JPS5827971A - Melt spraying for metal - Google Patents

Melt spraying for metal

Info

Publication number
JPS5827971A
JPS5827971A JP56126782A JP12678281A JPS5827971A JP S5827971 A JPS5827971 A JP S5827971A JP 56126782 A JP56126782 A JP 56126782A JP 12678281 A JP12678281 A JP 12678281A JP S5827971 A JPS5827971 A JP S5827971A
Authority
JP
Japan
Prior art keywords
plasma
gas
metal
coating layer
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56126782A
Other languages
Japanese (ja)
Other versions
JPS642186B2 (en
Inventor
Takayuki Kojima
慶享 児島
Naotatsu Asahi
朝日 直達
Tsukasa Ogawa
宰 小川
Koji Fujimoto
藤本 弘次
Masayuki Doi
昌之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56126782A priority Critical patent/JPS5827971A/en
Publication of JPS5827971A publication Critical patent/JPS5827971A/en
Publication of JPS642186B2 publication Critical patent/JPS642186B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a coating layer having high abrasion resistance and corrosion resistance on the surface of a substrate by heating a gas other than oxygen having reactivity with the metal to be melt sprayed to convert the same to plasma, introducing the metal into said plasma under controlling of the partial pressure of oxygen and melt spraying the metal by allowing the same to react with the plasma of said gas. CONSTITUTION:A gas other than oxygen for example, gaseous nitrogen, gaseous hydrocarbon or a gaseous mixture thereof having reactivity with metal to be melt sprayed, such as Ti, is heated, whereby the gas is converted to plasma. A plasma jet, plasma flame or arc discharge method is used for the formation of the plasma. Said plasma gas is ejected through a nozzle to form excited high speed jets of 1-3 Mach and about 1,000 deg.C. Metallic powder is charged into said plasma in the neighborhood of the nozzle by limiting the presence of oxygen to <=10<-4>Torr partial pressure of oxygen, to melt the powder by heating and to allow the same to collide against the surface of the substrate, whereby a coating layer is formed thereon.

Description

【発明の詳細な説明】 本発明は金属溶射方法に係シ、特に金属のプラズマ溶射
によって被処理材料の表面に硬質の被覆を形成する金属
溶射方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal thermal spraying method, and more particularly to a metal thermal spraying method for forming a hard coating on the surface of a material to be treated by plasma spraying of metal.

金属化合物の中でもT1化合物としてのT r N。TrN as a T1 compound among metal compounds.

TICおよびTi(CN)等はすぐれた耐摩耗性および
面J食性が安水される部材の表面処理被覆の形成に多く
用いらnており、従来PVD法(物理蒸着法)およびC
VD法(化学蒸着法)等によって形成されていた。しか
し、これら従来方法によ勺得られるチタン化合物の被覆
層の厚さは僅か数μm程度であって、充分に表面処理の
目的を達成することができなかった。またこれらの方法
を実施する装置は構造が複雑で大規模であると共に高価
であり、また処理に著しく長い時間を必要とする。
TIC and Ti (CN), etc., have excellent wear resistance and surface corrosion resistance, and are often used to form surface treatment coatings for parts that are subjected to aqueous treatment.
It was formed by VD method (chemical vapor deposition method) or the like. However, the thickness of the titanium compound coating layer obtained by these conventional methods is only about several μm, and the purpose of surface treatment cannot be sufficiently achieved. Furthermore, the equipment for carrying out these methods is complex, large-scale, expensive, and requires a significantly long processing time.

すなわち、これらの従来方法はいずれも加熱によって生
成されたTIまたはTiCl2などのハロゲン化物の蒸
発粒子により処理部材の表面に被覆層を形成する一種の
蒸着法であるため、被覆層の厚みが増加すると層内の歪
が増大し、この結果化じる残留応力によって被覆層の密
着力が低下し、場合によっては処理部材の表面から剥離
して脱落してしまう。密着力を向」ニさせるために処理
部材と被覆層との間に中間層を形成する方法もあるが、
この場合でも被覆層としてのTi化合物層の厚みは数十
/I m以下に制約される。Ti化合物自体の面1摩耗
性および耐食性がすぐれているとしてもこの程度の厚み
の表面処理層では処理の目的を充分に達成することはで
きない。
In other words, all of these conventional methods are a type of vapor deposition method in which a coating layer is formed on the surface of the processing member using evaporated particles of a halide such as TI or TiCl2 generated by heating. The strain within the layer increases, and the resulting residual stress reduces the adhesion of the coating layer, and in some cases, the coating layer peels off from the surface of the processing member and falls off. There is also a method of forming an intermediate layer between the processing member and the coating layer in order to improve the adhesion.
Even in this case, the thickness of the Ti compound layer as a coating layer is limited to several tens/Im or less. Even if the Ti compound itself has excellent surface 1 abrasion resistance and corrosion resistance, the purpose of the treatment cannot be fully achieved with a surface treatment layer of this thickness.

また、前記従来方法の中PVD法の代表的な方法として
用いられる反応性蒸着法(A I(、E法)ではIQ”
”’[’orr程度に排気した処理室中でTiを蒸発さ
せ、N2. Cl−1,等の反応性ガスを導入し、10
””〜1O−2Torrに保持した処理室中で品玉下に
陰極グロー放心を行ってTiと反応性ガスとを反応させ
陰極としての被処理材料の表面にTi化合物が蒸着され
る。したがって、この方法では処理室を高度の真空に排
気する必要があると共に、均一な蒸着被覆を得るだめに
被処理材料を処理室で回転させる機構が必要となり、ま
た被覆層との密着性をよくするために被処理材料の表面
を800〜1000′Cの高温に加熱せねばならない。
In addition, among the conventional methods mentioned above, the reactive vapor deposition method (A I (, E method) used as a typical method of the PVD method has an IQ"
Ti was evaporated in a processing chamber that was evacuated to approximately
In a processing chamber maintained at a temperature of ~10-2 Torr, a cathode glow is performed under the ball to cause Ti and a reactive gas to react, and a Ti compound is vapor-deposited on the surface of the material to be processed as a cathode. Therefore, in this method, it is necessary to evacuate the processing chamber to a high degree of vacuum, and a mechanism for rotating the material to be processed in the processing chamber is required in order to obtain a uniform vapor deposition coating, and also to ensure good adhesion with the coating layer. In order to do this, the surface of the material to be treated must be heated to a high temperature of 800-1000'C.

このためPVD法では一般に装置が大型化かつ複雑化し
て高価なものとなる。寸だ処理被膜の形成&i数個の原
子またはクラスタ程度の微少な粒子の蒸着によって行な
わ肛るので被膜の形成速度は極めて遅い。
For this reason, in the PVD method, the equipment generally becomes large, complicated, and expensive. Formation of a small-scale treatment film is performed by vapor deposition of a few atoms or particles as small as clusters, so the rate of film formation is extremely slow.

一方、Cvl)法では処理はそれほど複Kfではないが
被覆層の形成速度が0.01〜0.1μm / mm程
度で極めて遅く、数μmの層の形成に極めて長い時間が
かかり、かつ大量の処理エネルギを必要とする。
On the other hand, in the Cvl) method, although the processing is not so multi-Kf, the formation rate of the coating layer is extremely slow at about 0.01 to 0.1 μm/mm, it takes an extremely long time to form a layer of several μm, and a large amount of Requires processing energy.

