粉末を使用することにより、粉末の比表面積が低下するので窒化反応が進行しにくくなる。   When the average particle size is less than 50 μm, the powder tends to be easily nitrided, and when the average particle size exceeds 100 μm, the sprayed powder is difficult to melt during spraying and the deposition efficiency of the sprayed film is reduced. There is. By using the sprayed powder having such an average particle size and particle size distribution, the nitriding reaction of the Ti sprayed film can be further suppressed, and the sprayed film can be efficiently produced. It is preferable that the powder has a spherical shape or an almost spherical shape. By using the spherical powder, the specific surface area of the powder decreases, so that the nitriding reaction does not proceed easily.

このような球状粉末としてガスアトマイズ粉末を例示することができる。このガスアトマイズ粉末とは、原料を溶融し、その溶湯を噴霧ガスによって粉砕し、凝固させる方法により得られる粉末であり、ガスアトマイズチタン粉末は既に市販されている。また、粉末の粒度分布測定は、COULTER社製のレーザー式粒度分布測定装置、商品名「COULTER LS」等を用いて測定することができる。   A gas atomized powder can be illustrated as such a spherical powder. This gas atomized powder is a powder obtained by melting a raw material, pulverizing the molten metal with a spray gas, and solidifying the gas, and the gas atomized titanium powder is already commercially available. The particle size distribution of the powder can be measured using a laser particle size distribution measuring device manufactured by COULTER, trade name “COULTER LS” or the like.

溶射の方式としては、大気圧のプラズマ溶射を例示することができる。Ti粉末の窒化反応を防止するために、プラズマガスとして一次ガスがアルゴン、二次ガスがヘリウムの混合ガスを使用することが好ましい。このときプラズマガスの流量は使用する装置によっても異なるが、プラズマ温度の上昇を抑制するために80L/min以上、好ましくは100L/min以上とする。混合ガス中のヘリウムガスの比率としては、トータル流量に対して20〜50%が好ましく、さらに好ましくは30〜40%である。ヘリウムを混合する理由としては、プラズマフレームの速度を高くすることができ、かつTi粉末の窒化反応を抑制できるためである。   As a thermal spraying method, plasma spraying at atmospheric pressure can be exemplified. In order to prevent the nitriding reaction of the Ti powder, it is preferable to use a mixed gas in which the primary gas is argon and the secondary gas is helium as the plasma gas. At this time, the flow rate of the plasma gas varies depending on the apparatus to be used, but is set to 80 L / min or more, preferably 100 L / min or more in order to suppress an increase in plasma temperature. The ratio of helium gas in the mixed gas is preferably 20 to 50%, more preferably 30 to 40% with respect to the total flow rate. The reason for mixing helium is that the speed of the plasma flame can be increased and the nitriding reaction of Ti powder can be suppressed.

Ti粉末をプラズマ溶射するときには、基材の温度を100〜200℃となるように制御して溶射することが好ましい。基材温度が200℃を超える場合には、Ti粉末の窒化反応が促進され、また基材の熱による変色が起こる場合がある。基材温度が100℃未満の場合には、基材温度が低いためTi粉末の堆積効率が低下する場合がある。より好ましい基板温度としては120〜180℃の範囲である。基板温度の制御方法は、特に限定されないが、自然冷却、圧縮空気、水冷治具による方法などを例示することができる。また溶射中の基板温度は、基板に熱電対を接触して測定する方法、もしくは非接触での放射温度計による方法などを例示することができる。   When plasma spraying Ti powder, it is preferable to perform thermal spraying by controlling the temperature of the base material to be 100 to 200 ° C. When the substrate temperature exceeds 200 ° C., the nitriding reaction of the Ti powder is promoted, and the substrate may be discolored due to heat. When the substrate temperature is lower than 100 ° C., the deposition efficiency of the Ti powder may be lowered because the substrate temperature is low. A more preferable substrate temperature is in the range of 120 to 180 ° C. The method for controlling the substrate temperature is not particularly limited, and examples thereof include a method using natural cooling, compressed air, and a water cooling jig. Further, the substrate temperature during thermal spraying can be exemplified by a method in which a thermocouple is contacted to the substrate, or a non-contact method using a radiation thermometer.

本発明により得られた真空装置用部品は、溶射膜を形成した後に、更に超純水等を使用した超音波洗浄を行って乾燥しても良い。   The vacuum apparatus component obtained by the present invention may be dried by further performing ultrasonic cleaning using ultrapure water after forming a sprayed film.