蒸着法の他に′Piを溶射材料としてプラズマ溶射によ
り表向処理層を形成することも行なわれているが、この
場合にはTiNやTiCを得ることができない。さらに
TiN等それ自体を溶射月利とする方法も知ら扛ている
が、この場合はTiNの融点が高いためプラズマ中でも
十分な溶融が行なわれず得られた表面処理層が多孔質の
ものとなって耐摩耗性および耐食性が著しく低下する。
In addition to the vapor deposition method, a surface treatment layer has also been formed by plasma spraying using 'Pi as a spraying material, but in this case, TiN or TiC cannot be obtained. Furthermore, a method of thermally spraying TiN or the like itself is known, but in this case, due to the high melting point of TiN, sufficient melting is not carried out even in plasma, and the resulting surface treatment layer becomes porous. Wear resistance and corrosion resistance are significantly reduced.

本発明の目的はこのような従来技術の欠点を解消しT1
等の金属を溶射材料とする金属溶射によって比較的簡単
な処理により被処理物の表面に硬質の耐摩耗性および耐
食性にすぐれた金属化合物の表面処理層を形成すること
のできる金属溶射方法を提供することにある。
The purpose of the present invention is to eliminate such drawbacks of the prior art and to achieve T1
Provides a metal spraying method that can form a hard surface treatment layer of a metal compound with excellent wear resistance and corrosion resistance on the surface of a workpiece through a relatively simple process using metals such as metals as a spray material. It's about doing.

本発明の前記目的は、金属の溶射により被処理材料の表
面に硬質の被覆を形成する金属溶射方法において、溶射
される金属に対して反応性を有する酸素以外の気体を加
熱してプラズマ化し、このプラズマ中に酸素分圧の制御
下に金属を導入してプラズマ化された気体と反応させ、
反応生成物としての金属化合物の被覆を前記被処理材料
の表面に形成することを特徴とする金属溶射方法により
達成される。
The object of the present invention is to provide a metal thermal spraying method for forming a hard coating on the surface of a material to be treated by thermal spraying a metal, in which a gas other than oxygen that is reactive with the metal to be thermally sprayed is heated and turned into plasma; A metal is introduced into this plasma under the control of oxygen partial pressure and reacted with the plasma-formed gas.
This is achieved by a metal spraying method characterized by forming a coating of a metal compound as a reaction product on the surface of the material to be treated.

以下本発明の方法をさらに詳細に説明する。The method of the present invention will be explained in more detail below.

まずプラズマを形成する気体としては通常Ar。First, the gas that forms plasma is usually Ar.

■■eまたはN2が用いられ、かつ場合によってプラズ
マ発熱量を高めるためにN2が混合される。
■■e or N2 is used, and in some cases N2 is mixed in order to increase the amount of plasma heat generation.

プラズマ中ではこれらのガスの一部は励起状態となって
いるが、Ar、)Ie等は不活性であって溶射粒子、た
とえばT1との間に何等の反応をも生じず、またl−1
2は還元作用のみを呈するのに対し、励起されたN2は
活性であって、Ti粒子との間に著しい反応を生じる。
Some of these gases are in an excited state in the plasma, but Ar, Ie, etc. are inert and do not cause any reaction with spray particles, such as T1, and l-1
2 exhibits only a reducing effect, whereas excited N2 is active and causes a significant reaction with Ti particles.

このことはグロー放電中で励起されたN2の利用による
イオンチッ化によっても実証されている。
This has also been demonstrated by ionic nitridation using N2 excited in a glow discharge.

そこで本発明者等は上記のような反応性に富んだ励起さ
れたN2あるいはCガスの利用について検討し、溶射金
属としてチッ化物あるいは炭化物の形成自由エネルギの
小さいTiに注目した。TiはFeやCu等の他の元素
に比べ酸化物およびチツ化物が非常に安定であると共に
プラズマ中で加熱溶融し熱的て活性になっているTiは
励起され活性になっている02あるいはN2と容易に反
応すると考えられる。しかし、FeやCu等はチッ化物
形成自由エネルギが大きいので活性はN2と反応する程
度は少ない。02が極めて少ない状態ではTi粒子とN
2ガスとの反応は主にTi中へのN2の拡散によって支
配される。溶射の場合、11粒子はプラズマ中で加熱溶
融し液相状態になつている。したがって、固相状態のT
iを処理すすガスチツ化、あるいはイオンチツ化に比べ
てその拡散速度は著しく犬きくなる。さらに溶射の場合
、N2ガスと反応するTiは微細粉末が加熱溶融された
微小な液滴が多数存在17た状態にあり、バルク材の場
合に比べてN2ガスとの反応にあずかる表面積が著しく
大きくなる。尚プラズマ形成には、プラズマジェット、
プラズマフレーム、アーク放電法等が用いらnる。たと
えばプラズマジェット法では水冷WgA陽極と水冷Cu
製陰極ノズルとの間にアーク放電を形成し、そのアーク
放電領域にAr 、 IIee N2 * II2等の
ガスを高速で流し上記ガスを励起してプラズマ化しCu
製ノズルからプラズマガスを断熱膨張させて噴出させ、
約10000 Cの高温の励起したマツハ1〜3の高速
ジェットを形成する。そのプラズマ中に粉末を投入し加
熱溶融させ、高速で被処理材料の表面に衝突させ被覆層
を形成する。
Therefore, the present inventors investigated the use of the highly reactive excited N2 or C gas as described above, and focused on Ti, which has a low free energy for forming nitrides or carbides, as a thermal spray metal. Compared to other elements such as Fe and Cu, the oxides and titanium oxides of Ti are very stable, and Ti is heated and melted in plasma and becomes thermally active.Ti is excited and becomes active. It is thought that it will react easily. However, since Fe, Cu, etc. have a large free energy for forming nitrides, their activity is small to the extent that they react with N2. In a state where 02 is extremely small, Ti particles and N
The reaction with 2 gases is mainly dominated by the diffusion of N2 into Ti. In the case of thermal spraying, the 11 particles are heated and melted in plasma and are in a liquid phase state. Therefore, T in the solid state
The diffusion rate is significantly slower than when processing soot into a gaseous or ionized state. Furthermore, in the case of thermal spraying, the Ti that reacts with N2 gas is in a state where there are many minute droplets of fine powder heated and melted17, and the surface area that participates in the reaction with N2 gas is significantly larger than in the case of bulk material. Become. For plasma formation, plasma jet,
Plasma flame, arc discharge method, etc. are used. For example, in the plasma jet method, a water-cooled WgA anode and a water-cooled Cu anode are used.
An arc discharge is formed between the cathode nozzle and a gas such as Ar, IIee N2*II2, etc. is flowed into the arc discharge region at high speed to excite the gas and turn it into plasma, which produces Cu.
Plasma gas is adiabatically expanded and ejected from a manufactured nozzle,
A high-velocity jet of excited Matsuha 1-3 is formed at a high temperature of about 10,000 C. Powder is introduced into the plasma, heated and melted, and collided with the surface of the material to be treated at high speed to form a coating layer.