本発明の真空装置用部品は、従来部品に比べて特に窒化物の成膜時に生成する膜状物質の付着性に優れるため、窒化物の成膜装置やプラズマ処理装置に使用した際に、当該膜状物質の剥離に起因する発塵や異常成長粒子に起因するパーティクルによる製品汚染がなく、なおかつ長時間の連続使用が可能である。   The vacuum device component of the present invention is particularly superior in adhesion of a film-like substance generated at the time of forming a nitride film as compared with conventional components, so when used in a nitride film forming device or a plasma processing device, There is no product contamination due to dust generation due to exfoliation of film-like substances or particles due to abnormally grown particles, and it can be used continuously for a long time.

本発明を実施例に基づき更に詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。   The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
ステンレス製のボウル形状のシールド内面をグレイアルミナのGA#150を用いて、圧力0.5MPaでブラスト後、シールドの内面に、ArとHeの流量比(体積比)を70:30、トータルガス流量を100L/min、プラズマガンとシールド内面との距離を100mm、投入電力を24kWとして、大気圧プラズマ溶射によりチタン溶射膜を形成した。溶射中の基板温度は圧縮空気により150℃に制御した。溶射粉末として、平均粒径が75μm、粉末の98wt%が40〜100μmの範囲にあるガスアトマイズチタン球状粉末(純度:99.7wt%)を用いた。溶射後、超純水で超音波洗浄し、クリーンオーブンで乾燥し、シールドを完成した。
Example 1
After blasting the inner surface of the stainless steel bowl-shaped shield using GA # 150 made of gray alumina at a pressure of 0.5 MPa, the flow rate ratio (volume ratio) of Ar and He is 70:30 on the inner surface of the shield. Was 100 L / min, the distance between the plasma gun and the shield inner surface was 100 mm, the input power was 24 kW, and a titanium sprayed film was formed by atmospheric pressure plasma spraying. The substrate temperature during spraying was controlled at 150 ° C. with compressed air. As the thermal spray powder, a gas atomized titanium spherical powder (purity: 99.7 wt%) having an average particle diameter of 75 μm and 98 wt% of the powder in the range of 40 to 100 μm was used. After spraying, it was ultrasonically cleaned with ultrapure water and dried in a clean oven to complete the shield.

X線回折装置により測定した溶射膜のITiN/ITi比は、0.15であり、JISB0601:2001及びJISB0633:2001に基づいて測定したRaは22μmであった。 I TiN / I Ti ratio of the sprayed film measured by X-ray diffraction apparatus is 0.15, JISB0601: 2001 and JISB0633: Ra measured based on the 2001 was 22 .mu.m.

前述した方法により製造したボウル形状のシールドをTaN成膜用のスパッタリング装置に取り付けて使用した。スパッタリング成膜時の基板温度を450℃に制御し、チャンバー圧力は0.1Paとした。使用開始から240時間を経過した後において装置内部を確認したところ、TaN膜状物質の剥離や、窒化物の異常成長粒子は観察されなかった。   The bowl-shaped shield manufactured by the method described above was used by attaching it to a sputtering apparatus for TaN film formation. The substrate temperature during sputtering film formation was controlled to 450 ° C., and the chamber pressure was set to 0.1 Pa. After 240 hours had passed since the start of use, the inside of the apparatus was confirmed. As a result, peeling of TaN film-like substance and abnormally grown particles of nitride were not observed.

実施例2
ステンレス製のボウル形状のシールド内面をグレイアルミナのGA#100を用いて、圧力0.5MPaでブラスト後、シールドの内面に、ArとHeの流量比(体積比)を80:20、トータルガス流量を85L/min、プラズマガンとシールド内面との距離を100mm、投入電力を28kWとして、大気圧プラズマ溶射によりチタン溶射膜を形成した。溶射中の基板温度は200℃に制御した。溶射粉末として、平均粒径が65μm、粉末の95wt%が40〜100μmの範囲あるガスアトマイズチタン球状粉末(純度:99.7wt%)を用いた。溶射後、超純水で超音波洗浄し、クリーンオーブンで乾燥し、シールドを完成した。
Example 2
The stainless steel bowl-shaped shield inner surface is blasted using gray alumina GA # 100 at a pressure of 0.5 MPa, and then the Ar and He flow ratio (volume ratio) is 80:20 on the inner surface of the shield, total gas flow rate Was 85 L / min, the distance between the plasma gun and the shield inner surface was 100 mm, the input power was 28 kW, and a titanium sprayed film was formed by atmospheric pressure plasma spraying. The substrate temperature during spraying was controlled at 200 ° C. As the thermal spray powder, a gas atomized titanium spherical powder (purity: 99.7 wt%) having an average particle diameter of 65 μm and 95 wt% of the powder in the range of 40 to 100 μm was used. After spraying, it was ultrasonically cleaned with ultrapure water and dried in a clean oven to complete the shield.