次にTiチン化物を形成させるにはプラズマ中への周囲
の雰囲気−ガス(主に空気)の混入の問題があり、特に
02は溶射粒子の酸化反応を生じさせる。たとえば一般
のプラズマジェットによる溶射法でのプラズマ中への周
囲の雰囲気ガスの混入はノズルから噴出したプラズマの
ノズルからの距離に関係し、一般的な溶射距離である1
50+nznでけ約20%になると報告されている。し
たがって、Tiのように酸化物の形成自由エネルギの小
さい材料では02がある一定以上てなるとN2との反応
よりも02との反応が優先するためにチン化物の形成が
極めて少なくなってしオう。木発明ではこのような酸素
の存在量を酸素分圧にして10″′4Torr以下て制
限してノズル付近で投入されたTi粉末がプラズマ中で
励起さnたN2 と効果的に反応してTlチン化物を形
成するようなさ扛ている。
Next, in order to form Ti tinides, there is a problem of the surrounding atmosphere gas (mainly air) being mixed into the plasma, and in particular, 02 causes an oxidation reaction of the sprayed particles. For example, in the thermal spraying method using a general plasma jet, the mixing of surrounding atmospheric gas into the plasma is related to the distance from the nozzle of the plasma ejected from the nozzle, and the general thermal spraying distance is 1.
It is reported that 50+nzn is about 20%. Therefore, in materials such as Ti, which have a small free energy for forming oxides, when 02 exceeds a certain level, the reaction with 02 takes precedence over the reaction with N2, and the formation of tinides becomes extremely small. . In the present invention, the amount of oxygen is limited to an oxygen partial pressure of 10'''4 Torr or less, and the Ti powder injected near the nozzle reacts effectively with the N2 excited in the plasma to generate Tl. It is like forming a chloride.

本発明方法においては、溶射材料としてのTi等の粒子
の粒度分布も重要な要因となる。すなわち、T1粒子が
大きすぎる場合はTI中へのN2の拡散量が少なくなり
処理の目的とする特性が充分に得らない。一方、粒子が
小さすぎる場合はチツ化反応が過度に進行してチン化物
が多くなり被覆層の靭性が低下するとともに、チン化物
の形成による粉末の溶融温度が」:昇してしまい、これ
により被覆層中の気孔率が多くなり耐食性を低下させる
。したがって、本発明においては適度の粒度分布を有す
るTl粉末を用いることによって未反応TIあるいは安
定なチン化物でないTiをある程度の量で存在させるよ
うにすることが望ましい。
In the method of the present invention, the particle size distribution of particles such as Ti as a thermal spray material is also an important factor. That is, if the T1 particles are too large, the amount of N2 diffused into the TI will be reduced, and the desired characteristics of the treatment will not be sufficiently obtained. On the other hand, if the particles are too small, the oxidation reaction will proceed excessively and the amount of tinides will increase, reducing the toughness of the coating layer, and the melting temperature of the powder will rise due to the formation of tinides. The porosity in the coating layer increases, reducing corrosion resistance. Therefore, in the present invention, it is desirable to use Tl powder having an appropriate particle size distribution so that a certain amount of unreacted TI or Ti that is not a stable tinide is present.

粒度分布は1100zz以下、1μm以上であることが
望ましい。
The particle size distribution is preferably 1100zz or less and 1 μm or more.

本発明方法で溶射材料として用いる金属としてはTIが
望ましくその他W等も用いられるが、これ以外の金属、
たとえばCu、Fe等はチン化物形成自由エネルギが太
きいために、前記のようなチン化物形成プロセスが生じ
雛ぐ、有効なチン化物層は形成さ几ない。尚以上Tiチ
ン化物の形成について説明したがTi炭化物の場合、N
2ガスに代りCI−I、等のガスを用いることによって
同様の結果が得られる。
The metal used as the thermal spray material in the method of the present invention is preferably TI, and other metals such as W are also used;
For example, since Cu, Fe, etc. have a large free energy for forming a tinide, it is difficult to form an effective tinide layer in which the above-mentioned tinide formation process takes place. Although the formation of Ti tinide was explained above, in the case of Ti carbide, N
Similar results can be obtained by using a gas such as CI-I instead of the 2 gas.

N、ガスをプラズマ形成ガスとして用いる効果としでは
さらに次のような点が挙げられる。プラズマ形成ガスと
して代表的なものとしてけAr。
Further advantages of using N gas as a plasma forming gas include the following. Ar is a typical plasma forming gas.

He、N2等が挙げられ、これらの中ではプラズマジェ
ットの速度はJ−ie、 A、r、N2の順になってお
り、プラズマの温度を支配するガスのエンタルピーハN
2. A r 、 I−I eの順になっている。それ
ぞれのガスにII2を′加えた場合にはエンタルピーが
増加する。ところで木発明のように励起されftカスニ
ヨる反応を促進する」二で金属チタン粉末がプラズマ中
に滞留する時間が長くかつプラズマの温度が高い方が効
果的である。このような点がらN2ガスを用いたプラズ
マはプラズマジェットの速度が遅くかつ高いエンタルピ
ーを有するため、Ti粉末はプラズマ中に滞留する時間
が長く、プラズマから熱を多く受けるので高温に加熱溶
融することになり、Ti粉末と励起されたガスとの反応
を促進する上で有効である。N2ガスのプラズマ中ニ■
12カスを加えることはプラズマのエンタルピーを増加
させることになりさらに有効となる。
Examples include He, N2, etc., and among these, the velocity of the plasma jet is in the order of J-ie, A, r, N2, and the enthalpy of the gas, N, which controls the plasma temperature.
2. The order is Ar, I-Ie. When II2' is added to each gas, the enthalpy increases. By the way, it is more effective if the metallic titanium powder stays in the plasma for a longer time and the temperature of the plasma is higher. In contrast, plasma using N2 gas has a slow plasma jet speed and high enthalpy, so Ti powder stays in the plasma for a long time and receives a lot of heat from the plasma, so it cannot be heated to high temperatures and melted. This is effective in promoting the reaction between the Ti powder and the excited gas. In N2 gas plasma ■
Adding 12 dregs increases the enthalpy of the plasma, making it even more effective.

次にプラズマ中に投入されるTi粉末は粉末供給装置か
らキャリヤガスを用いて運ばれる。したがって、キャリ
ヤガスはTi粉末とともにプラズマ中へ入ることになシ
、本発明の場合キャリヤガスの種類も重要になる。N2
ガスをキャリヤガスとして用いれば、Tiチッ化物を形
成する上で有効になる。また、Cl−I4等の炭化水素
ガスは可燃性であるので発熱量が大きくプラズマ形成ガ
スとして用いることはプラズマ発生装置の電極の消耗等
の点から好ましくない。しかし、キャリヤガスとしてC
I−、T、ガスを用いることはT1炭化物を得る一部で
重要な方法である。また、N2ガスプラズマ中にキャリ
ヤガスとしてCH,等を用いてTIを溶射した場合はT
iの炭化物とチン化物との複合体が得られる。
Next, the Ti powder introduced into the plasma is transported from a powder supply device using a carrier gas. Therefore, the carrier gas does not enter the plasma together with the Ti powder, and in the case of the present invention, the type of carrier gas is also important. N2
Using the gas as a carrier gas is effective in forming Ti nitride. In addition, since hydrocarbon gases such as Cl-I4 are flammable, their calorific value is large, and their use as plasma forming gases is not preferable from the viewpoint of wear and tear on the electrodes of the plasma generator. However, C as a carrier gas
Using I-, T, gas is an important method in some cases to obtain T1 carbides. In addition, when TI is sprayed using CH, etc. as a carrier gas in N2 gas plasma, T
A complex of carbide and tinide of i is obtained.

本発明の金属溶射方法によって被処理材料の表面に得ら
れる被覆層の性状および特性を以下従来方法による場合
と比較して図面によって説明する。
The properties and characteristics of the coating layer obtained on the surface of the material to be treated by the metal spraying method of the present invention will be explained below with reference to the drawings in comparison with those obtained by the conventional method.