X線回折装置により測定した溶射膜のITiN/ITi比は、0.20であり、JISB0601:2001及びJISB0633:2001に基づいて測定したRaは16μmであった。 I TiN / I Ti ratio of the sprayed film measured by X-ray diffraction apparatus is 0.20, JISB0601: 2001 and JISB0633: Ra measured based on the 2001 was 16 [mu] m.

前述した方法により製造したボウル形状のシールドを、実施例1と同様の装置に取り付け、同様のスパッタリング条件にて使用した。使用開始から200時間を経過した後において装置内部を確認したところ、TaN膜状物質の剥離や、窒化物の異常成長粒子は観察されなかった。   The bowl-shaped shield manufactured by the method described above was attached to the same apparatus as in Example 1 and used under the same sputtering conditions. After 200 hours had passed since the start of use, the inside of the apparatus was confirmed. As a result, peeling of TaN film-like substance and abnormally grown particles of nitride were not observed.

実施例3
実施例1において、溶射ガスとしてArとHeの流量比(体積比)を60:40、トータルガス流量を150L/min、投入電力を32kW、溶射粉末として、平均粒径が90μm、粉末の99wt%が40〜100μmの範囲にあるガスアトマイズチタン球状粉末(純度:99.7wt%)を用いること以外は実施例1と同様の条件にて、プラズマ溶射によりチタン溶射膜を形成した。
Example 3
In Example 1, the flow ratio (volume ratio) of Ar and He as the thermal spray gas is 60:40, the total gas flow rate is 150 L / min, the input power is 32 kW, the thermal spray powder has an average particle size of 90 μm, and 99 wt% of the powder. Was formed by plasma spraying under the same conditions as in Example 1 except that a gas atomized titanium spherical powder (purity: 99.7 wt%) in the range of 40 to 100 μm was used.

X線回折装置により測定した溶射膜のITiN/ITi比は、0.11であり、JISB0601:2001及びJISB0633:2001に基づいて測定したRaは25μmであった。 I TiN / I Ti ratio of the sprayed film measured by X-ray diffraction apparatus is 0.11, JISB0601: 2001 and JISB0633: Ra measured based on the 2001 was 25 [mu] m.

前述した方法により製造したボウル形状のシールドを、実施例1と同様の装置に取り付け、同様のスパッタリング条件にて使用した。使用開始から280時間を経過した後において装置内部を確認したところ、TaN膜状物質の剥離や、窒化物の異常成長粒子は観察されなかった。   The bowl-shaped shield manufactured by the method described above was attached to the same apparatus as in Example 1 and used under the same sputtering conditions. When 280 hours passed from the start of use, the inside of the apparatus was confirmed, and peeling of TaN film-like substance and abnormally grown nitride particles were not observed.

比較例1
実施例1において、溶射ガスとしてArとHの流量比を95:5、トータルガス流量を65L/min、投入電力を26kWとすること以外は実施例1と同様の条件にて、プラズマ溶射によりチタン溶射膜を形成した。
Comparative Example 1
In Example 1, plasma spraying was performed under the same conditions as in Example 1 except that the flow ratio of Ar and H 2 was 95: 5, the total gas flow rate was 65 L / min, and the input power was 26 kW as the spraying gas. A titanium sprayed film was formed.

X線回折装置により測定した溶射膜のITiN/ITi比は、0.34であり、JISB0601:2001及びJISB0633:2001に基づいて測定したRaは13μmであった。 I TiN / I Ti ratio of the sprayed film measured by X-ray diffraction apparatus is 0.34, JISB0601: 2001 and JISB0633: Ra measured based on the 2001 was 13 .mu.m.

前述した方法により製造したボウル形状のシールドをTaN成膜用のスパッタリング装置に取り付けて使用した。スパッタリング成膜時の基板温度を450℃に制御し、チャンバー圧力は0.1Paとした。使用開始から200時間を経過した後において装置内部を確認したところ、TaN膜状物質が剥離していることが観察された。   The bowl-shaped shield manufactured by the method described above was used by attaching it to a sputtering apparatus for TaN film formation. The substrate temperature during sputtering film formation was controlled to 450 ° C., and the chamber pressure was set to 0.1 Pa. When 200 hours passed from the start of use and the inside of the apparatus was checked, it was observed that the TaN film-like substance was peeled off.

比較例2
実施例1において、溶射粉末として平均粒径が70μmであり、形状が球形を有していない塊状チタン粉末(純度:99.5wt%)を使用すること以外は実施例1と同様の条件にて、プラズマ溶射によりチタン溶射膜を形成した。
Comparative Example 2
In Example 1, the same conditions as in Example 1 were used except that a bulk titanium powder (purity: 99.5 wt%) having an average particle diameter of 70 μm and having no spherical shape was used as the thermal spray powder. A titanium sprayed film was formed by plasma spraying.

X線回折装置により測定した溶射膜のITiN/ITi比は、0.4であり、JISB0601:2001及びJISB0633:2001に基づいて測定したRaは14μmであった。 I TiN / I Ti ratio of the sprayed film measured by X-ray diffraction apparatus is 0.4, JISB0601: 2001 and JISB0633: Ra measured based on the 2001 was 14 [mu] m.

前述した方法により製造したボウル形状のシールドをTaN成膜用のスパッタリング装置に取り付けて使用した。スパッタリング成膜時の基板温度を450℃に制御し、チャンバー圧力は0.1Paとした。使用開始から140時間を経過した後において装置内部を確認したところ、TaN膜状物質が剥離していることが観察された。   The bowl-shaped shield manufactured by the method described above was used by attaching it to a sputtering apparatus for TaN film formation. The substrate temperature during sputtering film formation was controlled to 450 ° C., and the chamber pressure was set to 0.1 Pa. After 140 hours had elapsed from the start of use, the inside of the apparatus was confirmed, and it was observed that the TaN film-like substance was peeled off.

比較例3
ステンレス製のボウル形状のシールド内面をグレイアルミナのGA#150を用いて、圧力0.5MPaでブラスト後、シールドの内面に、ArとHeの流量比を70:30、トータルガス流量を52L/min、プラズマガンとシールド内面との距離を100mm、投入電力を22kWとしてプラズマ溶射によりチタン溶射膜を形成した。溶射中の基板温度は、圧縮空気による冷却を行い180℃に制御した。溶射粉末として、平均粒径が25μmであるガスアトマイズチタン球状粉末(純度:99.7wt%)を用いた。溶射後、超純水で超音波洗浄し、クリーンオーブンで乾燥し、シールドを完成した。
Comparative Example 3
The stainless steel bowl-shaped shield inner surface was blasted using gray alumina GA # 150 at a pressure of 0.5 MPa, and then the Ar and He flow ratio was 70:30 and the total gas flow rate was 52 L / min on the inner surface of the shield. A titanium sprayed film was formed by plasma spraying with a distance between the plasma gun and the shield inner surface of 100 mm and an input power of 22 kW. The substrate temperature during thermal spraying was controlled at 180 ° C. by cooling with compressed air. As the thermal spray powder, a gas atomized titanium spherical powder (purity: 99.7 wt%) having an average particle diameter of 25 μm was used. After spraying, it was ultrasonically cleaned with ultrapure water and dried in a clean oven to complete the shield.

X線回折装置により測定した溶射膜のITiN/ITi比は、1.5であり、JISB0601:2001及びJISB0633:2001に基づいて測定したRaは8μmであった。 I TiN / I Ti ratio of the sprayed film measured by X-ray diffraction apparatus is 1.5, JISB0601: 2001 and JISB0633: Ra measured based on the 2001 was 8 [mu] m.

前述した方法により製造したボウル形状のシールドを、実施例1と同様の装置に取り付け、同様のスパッタリング条件にて使用した。使用開始から100時間を経過した後において装置内部を確認したところ、TaN膜状物質が剥離していることが観察された。   The bowl-shaped shield manufactured by the method described above was attached to the same apparatus as in Example 1 and used under the same sputtering conditions. After 100 hours had passed since the start of use, the inside of the apparatus was confirmed, and it was observed that the TaN film-like substance was peeled off.