第1図は本発明の方法によって形成されたTi化合物被
覆層断面の金属組織を示す顕微鏡組織写真であり、図中
1は被処理材料、2は溶射層であ(11)i る。第2図はそのX、Ill!i1回折結果を示す。X
線回折結果から明らかなように、本発明方法によるTi
化合物被覆層はTiNとTIで構成さnている。一方、
従来の溶射方法でT1あろいは’r”IIiを溶射した
場合の被覆層の組織のX線回折結果を第:3図に示す。
FIG. 1 is a micrograph showing the metal structure of a cross section of a Ti compound coating layer formed by the method of the present invention, in which 1 is the material to be treated and 2 is the sprayed layer (11)i. Figure 2 shows the X, Ill! i1 diffraction results are shown. X
As is clear from the line diffraction results, Ti
The compound coating layer is composed of TiN and TI. on the other hand,
Figure 3 shows the results of X-ray diffraction of the structure of the coating layer when T1 alloy 'r'' IIi was thermally sprayed using the conventional thermal spraying method.

第3図中では、TiあるいはTI酸化・吻が認められる
だけである。表1は本発明方法によるT1化合物被覆層
ならびに従来の溶射法、PVD法およびCVD法による
TiN被覆層のそれぞ扛のピンカース硬度を示す。
In FIG. 3, only Ti or TI oxidation and proboscis is observed. Table 1 shows the Pinkers hardness of the T1 compound coating layer produced by the method of the present invention and the TiN coating layer produced by the conventional thermal spraying method, PVD method, and CVD method.

表   1 PVD法あるいはCVD法によって形成された(12) TI化体化物硬度がI−TV2000であるのに比べて
本発明方法によるT1化合物層の硬度は低くなっている
。このように硬度が低い理由は本発明の被覆層はTiと
Ti化合物から成っているためと考えられる。また、P
VD法あるいはCVD法によるTiN被覆層のX線回折
結果、TiN回折線が鋭いピークであったのに比べて本
発明方法によるTi化合物層の結果ピークの幅が大きく
なっていることから本発明によるTi化合物が完全な化
学量論的Ti化合物から若干ずれたものになっているも
のとも推察される。しかし、本発明によるT1化合物で
は700C,24時間の処理後においてもその硬さおよ
びX線回折結果は処理前に比べて何ら変化が認められず
、高温時効による変化は生じなかった。したがって、本
発明によるTi化合物は室温での時効変化はもちろん耐
摩耗部材として用いた場合の摩擦による熱によってもそ
の硬度の低下が生じ難い。なお、本発明によるTi化合
物被覆層の硬度は溶射条件により800〜1400程度
に変化し、たとえばN2ガスの他にCI−L ガスを加
えて溶射した場合はTiCも一部形成されてその硬度を
N2ガスのみによる場合に比べて大きくすることができ
る。
Table 1 The hardness of the T1 compound layer formed by the method of the present invention is lower than that of the (12) TI compound formed by the PVD method or CVD method, which has a hardness of I-TV2000. The reason for such low hardness is considered to be that the coating layer of the present invention is composed of Ti and a Ti compound. Also, P
As a result of X-ray diffraction of the TiN coating layer by the VD method or CVD method, the TiN diffraction line had a sharp peak, but the width of the peak was wider as a result of the Ti compound layer by the method of the present invention. It is also inferred that the Ti compound is slightly deviated from the perfect stoichiometric Ti compound. However, in the T1 compound according to the present invention, even after treatment at 700C for 24 hours, no change in hardness or X-ray diffraction results was observed compared to before treatment, and no change occurred due to high temperature aging. Therefore, the Ti compound according to the present invention does not easily deteriorate in hardness not only due to aging at room temperature but also due to heat caused by friction when used as a wear-resistant member. The hardness of the Ti compound coating layer according to the present invention varies from about 800 to 1,400 depending on the thermal spraying conditions. For example, if CI-L gas is added to N2 gas and thermal sprayed, a portion of TiC is also formed and the hardness decreases. It can be made larger than when using only N2 gas.

本発明によるTi化合物被覆層はTIとTINあるいは
TiCとの比率によってその硬度が変化している。Ti
、TiNあるいはTICのX線回折後の強度比と硬さの
関係を第4図に示す。(TiN+TiC1/Tiの割合
が0.1以上であれば硬度は耐摩耗性を満足する値とな
り、一方、0.9以下であれば被覆層は靭性を有し耐摩
耗性が良好になり厚い被覆層を形成した際もクラック等
の欠陥が生じない。
The hardness of the Ti compound coating layer according to the present invention changes depending on the ratio of TI and TIN or TiC. Ti
, TiN or TIC, the relationship between the intensity ratio after X-ray diffraction and the hardness is shown in FIG. (If the ratio of TiN+TiC1/Ti is 0.1 or more, the hardness will be a value that satisfies wear resistance. On the other hand, if the ratio is 0.9 or less, the coating layer will have toughness and good wear resistance, resulting in a thick coating.) Defects such as cracks do not occur even when layers are formed.

このように本発明によるTi化合物は化学量論的に完全
なTiNに比べその硬さが若干減少しているが、この点
はTi化合物被覆層を形成するという観点からは数百μ
mという厚い被覆層を形成しうろことを可能にしている
一つの要因となっている。またその硬度HVも800〜
1400であり、硬質被覆層としては十分なもので、後
述のように耐摩耗部材として用いた場合、化学”肝論的
なT1化合物被覆層に比べ優れた特性を発揮する。
As described above, the hardness of the Ti compound according to the present invention is slightly reduced compared to stoichiometrically perfect TiN, but this point is difficult from the viewpoint of forming a Ti compound coating layer.
This is one of the factors that makes it possible to form a coating layer as thick as 1.2 m. Also, its hardness HV is 800~
1400, which is sufficient as a hard coating layer, and when used as a wear-resistant member as described later, it exhibits superior properties compared to chemical T1 compound coating layers.

次に本発明によるTi化合物で表面を被覆した部材の特
性について説明する。まず、耐摩耗特性について検討し
た。試験方法は大球式摩耗試験で行った。試験条件とし
ては相手材を5UJ−2(11,C60以上)とし、摩
耗距離200mで潤滑油にタービン油井120を用い、
荷重は12.6にりおよび18.9にりとした。母材と
してS 0M415鋼材を用い、その表面に本発明にょ
るTi化合物層を150μmの厚さで被覆した部材、P
VD法でTIN化合物層を51tmの厚さで被覆しだ部
材、イオンチッ化で硬化層を100μmの厚さで形成し
た部材のそれぞれを試験片として比較した。その結果を
第5図に示す。
Next, the characteristics of the member whose surface is coated with the Ti compound according to the present invention will be explained. First, we examined the wear resistance properties. The test method was a large ball type abrasion test. The test conditions were as follows: The mating material was 5UJ-2 (11, C60 or higher), the wear distance was 200 m, and a turbine oil well 120 was used as the lubricating oil.
The loads were 12.6 mm and 18.9 mm. A member using S0M415 steel as a base material and having its surface coated with a Ti compound layer according to the present invention to a thickness of 150 μm, P
A member coated with a TIN compound layer with a thickness of 51 tm using the VD method and a member with a hardened layer formed with a thickness of 100 μm using ion nitriding were used as test pieces for comparison. The results are shown in FIG.

第5図中、1は本発明方法、3ばPVD法、5はイオン
チッ化法の結果で荷重は12.6にり、2は本発明方法
、4はPVD法、6けイオンチッ化法の結果で荷重は1
8.9Kgである。荷重が小さい場合、摩耗速度が小さ
い領域では本発明にょるTi化合物被覆部材、PVD法
にょるTiN被覆部材、(15) イオンチラー化による表面硬化部材とも大差が認められ
なかったが、摩耗速度の大きい領域では差異が生じ、本
発明によるTi化合物被覆部材は他の    ′処理部
材に比べ優れた特性を有していた。一方、荷重が大きい
場合、本発明によるTi化合物被覆部材は他の処理部材
に比べて特に優れた特性を有していた。このように、本
発明によるTi化合物被覆部材は他の処理部材に比べ摩
耗速度が大きい場合あるいは高荷重下では而・1摩耗性
に優れていた。
In Figure 5, 1 is the method of the present invention, 3 is the PVD method, 5 is the result of the ion nitriding method and the load is 12.6, 2 is the result of the method of the present invention, 4 is the result of the PVD method, and 6 is the result of the ion nitriding method. and the load is 1
It is 8.9Kg. When the load was small and the wear rate was low, there was no significant difference between the Ti compound coated member according to the present invention, the TiN coated member made by the PVD method, and the surface hardened member made by ion chilling (15). Differences occurred in large areas, and the Ti compound-coated member according to the present invention had superior properties compared to other 'treated members. On the other hand, when the load was large, the Ti compound-coated member according to the present invention had particularly excellent properties compared to other treated members. As described above, the Ti compound-coated member according to the present invention had excellent wear resistance when the wear rate was high or under a high load compared to other treated members.

このような理由としては、本発明方法によって得られた
硬質被覆層の厚さが厚く摩耗による被覆層の消耗で母材
が摩耗しないこと、そのTi化合物被覆層が化学量論的
なTiNに比べて靭性に富んだものであることが挙げら
れる。
The reasons for this are that the hard coating layer obtained by the method of the present invention is thick and the base material does not wear out due to wear of the coating layer due to wear, and that the Ti compound coating layer is thicker than stoichiometric TiN. One example of this is that it has a high degree of toughness.

次に本発明のTi化合物被覆部材の耐食性について検討
した。試験方法は塩水噴霧試験を用い、前記の摩耗試験
と同様の表面処理を夫々施した試験片を用いて行なった
。その結果、本発明の方法によって得られたTi化合物
により被覆された部材はPVD法にょるTiN被覆部材
とほぼ同等の(16) 耐食性が得られかつチッ化部材に比べて優れていた。さ
らに摩耗試験後の試験片を用いた場合、本発明によるT
i化合物被覆部材ではその耐食性に何ら変化はなかった
が、PVD法によりTiN被覆部材は摩耗によって被覆
層の消耗していた部分の耐食性は著しく低下していた。
Next, the corrosion resistance of the Ti compound coated member of the present invention was examined. The test method was a salt spray test using test pieces that had been subjected to the same surface treatment as in the abrasion test described above. As a result, the members coated with the Ti compound obtained by the method of the present invention had almost the same (16) corrosion resistance as the TiN-coated members obtained by the PVD method, and were superior to the nitrided members. Furthermore, when using the test piece after the wear test, T
There was no change in the corrosion resistance of the i-compound-coated member, but the corrosion resistance of the TiN-coated member due to the PVD method was significantly reduced in the portion where the coating layer had been consumed due to wear.

したがって、本発明のTi化合物被覆部材の耐食性は優
れたものであり、特に、摩耗部材の耐食性を向上させる
上で有効なものである。
Therefore, the Ti compound-coated member of the present invention has excellent corrosion resistance, and is particularly effective in improving the corrosion resistance of wear members.

本発明の方法はさらに以下のような長所を有している。The method of the present invention further has the following advantages.

まず、PVD法、CVD法では被覆層の母材からの剥離
という問題のため、数十μmという厚い被覆層を形成す
るのが困難であったのに比べ、本発明の方法では母材か
らの剥離を生じることなく数百μm1望ましくはioo
〜200μmの厚さのTi化合物被覆層を形成すること
ができる。またその形成速度もCVD法あるいはPVD
法等の従来の方法に比べ10’〜10’倍の高速度であ
る。さらに、従来の方法では処理室の大きさ等の制限に
より被処理材料の大きさに制約があつだのに比べ、本発
明の方法では被処理材料の大きさに特に制限はなく、従
来の方法では困難であった被覆層が必要とされている部
分だけの局部的な被覆処理が可能である。
First, with the PVD method and CVD method, it was difficult to form a thick coating layer of several tens of micrometers due to the problem of peeling of the coating layer from the base material, whereas the method of the present invention Several hundred μm1 preferably ioo without peeling
A Ti compound coating layer with a thickness of ~200 μm can be formed. Also, the formation speed is determined by CVD method or PV method.
The speed is 10' to 10' times faster than conventional methods such as the method. Furthermore, in contrast to conventional methods, where the size of the material to be processed is restricted due to limitations such as the size of the processing chamber, in the method of the present invention, there is no particular restriction on the size of the material to be processed; It is possible to perform a local coating treatment on only the areas where a coating layer is required, which was difficult with conventional methods.

実施例 1 スチール製グリッドを用いて被処理材料(材質SCM4
15)の表面を粗面化し、次いでプラズマトーチを用い
て溶射を行った。プラズマトーチは80KW出力の装置
を使用し、プラズマ形成ガスとして市販純度のN2ガス
を用い、N2ガス流t 45 t/ min、プラズマ
出力4.OKWでプラズマジェットを形成した。N2ガ
スの純度に特別な制限はないが、含有水分量の少ないも
のが望ましい。
Example 1 Material to be treated (material: SCM4) using a steel grid.
15) was roughened, and then thermal sprayed using a plasma torch. The plasma torch uses a device with an output of 80 KW, uses commercially pure N2 gas as the plasma forming gas, has a N2 gas flow of t 45 t/min, and a plasma output of 4. A plasma jet was formed using OKW. There are no particular restrictions on the purity of N2 gas, but one with a low moisture content is desirable.

N2ガス流量、プラズマ出方にも特に制限はない。There are no particular restrictions on the N2 gas flow rate or the plasma output method.

プラズマジェットの周囲の雰囲気の酸素分圧け10””
’l’orr以下とした。酸素分圧はo2センザを用い
て測定した。なお、酸素分圧を制御する方法としてはプ
ラズマジェットの周辺をN2ガスでシールする公知の方
法を用いた。ンールガストシテはAr、He等の不活性
ガスを用いることも可能である。粗面化した被処理材料
表面をまずプラズマジェットで100〜150Cに予熱
し被処理材料表面の付着不純物を除いた。次に粉末供給
装置からN2ガスを粉末供給用ガスとしてTi粉末をプ
ラズマジェット中に投入した。プラズマ中へのTi粉末
の供給量には特別な制限はない。またTi粉末の投入位
置はプラズマトーチのプラズマジェット出口に近いとこ
ろが望ましい。Ti粉末は市販純度(99,9%)のも
のでよく、その粒径が5〜44μmの粉末を用いた。粉
末の粒径は1〜100μmの範囲内であれば特だその粒
径分布に制限はない。溶射の際の被処理材料とプラズマ
トーチのノズル口との距離(溶射距離)は70〜140
mm程度が望ましい。被処理材料とプラズマト−チとの
相対速度(トラバース速度)はl m /8(イ)とし
たが、トラバース速度にも特に制限はない。
Oxygen partial pressure in the atmosphere surrounding the plasma jet is 10""
'l'orr or less. Oxygen partial pressure was measured using an O2 sensor. As a method for controlling the oxygen partial pressure, a known method of sealing the periphery of the plasma jet with N2 gas was used. It is also possible to use an inert gas such as Ar or He. The roughened surface of the material to be treated was first preheated to 100 to 150 C using a plasma jet to remove impurities attached to the surface of the material to be treated. Next, Ti powder was introduced into the plasma jet from a powder supply device using N2 gas as a powder supply gas. There is no particular restriction on the amount of Ti powder supplied into the plasma. Furthermore, it is desirable that the Ti powder be introduced at a location close to the plasma jet outlet of the plasma torch. The Ti powder may be of commercially available purity (99.9%), and the powder with a particle size of 5 to 44 μm was used. There is no particular restriction on the particle size distribution of the powder, as long as it is within the range of 1 to 100 μm. The distance between the material to be treated and the nozzle opening of the plasma torch during thermal spraying (spraying distance) is 70 to 140
Approximately mm is desirable. Although the relative speed (traverse speed) between the material to be treated and the plasma torch was l m /8 (a), there is no particular limit to the traverse speed.

また、溶射中の被処理材料表面の温度は特に制限はない
が、稠密なTi化合物被覆層を得るためては高い方が望
ましい。以上のようにTi粉末を上記の条件でプラズマ
溶射し、被処理材料の表面に(19) 150μmの被覆層を形成した。被覆層の厚さは1 m
m〜5 II m1望ましくば5 Q Q 7zm−]
−Q 1tmの範囲内の任意の厚さを形成できる。得ら
れた被覆層のX線回折結果は前記第2図のようでありそ
の回折線はTiとTiNとのものであってTI酸化物は
認められなかった。また、その断面の組織観察結果は前
記第1図に示すように稠密な溶射被覆層であった。その
硬さは表1中に示したようにビッカース硬度900であ
った。」二記の本発明のTi化合物被覆部材の摩耗試験
結果は第5図のようであり、PvD法、CVD法による
TiN被覆部材、あるいはイオン窒化による硬化部材に
比べ優れた耐摩耗性を有していたJ塩水噴霧試験による
耐食性についても本発明のTi化合物被覆部月は他の処
理材料に比べて優れたものであった。
Further, the temperature of the surface of the material to be treated during thermal spraying is not particularly limited, but a higher temperature is desirable in order to obtain a dense Ti compound coating layer. As described above, Ti powder was plasma sprayed under the above conditions to form a coating layer (19) with a thickness of 150 μm on the surface of the material to be treated. The thickness of the coating layer is 1 m
m~5 II m1 preferably 5 Q Q 7zm-]
-Q Any thickness within the range of 1 tm can be formed. The result of X-ray diffraction of the obtained coating layer is as shown in FIG. 2, and the diffraction lines are those of Ti and TiN, and no TI oxide was observed. Further, as shown in FIG. 1, the microstructure of the cross section was observed to be a dense sprayed coating layer. As shown in Table 1, its hardness was 900 on Vickers hardness. The wear test results of the Ti compound coated member of the present invention described in 2 are shown in Figure 5, and the wear resistance is superior to that of the TiN coated member made by PvD or CVD, or the hardened member made by ion nitriding. The Ti compound-coated portion of the present invention was also superior in corrosion resistance to other treated materials in the J salt spray test.

実施例 2 Ti粉末供給用ガスとしてCTl4を用いTi粉末のプ
ラズマ溶射を行った。他の条件は実施例1と同様である
。得られたTi化合物被覆層はX線回折結果、TIとT
INの他にrIcの回折線が(20) 認められた。その被覆層の断面組織は実施例1の場合と
同様の稠密な溶射被覆層で、ビッカース硬度は表1に示
したようにI−TV1350になっていた。
Example 2 Ti powder was plasma sprayed using CTl4 as the Ti powder supply gas. Other conditions are the same as in Example 1. As a result of X-ray diffraction, the obtained Ti compound coating layer shows TI and T
In addition to IN, rIc diffraction lines (20) were observed. The cross-sectional structure of the coating layer was a dense thermal sprayed coating layer similar to that of Example 1, and the Vickers hardness was I-TV1350 as shown in Table 1.

耐摩耗、耐食性も実施例1の場合と同様に優れたもので
あった。
The wear resistance and corrosion resistance were also excellent as in Example 1.

実施例 3 プラズマジェットの周辺の雰囲気の酸素分圧を制御する
ために、密閉された処理室内に設置されたプラズマトー
チとその処理室を排気することが可能な真空ポンプとを
備えた装置を用いた。本実施例では、予め処理室を10
”2Torr程度の圧力まで排気し、次いでN、ガスを
導入して所定の雰囲気圧力に達した後にプラズマジェッ
トを発生させ処理室内の圧力を所定の値に保持するよう
に排気しなから溶射を行った。本実施例では雰囲気圧力
を150Torrに保持して行ったが圧力値には特別な
制限はない。この場合、予め処理室内の酸素を排気した
後に酸素分圧が小さいN2ガスを導入したので処理室内
の酸素分圧は小さくなっている。
Example 3 In order to control the oxygen partial pressure in the atmosphere around the plasma jet, a device equipped with a plasma torch installed in a sealed processing chamber and a vacuum pump capable of evacuating the processing chamber was used. there was. In this example, 10 processing chambers were prepared in advance.
``The chamber is evacuated to a pressure of about 2 Torr, and then N and gas are introduced to reach a predetermined atmospheric pressure, a plasma jet is generated to maintain the pressure inside the processing chamber at a predetermined value, and thermal spraying is performed without evacuation. In this example, the atmospheric pressure was maintained at 150 Torr, but there is no particular restriction on the pressure value.In this case, N2 gas with a small oxygen partial pressure was introduced after exhausting the oxygen in the processing chamber in advance. The oxygen partial pressure inside the processing chamber is low.

処理室中の酸素分圧の測定値は固体電解質を用いた02
センザで測定して10””Torr以下であった。
The measured value of oxygen partial pressure in the processing chamber was measured using a solid electrolyte.
It was measured with a sensor and was 10"" Torr or less.

他の溶射条件は実施例1と同様である。なお本実施例で
は溶射中の被処理材料の温度を高温に保った。本実施例
では被処理材料の加熱手段としてプラズマジェットの熱
を利用したが、加熱手段として他の熱源を用いることも
可能である。加熱温度も特に制限はないが、本実施例で
は700Cとしだ。溶射中の被処理材料を加熱し、ある
いは減圧空間中でプラズマジェットを利用することによ
シ本発明方法でTi化合物被覆層を形成する」二で以下
のような効果が得られた。Ti粒子が被処理材料の表面
に衝突した場合、被処理材料の温度が低いと溶射粒子は
被処理材料に熱をうばわれて急冷されるが、被処理材料
の温度が高いときには溶射粒子と被処理材料との間の温
度勾配が小さくなり、その結果溶射粒子は急冷されなく
なる。したがって、溶射された粒子が被処理材料の表面
で高温に保たれている時間が長くなると、その結果プラ
ズマジェット中でのTi粒子とN2との反応に加えて被
処理材料の表面でのTiとN2との反応およびTi中へ
のNの拡散が進行する。また、プラズマジェットは減圧
空間中では周辺の抵抗が小さくなるため、プラズマジェ
ットの長さが長くなり溶射Ti粒子はプラズマジェット
高温領域に長時間滞留することになる。その結果、Ti
粒子とN2との反応が促進される。さらに被処理材料の
表面に溶射された粒子の凝固速度が遅いので、急冷に伴
って生じる溶射被覆層中の凝固や路孔等のような内部欠
陥の少ないTi化合物被覆層が得られる。
Other thermal spraying conditions are the same as in Example 1. In this example, the temperature of the material to be treated during thermal spraying was maintained at a high temperature. In this embodiment, the heat of the plasma jet is used as a heating means for the material to be processed, but it is also possible to use other heat sources as the heating means. The heating temperature is also not particularly limited, but in this example it is set to 700C. The following effects were obtained by forming a Ti compound coating layer by the method of the present invention by heating the material to be treated during thermal spraying or by using a plasma jet in a reduced pressure space. When Ti particles collide with the surface of the material to be treated, if the temperature of the material to be treated is low, the sprayed particles will be rapidly cooled by the heat absorbed by the material to be treated, but if the temperature of the material to be treated is high, the sprayed particles will The temperature gradient with the treated material is reduced so that the sprayed particles are no longer quenched. Therefore, the longer the sprayed particles are kept at high temperature on the surface of the material to be treated, the more likely it is that in addition to the reaction between the Ti particles and N2 in the plasma jet, the Ti The reaction with N2 and the diffusion of N into Ti proceed. Furthermore, since the peripheral resistance of the plasma jet becomes smaller in the reduced pressure space, the length of the plasma jet becomes longer and the sprayed Ti particles stay in the high temperature region of the plasma jet for a long time. As a result, Ti
The reaction between particles and N2 is promoted. Furthermore, since the solidification rate of the particles sprayed onto the surface of the material to be treated is slow, a Ti compound coating layer can be obtained with few internal defects such as coagulation and passage holes in the thermal spray coating layer that occur due to rapid cooling.

本実施例で得られたTi化合物被覆層はビッカース硬度
1−IV1250で稠密なTi化合物被覆層であった。
The Ti compound coating layer obtained in this example had a Vickers hardness of 1-IV1250 and was a dense Ti compound coating layer.

またその面4摩耗性および耐食性は実施例1の場合と同
等もしくはそれ以上の優れたものであった。
Further, its surface 4 abrasion resistance and corrosion resistance were equivalent to or better than those of Example 1.

実施例 4 1、6 tanφのTi線材を用いN2あるいはAre
He雰囲気中でアーク溶射を行った。アーク溶射には直
流4.0I(Wの出方の出せる装置を用い、2本のTi
線間でアークを発生させた。その場合の電流は150A
、電圧け28Vである。前記雰囲(23) 気中で吹伺は用ガスとして約5にり/ cm ”の圧縮
ガスN2を用い、溶射距離130肺で溶射を行い、被処
理材料(材質SCM21)の表面に0.3〜0、5 w
nの厚さの溶射被覆層を形成した。−ブバ比較のため、
従来の大気中溶射をも行った。この場合、吹付は用ガス
として圧縮空気を用い大気中で溶射した。X線回折結果
によれば、従来法の場合の被覆層はTiとTi酸化物と
からなるものであったのに対し、本実施例によって形成
された被覆層についてはT1とTiNとの回折線のみが
得られ、その硬さはビッカース硬度OV 1000であ
った。本実施例のT1化合物被覆層の而[@耗性お」:
び耐食性は実施例1の場合と同等もしくばそれよりも優
れたものであった。
Example 4 N2 or Are using 1, 6 tanφ Ti wire
Arc spraying was performed in a He atmosphere. For arc spraying, a device capable of emitting DC 4.0 I (W) was used, and two Ti
An arc was generated between the lines. In that case the current is 150A
, the voltage is 28V. Atmosphere (23): Thermal spraying was carried out in the air using compressed gas N2 at a rate of about 5 g/cm2 as a spraying gas at a spraying distance of 130 m2, so that the surface of the material to be treated (material SCM21) was coated with 0.0 gm. 3~0,5w
A thermal spray coating layer with a thickness of n was formed. -Buba for comparison,
Conventional atmospheric spraying was also performed. In this case, spraying was carried out in the atmosphere using compressed air as the spraying gas. According to the X-ray diffraction results, the coating layer in the conventional method was composed of Ti and Ti oxide, whereas the coating layer formed by the present example had diffraction lines of T1 and TiN. The hardness was OV 1000 on the Vickers hardness. Details of the T1 compound coating layer of this example [@Abrasive O]:
The corrosion resistance and corrosion resistance were equivalent to or better than that of Example 1.

実施例 5 セミトランスファ形のプラズマト−チでプラズマアーク
を発生させた後、トーチのノズル[]と被処理材料との
距離を小さくL、l−−チと被処理材料とでプラズマ空
間を形成させてその空間中にTi粉末を投入し溶射を行
った。プラズマ形成刃(24) スの主成分はN2ガスであった。プラズマノズルの周辺
にシールドガスを流しプラズマ溶射に関与する周辺部の
酸素分圧を10””’l’orr以下にした。
Example 5 After generating a plasma arc with a semi-transfer type plasma torch, the distance between the nozzle [ ] of the torch and the material to be treated is reduced, and a plasma space is formed by the L, L--chies and the material to be treated. Then, Ti powder was introduced into the space and thermal spraying was performed. The main component of the plasma forming blade (24) was N2 gas. A shielding gas was flowed around the plasma nozzle to reduce the oxygen partial pressure in the peripheral area involved in plasma spraying to 10'''l'orr or less.

/−ルドガスとしてはN2ガスを主成分とした。/- The main component of the gas was N2 gas.

用いたTi粉末は5〜44μmの粒径分布であったが1
μm〜100μmの範囲内であれば特に制限はない。ノ
ズル口と被処理材料の距離は10〜20胴程度が望まし
い。被処理材料として外径150 mm、長さ300m
+n、厚さ5覇の管状の試料を用い、その外周、内周面
にそれぞれ1.2WrIn厚さの被覆層を形成した。被
覆層はビッカース硬度r−r v s o oであり、
実施例1と同様に耐食性に優れた被覆層であった。
The Ti powder used had a particle size distribution of 5 to 44 μm, but 1
There is no particular restriction as long as it is within the range of μm to 100 μm. The distance between the nozzle opening and the material to be treated is desirably about 10 to 20 cylinders. The material to be treated has an outer diameter of 150 mm and a length of 300 m.
A 1.2 WrIn coating layer was formed on the outer and inner circumferential surfaces of a tubular sample having a thickness of +n and a thickness of 5 cm. The coating layer has a Vickers hardness of r-rvsoo,
As in Example 1, the coating layer had excellent corrosion resistance.

実施例 6 爆発溶射装置を用い0.2 amφのTi線を溶射材料
として溶射時のプラズマ空間の雰囲気を酸素分圧10″
”Torr以下のN2ガス雰囲気として溶射を行った。
Example 6 Using an explosive thermal spraying device and using a Ti wire of 0.2 amφ as a thermal spraying material, the atmosphere in the plasma space during thermal spraying was set to an oxygen partial pressure of 10''.
``Thermal spraying was performed in an N2 gas atmosphere of less than Torr.

得られた溶射被覆層はTi化合物を主成分とするもので
あシ、そのビッカース硬度はHVloooであった。ま
た被覆層の耐食性は実施例1(25) の場合とほぼ同等の特性を有していた。
The obtained thermal spray coating layer was mainly composed of a Ti compound, and its Vickers hardness was HVloooo. Moreover, the corrosion resistance of the coating layer had almost the same characteristics as in Example 1 (25).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により生成されたTI化化合物被覆
月利断面金属組織を示す顕微鏡写真、第2図は本発明に
よるTi化合物被覆層のX線回折結果を示す図、第3図
は従来方法によるl1l) r溶射層のX線回折結果を
示す図、第4図は本発明方法によるTi化合物被覆層の
硬さと(T i N−1−TlC)/Tiの比率の関係
を示す図、第5図は摩耗速度と摩耗減量との関係を示す
線図である。 1・・・被処理材料、2・・・溶射層。 代理人 弁理士 高橋四揶 (26) 第 1の 篤 20 弔 30 =i”、40 0         0−5          LO
(Ti1士TiC)/下1 ¥ 5 口 摩 擦 蓮復 (祇/sec)
Figure 1 is a micrograph showing the cross-sectional metal structure of the Ti compound coated layer produced by the method of the present invention, Figure 2 is a diagram showing the X-ray diffraction results of the Ti compound coated layer according to the present invention, and Figure 3 is the conventional FIG. 4 is a diagram showing the relationship between the hardness of the Ti compound coating layer and the ratio of (T i N-1-TlC)/Ti according to the method of the present invention, FIG. 5 is a diagram showing the relationship between wear rate and wear loss. 1... Material to be treated, 2... Thermal spray layer. Agent Patent Attorney Shiki Takahashi (26) First Atsushi 20 Condolences 30 =i”, 40 0 0-5 LO
(Ti1 Shi TiC) / Lower 1 ¥ 5 Mouth friction Renfu (Y/sec)

Claims (1)

【特許請求の範囲】 1、金属の溶射により被処理材料の表面に硬質の被覆を
形成する金属溶射方法において、溶射される金属に対し
て反応性を有する酸素以外の気体を加熱してプラズマ化
し、このプラズマ中に酸素分圧の制御下に金属を導入し
てプラズマ化された気体と反応させ、反応生成物として
の金属化合物の被覆を前記被処理材料の表面に形成する
ことを特徴とする金属溶射方法。 2、前記プラズマ中に導入される金属がTiであること
を特徴とする特許 載の金属溶射方法。 36前記溶射される金属に対して反応性を有する気体が
チッ素ガス、炭化水素ガスまたはそれらの混合物である
ことを特徴とする前記特許請求の範囲第1項記載の金属
溶射方法。
[Claims] 1. In a metal spraying method in which a hard coating is formed on the surface of a material to be treated by spraying a metal, a gas other than oxygen that is reactive with the metal to be sprayed is heated and turned into plasma. , characterized in that a metal is introduced into the plasma under control of the oxygen partial pressure and reacted with the plasma-formed gas to form a coating of a metal compound as a reaction product on the surface of the material to be treated. Metal spraying method. 2. The patented metal spraying method, characterized in that the metal introduced into the plasma is Ti. 36. The metal spraying method according to claim 1, wherein the gas reactive with the metal to be sprayed is nitrogen gas, hydrocarbon gas, or a mixture thereof.
JP56126782A 1981-08-14 1981-08-14 Melt spraying for metal Granted JPS5827971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126782A JPS5827971A (en) 1981-08-14 1981-08-14 Melt spraying for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126782A JPS5827971A (en) 1981-08-14 1981-08-14 Melt spraying for metal

Publications (2)

Publication Number Publication Date
JPS5827971A true JPS5827971A (en) 1983-02-18
JPS642186B2 JPS642186B2 (en) 1989-01-13

Family

ID=14943796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126782A Granted JPS5827971A (en) 1981-08-14 1981-08-14 Melt spraying for metal

Country Status (1)

Country Link
JP (1) JPS5827971A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193568A (en) * 1995-01-13 1996-07-30 Hitachi Ltd Runner of hydraulic machinery and manufacture of runner
WO1998000574A1 (en) * 1996-06-28 1998-01-08 Metalplus (Proprietary) Limited Thermal spraying method and apparatus
WO2002075012A1 (en) * 2001-03-21 2002-09-26 Weldtronics Limited Application of coating
JP2004353086A (en) * 2003-05-23 2004-12-16 Sulzer Metco Ag Hybrid process for coating substrate by thermal application of coating
JP2010031317A (en) * 2008-07-28 2010-02-12 Tosoh Corp Component for vacuum apparatus, and manufacturing method thereof
JP2018141214A (en) * 2017-02-28 2018-09-13 吉川工業株式会社 Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member
US10358710B2 (en) 2016-07-29 2019-07-23 Brenco Surface Engineering Pty Ltd. Wear resistant coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193568A (en) * 1995-01-13 1996-07-30 Hitachi Ltd Runner of hydraulic machinery and manufacture of runner
WO1998000574A1 (en) * 1996-06-28 1998-01-08 Metalplus (Proprietary) Limited Thermal spraying method and apparatus
US6258416B1 (en) 1996-06-28 2001-07-10 Metalspray U.S.A., Inc. Method for forming a coating on a substrate by thermal spraying
US6431464B2 (en) 1996-06-28 2002-08-13 Metalspray U.S.A., Inc. Thermal spraying method and apparatus
WO2002075012A1 (en) * 2001-03-21 2002-09-26 Weldtronics Limited Application of coating
JP2004353086A (en) * 2003-05-23 2004-12-16 Sulzer Metco Ag Hybrid process for coating substrate by thermal application of coating
JP4638687B2 (en) * 2003-05-23 2011-02-23 ズルツァー・メットコ・アクチェンゲゼルシャフト A hybrid method for coating substrates by thermal deposition.
JP2010031317A (en) * 2008-07-28 2010-02-12 Tosoh Corp Component for vacuum apparatus, and manufacturing method thereof
US10358710B2 (en) 2016-07-29 2019-07-23 Brenco Surface Engineering Pty Ltd. Wear resistant coating
JP2018141214A (en) * 2017-02-28 2018-09-13 吉川工業株式会社 Hydrogen embrittlement-resistant sprayed coating and hydrogen embrittlement-resistant sprayed coating member

Also Published As

Publication number Publication date
JPS642186B2 (en) 1989-01-13

Similar Documents

Publication Publication Date Title
KR100830648B1 (en) A method for providing a protective coating on a metal-based substrate and an article having a protective coating on a metal-based substrate
US6497922B2 (en) Method of applying corrosion, oxidation and/or wear-resistant coatings
US5294462A (en) Electric arc spray coating with cored wire
JP5377319B2 (en) Substrate coating method and coated product
US6346301B2 (en) Coating method for producing a heat-insulating layer on a substrate
US20160138516A1 (en) Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer
US20100272982A1 (en) Thermal spray coatings for semiconductor applications
JP4740932B2 (en) Method for forming black yttrium oxide sprayed coating and black yttrium oxide sprayed coating member
US9108276B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US5332601A (en) Method of fabricating silicon carbide coatings on graphite surfaces
US9982332B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
JPS5827971A (en) Melt spraying for metal
JP2583580B2 (en) Method of manufacturing molten metal bath member
US20080057214A1 (en) Process For Obtaining Protective Coatings Against High Temperature Oxidation
Denisova et al. Influence of nitrogen content in the working gas mixture on the structure and properties of the nitrided surface of die steel
EP0922786B1 (en) Method for forming ceramic coated products
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
Wilden et al. Synthesis of Si–C–N coatings by thermal Plasmajet chemical vapour deposition applying liquid precursors
JP2981152B2 (en) Chromium carbide spray coating
Wilden et al. DC thermal plasma CVD synthesis of coatings from liquid single source SiBCN and SiCNTi precursors
JP2610914B2 (en) Method and apparatus for coating aluminum inside heat resistant member
JPH05171399A (en) Method and apparatus for thermal spraying
JPS6031901B2 (en) Plasma spray coating formation method
US20030035902A1 (en) Process and device for coating silicon carbide fibers
Ohmori et al. Spraying TiN by a combined laser and low-pressure plasma spray system