Claims (2)

実質的にTiおよびTiの窒化物(TiN)から構成される溶射膜を基材上に形成した真空装置用部品であって、該溶射膜の算術平均粗さRaが15〜30μmの範囲にあり、かつ該溶射膜におけるTi(101)とTiN(112)(X=0.61)のX線回折強度の比I(ITiN/ITi)が0.05〜0.3の範囲にあることを特徴とする真空装置用部品。 A component for a vacuum apparatus in which a thermal spray film substantially composed of Ti and Ti nitride (TiN x ) is formed on a substrate, and the arithmetic average roughness Ra of the thermal spray film is in a range of 15 to 30 μm. And the ratio I (I TiN / I Ti ) of the X-ray diffraction intensity of Ti (101) and TiN X (112) (X = 0.61) in the sprayed film is in the range of 0.05 to 0.3. A vacuum device part characterized by being. 平均粒径が50〜100μmの球状Ti粉末を、溶射ガスとしてAr−He混合ガスを使用し、トータルガス流量を80L/min以上で、大気圧中で基材に対してプラズマ溶射することを特徴とする請求項1に記載の真空装置用部品の製造方法。 Plasma spraying a spherical Ti powder with an average particle size of 50-100 μm on a substrate at atmospheric pressure using Ar—He mixed gas as a spraying gas and a total gas flow rate of 80 L / min or more. The manufacturing method of the components for vacuum devices of Claim 1.
JP2008194046A 2008-07-28 2008-07-28 Vacuum device parts and manufacturing method thereof Expired - Fee Related JP5206199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194046A JP5206199B2 (en) 2008-07-28 2008-07-28 Vacuum device parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194046A JP5206199B2 (en) 2008-07-28 2008-07-28 Vacuum device parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010031317A JP2010031317A (en) 2010-02-12
JP5206199B2 true JP5206199B2 (en) 2013-06-12

Family

ID=41736141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194046A Expired - Fee Related JP5206199B2 (en) 2008-07-28 2008-07-28 Vacuum device parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5206199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083295B2 (en) * 2018-08-22 2022-06-10 トヨタ自動車東日本株式会社 Sliding member and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827971A (en) * 1981-08-14 1983-02-18 Hitachi Ltd Melt spraying for metal
JPH07126827A (en) * 1993-10-28 1995-05-16 Nippon Alum Co Ltd Composite film of metallic surface and its formation
JPH09272965A (en) * 1996-04-09 1997-10-21 Toshiba Corp Parts for vacuum film forming device, vacuum film forming device using the same, target and backing plate
JP4551561B2 (en) * 1999-12-28 2010-09-29 株式会社東芝 Vacuum film forming apparatus parts, vacuum film forming apparatus using the same, and target apparatus
JP2004162147A (en) * 2002-11-15 2004-06-10 Plasma Giken Kogyo Kk Aluminum nitride sintered body having thermal-sprayed coating
JP2004232016A (en) * 2003-01-30 2004-08-19 Toshiba Corp Component for vacuum film deposition system, and vacuum film deposition system using the same
JP4894158B2 (en) * 2005-04-20 2012-03-14 東ソー株式会社 Vacuum equipment parts

Also Published As

Publication number Publication date
JP2010031317A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
CA2669052C (en) Method for coating a substrate and coated product
JP4571561B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP3895277B2 (en) Sputtering target bonded to a sputtering target or backing plate with less generation of particles, and method of manufacturing the same
JP5558807B2 (en) Components for vacuum film forming apparatus and vacuum film forming apparatus
US20110303535A1 (en) Sputtering targets and methods of forming the same
JP4894158B2 (en) Vacuum equipment parts
JP2007131951A (en) Spray deposit film covered member having excellent plasma erosion resistance, and its manufacturing method
EP1524682B1 (en) Component for vacuum apparatus, production method thereof and apparatus using the same
JP4546448B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
WO2004070076A1 (en) Corrosion-resistant member and method for producing same
JP5206199B2 (en) Vacuum device parts and manufacturing method thereof
JP2005060827A (en) Plasma resistant member
JP2007081218A (en) Member for vacuum device
JP4604640B2 (en) Vacuum device parts, manufacturing method thereof, and apparatus using the same
JP2017014569A (en) Ceramic coating film and method for manufacturing the same
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP5089874B2 (en) Plasma processing apparatus member and manufacturing method thereof
EP1580294A1 (en) Corrosion-resistant member and process of producing the same
JP4851700B2 (en) Components for vacuum film forming apparatus and vacuum film forming apparatus
JP2006097114A (en) Corrosion-resistant spray deposit member
JP2007100218A (en) Component for vacuum film deposition system, vacuum film deposition system using the same, and target and backing plate
JP2008248345A (en) Member for plasma treatment apparatus, and method for producing the same
JP2004253793A (en) Corrosion-resistant material and method for producing same
JP5254277B2 (en) Manufacturing method of parts for vacuum film forming apparatus
JP2006265619A (en) Corrosion resistant member and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees