JP2008248345A - Member for plasma treatment apparatus, and method for producing the same - Google Patents

Member for plasma treatment apparatus, and method for producing the same Download PDF

Info

Publication number
JP2008248345A
JP2008248345A JP2007093334A JP2007093334A JP2008248345A JP 2008248345 A JP2008248345 A JP 2008248345A JP 2007093334 A JP2007093334 A JP 2007093334A JP 2007093334 A JP2007093334 A JP 2007093334A JP 2008248345 A JP2008248345 A JP 2008248345A
Authority
JP
Japan
Prior art keywords
nitride
plasma
spraying
processing apparatus
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007093334A
Other languages
Japanese (ja)
Inventor
Masanori Abe
昌則 阿部
Koyata Takahashi
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007093334A priority Critical patent/JP2008248345A/en
Publication of JP2008248345A publication Critical patent/JP2008248345A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sprayed coating having a high nitride content since formation of a sprayed coating of nitride having excellent characteristics on the surface of a member used for an apparatus using plasma such as a plasma treatment apparatus (a plasma etching apparatus, a plasma cleaning apparatus, an ashing apparatus) in the fabrication of a semiconductor or the like, is desired. <P>SOLUTION: Disclosed is a member for a plasma treatment apparatus in which the sprayed coating is formed at least on a part of its surface, the surfaces of the grains constituting the sprayed coating are coated with components melted by thermal spraying, and further, the ratio of nitride in the sprayed coating is 50 to <100% by weight. The member can be produced by forming the sprayed coating on the surface of a base material in the member using nitride powder with the average grain size of 1 to 10 μm coated with melting components such as silicon dioxide upon thermal spraying. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体等の製造における、プラズマ処理装置(プラズマエッチング装置、プラズマクリーニング装置、アッシング装置)等に用いる部材に係るものであり、特に窒化物の持つ特性を溶射膜として部材表面に付与するために、窒化物含有量が高いものに関する。   The present invention relates to a member used in a plasma processing apparatus (plasma etching apparatus, plasma cleaning apparatus, ashing apparatus) or the like in the manufacture of a semiconductor or the like, and in particular, imparts the characteristics of nitride to the surface of the member as a sprayed film. Therefore, it relates to a material having a high nitride content.

半導体素子等の製造工程におけるプラズマエッチングや、CVD装置のクリーニング用途には腐食性ガスが多用されている。これら腐食性ガスにはフッ素系、塩素系ガス等が用いられている。フッ素系ガスとしては例えば、CF、C、C、CHF/CF、SF等が用いられており、塩素系ガスとしては例えば、Cl、BCl、CCl等が用いられており、さらにHF、F、NFを用いることも提案されている。 Corrosive gases are frequently used for plasma etching in the manufacturing process of semiconductor elements and the like, and for cleaning of CVD apparatuses. For these corrosive gases, fluorine-based or chlorine-based gases are used. For example, CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 / CF 4 , SF 6 or the like is used as the fluorine-based gas, and examples of the chlorine-based gas include Cl 2 , BCl 3 , CCl 4. Etc., and the use of HF, F 2 and NF 3 has also been proposed.

このような半導体製造装置に用いる部材としては、石英、アルミナ等の酸化物セラミックスまたはアルミニウム、ステンレス等の金属が使用されている。しかし、これらの部材の純度が低い場合や、構成する部材の金属元素が半導体製品汚染に関連する元素の場合、腐蝕性ガスと反応してパーティクルが発生したり、不純物成分や構成元素が半導体ウェハーに付着することによる製品汚染が問題であった。   As a member used for such a semiconductor manufacturing apparatus, oxide ceramics such as quartz and alumina, or metals such as aluminum and stainless steel are used. However, when the purity of these components is low, or when the metal elements of the components are elements related to semiconductor product contamination, particles are generated by reacting with corrosive gas, and impurity components and constituent elements are generated on the semiconductor wafer. Product contamination due to adhesion was a problem.

このような酸化物セラミックスと異なる物性をもつセラミックスとして、窒化物セラミックがある。例えば、窒化アルミニウムは、高い熱伝導率を持つことや、ハロゲンガスやプラズマに対する耐性が高いことから、半導体等の製造装置における静電チャック等の部材に多く用いられるが、窒化物セラミックは、複雑な形状を有する部材の作成が難しいことや、製造コストが高いという問題があった。   As ceramics having physical properties different from such oxide ceramics, there are nitride ceramics. For example, aluminum nitride is often used for members such as electrostatic chucks in semiconductor manufacturing equipment because of its high thermal conductivity and high resistance to halogen gas and plasma, but nitride ceramics are complex. There are problems that it is difficult to create a member having a simple shape and that the manufacturing cost is high.

そこで、基材に対して窒化物セラミックスを溶射してその表面に溶射膜を形成することで、所望の形状の部材を作成することが考えられる。しかしながら、一般的には窒化物粉末のみを用いて緻密質な窒化物溶射膜を形成することは困難であった。これは、窒化物の融点が高く、溶射の際、融解する前に酸化・分解してしまうためと考えられており(例えば、窒化アルミニウムは約2300℃で酸化・分解する)、このため、従前の窒化物溶射膜を形成する技術としては、窒化物粉末と、バインダーとなる窒化物以外の粉末との混合粉末による溶射が主であった。   Therefore, it is conceivable to create a member having a desired shape by spraying nitride ceramics on the substrate and forming a sprayed film on the surface thereof. However, in general, it has been difficult to form a dense nitride sprayed film using only nitride powder. This is thought to be because the melting point of nitride is high and it is oxidized and decomposed before being melted during thermal spraying (for example, aluminum nitride is oxidized and decomposed at about 2300 ° C.). As a technique for forming the nitride sprayed film, thermal spraying with a mixed powder of a nitride powder and a powder other than a nitride serving as a binder has been mainly used.

具体的には、例えば、金属ケイ素、窒化ケイ素及び酸化ケイ素の混合粉末を溶射することでケイ素系サーメットのアンダーコートとし、その上にジルコニアを含むセラミックス溶射膜を形成する技術(特許文献1参照)が報告されている。しかし、この窒化ケイ素混合膜では、成分の1つである金属ケイ素が腐蝕性ガスやプラズマによって腐蝕されやすいために、溶射膜の腐蝕に不均一が生じ、パーティクルが発生するおそれがある。   Specifically, for example, a technique of forming a ceramic sprayed film containing zirconia on an undercoat of a silicon-based cermet by spraying a mixed powder of metal silicon, silicon nitride and silicon oxide (see Patent Document 1) Has been reported. However, in this silicon nitride mixed film, metal silicon, which is one of the components, is easily corroded by a corrosive gas or plasma, so that the sprayed film may be unevenly corroded and particles may be generated.

また、Si、Al、Yの混合粉体について、プラズマ溶射によってα窒化珪素混合物を作製したものが報告されている(例えば、非特許文献1参照)。しかし、これは窒化ケイ素単体の溶射膜でないため、多量のAl、Yといった不純物がパーティクルや金属汚染の原因となるおそれがある。 Further, the mixed powder of Si 3 N 4, Al 2 O 3, Y 2 O 3, which was prepared α silicon nitride mixture by plasma spraying has been reported (e.g., see Non-Patent Document 1). However, since this is not a sprayed film of silicon nitride alone, a large amount of impurities such as Al 2 O 3 and Y 2 O 3 may cause particles and metal contamination.

さらに、AlNについては、AlNとAlの混合組成の溶射膜が報告されている(例えば、非特許文献2参照)。しかし、この溶射膜中のAlN存在量は47%程度であり、より窒化アルミニウム含有率の高い膜が望まれていた。 Furthermore, as for AlN, a sprayed film having a mixed composition of AlN and Al 2 O 3 has been reported (for example, see Non-Patent Document 2). However, the AlN abundance in this sprayed film is about 47%, and a film having a higher aluminum nitride content has been desired.

窒化物粉末と、バインダーとなる窒化物以外の粉末との混合粉末による溶射方法の他に、金属アルミニウム粉末をNガスを含むプラズマ溶射によって反応性溶射を行うことで窒化アルミニウムを堆積させることも提案されている(例えば特許文献2参照)が、反応性溶射によって形成された溶射膜の密度は相対的に低くなる傾向があるため、膜質の更なる改善が望まれている。 In addition to a thermal spraying method using a mixed powder of a nitride powder and a powder other than a nitride serving as a binder, aluminum nitride may be deposited by performing reactive thermal spraying of metal aluminum powder by plasma spraying containing N 2 gas. Although proposed (for example, refer to Patent Document 2), since the density of the sprayed film formed by reactive spraying tends to be relatively low, further improvement in film quality is desired.

特開2003−313077号公報JP 2003-313077 A 特開2004−083929号公報JP 2004-083929 A Y.Bao、D.T.Gawne、T.Zhang“The Influence of Matrix Phase Viscosity on the Plasma−Spray Deposition of Silicon−Nitride Composite Coatings”,(Ed)C.Moreau and B.Marple,Published by ASM International, Materials Park, Ohio,USA,2003,263(2003)Y. Bao, D.C. T.A. Gawne, T .; Zhang “The Inflation of Matrix Phase Visibility on the Plasma-Spray Deposition of Silicon-Nitride Composite Coatings,” (Ed.) Moreau and B.M. Marple, Publicized by ASM International, Materials Park, Ohio, USA, 2003, 263 (2003) H.Yang、W.Luan、S−T.Tu“AlN/Al2O3 Composite Coating Deposited by Plasma Spray”Proceedigs of the 1st Asian Thermal Spray Conference,41(2005)H. Yang, W. Luan, ST Tu “AlN / Al2O3 Composite Coating Deposited by Plasma Spray” Proceedings of the 1st Asian Thermal Conference, 41 (200)

以上説明した様に、半導体素子等の製造プロセスにおいてプラズマ処理を用いる工程において、窒化物セラミックスに係る部材を使用する場合、(1)窒化物のバルク体を用いようとすると、高価であり、複雑形状の成形が難しいという問題点があり、(2)窒化物をその表面に溶射した成形体を用いようとすると、溶射原料に含まれる窒化物以外のバインダー成分等が不純物となってウェハーへ付着したり、パーティクルの発生原因となり、それに伴う半導体製品汚染、歩留まり低下等の問題点があり、更に、反応性溶射法により窒化物以外の不純物量の低減させた溶射膜を形成しようとすると、溶射膜の密度を更に上げる必要があった。   As described above, when using a member related to nitride ceramics in a process using plasma treatment in a manufacturing process of a semiconductor element or the like, (1) it is expensive and complicated to use a nitride bulk body. There is a problem that it is difficult to mold the shape. (2) If you try to use a molded product with nitride sprayed on its surface, binder components other than nitride contained in the sprayed material become impurities and adhere to the wafer. In addition, there are problems such as contamination of semiconductor products and reduction in yield due to the generation of particles, and further, if a sprayed film with a reduced amount of impurities other than nitride is formed by reactive spraying, It was necessary to further increase the density of the film.

本発明の目的は、不純物や窒化物以外の成分の少ない、窒化物溶射膜を表面にコーティングしたプラズマ処理装置用部材とその製造方法を与えるものである。   An object of the present invention is to provide a member for a plasma processing apparatus having a nitride sprayed film coated on its surface with a small amount of components other than impurities and nitride, and a method for producing the same.

本発明者らは、上述のような現状に鑑み、鋭意検討を行った結果、表面に少量のバインダー成分がコーティングされた窒化物粉末を溶射原料として用い、これを部材表面に溶射することにより、不純物や窒化物以外の成分の少ない、窒化物溶射膜を形成した部材を提供できることを見出し、本発明を完成するに至ったものである。   As a result of intensive investigations in view of the above situation, the present inventors used a nitride powder coated with a small amount of a binder component on the surface as a thermal spray raw material, and spraying this onto the member surface, The present inventors have found that it is possible to provide a member having a nitride sprayed film formed with less components other than impurities and nitrides, and have completed the present invention.

即ち、本発明は、部材表面の少なくとも一部に、窒化物を重量比で50%以上100%未満含有する溶射膜が形成され、溶射膜を構成する粒子は溶射により溶融する成分により被覆されていることを特徴とするプラズマ処理装置用部材に関する。   That is, according to the present invention, a sprayed coating containing 50% or more and less than 100% by weight of nitride is formed on at least a part of a member surface, and particles constituting the sprayed coating are coated with a component that melts by spraying. The present invention relates to a member for a plasma processing apparatus.

以下、本発明の部材について詳細に説明する。   Hereinafter, the member of this invention is demonstrated in detail.

本発明の部材は、部材表面の少なくとも一部に溶射膜を形成してなり、当該溶射膜を構成する粒子の表面は溶射により溶融する成分で覆われており、また、溶射膜中の窒化物の割合が重量比で50%以上100%未満で構成されることを特徴とするプラズマ処理装置用部材に関する。   The member of the present invention is formed by forming a sprayed film on at least a part of the surface of the member, the surface of the particles constituting the sprayed film is covered with a component that melts by spraying, and nitrides in the sprayed film It is related with the member for plasma processing apparatuses characterized by comprising 50% or more and less than 100% by weight ratio.

本発明のプラズマ処理装置用部材としては、例えば、プラズマエッチング装置、クリーニング装置に用いる部材が挙げられる。これら部材の表面に対して本発明で規定する溶射膜を設けることで、様々な特性を部材に付与することができる。
さらに好ましい窒化物の含有量としては、60%以上である。
Examples of the member for a plasma processing apparatus of the present invention include a member used for a plasma etching apparatus and a cleaning apparatus. Various characteristics can be imparted to the members by providing the surface of these members with the thermal spray film defined in the present invention.
A more preferable nitride content is 60% or more.

例えば、表面に窒化アルミニウムの溶射膜を設けることで、熱伝導性が高く、プラズマに対する耐性の高い部材を得ることができ、静電チャック等への適用を可能とする。この際、溶射膜中の窒化物の割合が50%よりも少ないと、窒化物としての特性を十分に得ることができない。   For example, by providing a thermal spray film of aluminum nitride on the surface, a member having high thermal conductivity and high resistance to plasma can be obtained, and application to an electrostatic chuck or the like is possible. At this time, if the ratio of the nitride in the sprayed film is less than 50%, the characteristics as a nitride cannot be sufficiently obtained.

本発明によれば、溶射膜を構成する粒子の表面が、溶射により溶融する成分で覆われていることで、溶融せずに分解・酸化しやすい窒化物粒子同士が溶融成分によってつながるため、窒化物溶射膜の膜質が向上すると考えているが、このような考えは何ら本発明を限定するものではない。また、溶融成分が窒化物粒子表面のみに存在するため、不純物となる溶融成分が少ない。この溶融成分としては、例えば、二酸化ケイ素、酸化アルミニウム等の金属酸化物が挙げられる。金属酸化物は、溶射中の分解が少なく、溶融しやすいために、窒化物粒子の表面を溶融層として覆うことが出来る。   According to the present invention, since the surface of the particles constituting the sprayed film is covered with a component that melts by thermal spraying, nitride particles that are easily decomposed and oxidized without melting are connected to each other by the molten component. Although it is thought that the film quality of a material sprayed film improves, such an idea does not limit this invention at all. Further, since the molten component exists only on the surface of the nitride particle, there are few molten components that become impurities. Examples of the molten component include metal oxides such as silicon dioxide and aluminum oxide. Since the metal oxide is less decomposed during spraying and easily melts, the surface of the nitride particles can be covered as a molten layer.

溶射膜を形成する部材の基材としては、溶射により基材温度が100℃以上の温度になるため、この温度上昇によって割れ、変質、変形等が発生しないことが必要であり、具体的には、アルムニウム合金、ステンレス等の金属や、石英ガラス、ボロシリケートガラス等の耐熱ガラス、アルミナ、ムライト等のセラミック等を例示することができる。   As the base material of the member that forms the sprayed film, the temperature of the base material becomes 100 ° C. or higher by thermal spraying, and therefore it is necessary that cracking, alteration, deformation, etc. do not occur due to this temperature rise. Examples thereof include metals such as aluminum alloys and stainless steel, heat resistant glasses such as quartz glass and borosilicate glass, ceramics such as alumina and mullite, and the like.

このプラズマ処理装置用部材の窒化物溶射膜の厚さについては、1〜1000μm、特に10〜500μmが好ましい。窒化物溶射膜の膜厚が1μmよりも薄いと、窒化物としての機能を十分に得ることができない。膜厚が1000μmを超えると、窒化物溶射膜と基材との熱膨張率の違いによる溶射膜の剥がれが発生しやすくなる。窒化物溶射膜の膜厚は、部材の断面を顕微鏡で観察するか、溶射前後の部材の厚さを測定することで知ることが出来る。   About the thickness of the nitride sprayed film of this member for plasma processing apparatuses, 1-1000 micrometers, especially 10-500 micrometers are preferable. If the nitride sprayed film is thinner than 1 μm, the function as a nitride cannot be obtained sufficiently. When the film thickness exceeds 1000 μm, the sprayed film tends to peel off due to the difference in thermal expansion coefficient between the nitride sprayed film and the substrate. The film thickness of the nitride sprayed film can be known by observing the cross section of the member with a microscope or measuring the thickness of the member before and after spraying.

このプラズマ処理装置用部材の窒化物溶射膜の表面粗さ(算術平均粗さ)Raは、10μm以下であることが好ましい。表面粗さRaが10μmよりも粗いと、プラズマによる処理中に溶射膜中の一部にプラズマが集中することで溶射膜の一部が取れてパーティクルが発生することがある。なお、本発明でいう表面粗さ(算術平均粗さ)Raとは、JIS B 0601(1994)に従って測定した値を示す。   The surface roughness (arithmetic mean roughness) Ra of the nitride sprayed film of the plasma processing apparatus member is preferably 10 μm or less. If the surface roughness Ra is rougher than 10 μm, the plasma may concentrate on a part of the sprayed film during the plasma treatment, and a part of the sprayed film may be taken out to generate particles. The surface roughness (arithmetic average roughness) Ra as used in the present invention indicates a value measured according to JIS B 0601 (1994).

次に本発明の部材の製造方法を説明する。   Next, the manufacturing method of the member of this invention is demonstrated.

本発明のプラズマ処理装置用部材の窒化物溶射膜は、例えば、窒化物粉末表面に、溶射により溶融する成分をコーティングした窒化物粉末を原料粉末として用い、この原料粉末を溶射することで製造することができる。このような原料粉末を用いることにより、粉末表面にあるコーティング成分が溶射中に反応・融解することで、通常は融解しない窒化物粉末同士をつなげる役割になると考えられる。   The nitride sprayed film of the plasma processing apparatus member of the present invention is produced, for example, by using a nitride powder coated with a component that melts by spraying on the surface of the nitride powder as a raw material powder and spraying this raw material powder. be able to. By using such a raw material powder, it is considered that the coating component on the powder surface reacts and melts during thermal spraying, thereby connecting the normally non-melted nitride powders.

このようなコーティング成分としては、溶射中に反応・融解する成分であればよいが、金属酸化物が好ましく、具体的に二酸化ケイ素、酸化アルミニウム等を例示することができる。   Such a coating component may be any component that reacts and melts during thermal spraying, but is preferably a metal oxide, and specific examples thereof include silicon dioxide and aluminum oxide.

窒化物粉末表面のコーティング成分量に特に指定は無いが、原料粉末重量の0.5〜20%が好ましい。コーティング成分の量が0.5%よりも少ないと、窒化物同士をつなげる役割が少なく、溶射膜が堆積しにくいことや、膜質が悪くなる場合がある。また、コーティング成分の量が20%よりも多いと、部材上に形成した溶射膜が窒化物としての特性を十分に得ることができない。   The amount of the coating component on the nitride powder surface is not particularly specified, but is preferably 0.5 to 20% of the raw material powder weight. When the amount of the coating component is less than 0.5%, the role of connecting the nitrides is small, and it is difficult for the sprayed film to be deposited or the film quality may be deteriorated. On the other hand, when the amount of the coating component is more than 20%, the sprayed film formed on the member cannot sufficiently obtain the characteristics as a nitride.

窒化物粉末の表面にコーティング成分がコーティングされた粉末としては、例えば、市販されている、二酸化ケイ素がコーティングされた窒化アルミニウム粉末をあげることができる。二酸化ケイ素がコーティングされた窒化アルミニウム粉末を溶射することで、確かではないが、溶射中の高温によってアルミニウムとケイ素の複合酸化物が反応生成物として発生し、この複合酸化物が窒化アルミニウム同士をつなげる役割になっていると考えられる。   Examples of the powder in which the coating component is coated on the surface of the nitride powder include commercially available aluminum nitride powder coated with silicon dioxide. Although it is not certain by spraying aluminum nitride powder coated with silicon dioxide, a composite oxide of aluminum and silicon is generated as a reaction product due to the high temperature during spraying, and this composite oxide connects aluminum nitride to each other. It is considered to be a role.

本発明の溶射膜を基材表面に形成する他の方法としては、金属アルコキシド等の金属が融解した窒化物粉末スラリーをスラリー状態で溶射ガンに投入し、溶射中に金属酸化物を生成すると同時に窒化物溶射膜を作成する方法も挙げられる。   As another method for forming the sprayed film of the present invention on the substrate surface, a nitride powder slurry in which a metal such as a metal alkoxide is melted is put into a spray gun in a slurry state, and at the same time a metal oxide is generated during spraying. A method of forming a nitride sprayed film is also included.

本発明で用いる溶射原料粉末の平均粒径は、平均一次粒径として1〜10μmが好ましく、更に好ましくは2.5〜8μmである。平均粒径が10μmよりも大きい粉を用いると、融点が高い窒化物粉末が溶融せずに溶射膜が堆積しないことがある。また、平均粒径が1μmよりも小さいと、溶射粉末を溶射ガンに安定的に供給できず、溶射膜が均一になるのが難しいことがある。なお、一般にセラミックは融点が高くしかも熱伝導率が低いため、均一な溶融状態が得られにくいので金属粉末に比べて細かめの粒度の粉末が用いられるが、細かすぎると、溶射フレーム中の最適位置への投入が難しい・送給時にトラブルを生じやすい等の問題が生ずるため、通常のプラズマで、平均粒径30〜50μm、高出力高能率の水安定化プラズマの場合で〜100μm程度の粉末が用いられる(例えば、沖幸男ら、日本溶射協会編「溶射技術入門」(2006)第191〜192頁参照)。これに対して、本発明で用いる原料粉末の平均粒径は従前に比べて、かなり微細なものとなっている。   The average particle size of the thermal spray raw material powder used in the present invention is preferably 1 to 10 μm, more preferably 2.5 to 8 μm, as the average primary particle size. When powder having an average particle size larger than 10 μm is used, a nitride powder having a high melting point may not melt and a sprayed film may not be deposited. On the other hand, if the average particle size is less than 1 μm, the sprayed powder cannot be stably supplied to the spray gun, and it may be difficult to make the sprayed film uniform. In general, ceramics have a high melting point and low thermal conductivity, so it is difficult to obtain a uniform molten state, so finer-grained powder is used compared to metal powder. It is difficult to throw into the position, and problems such as troubles are likely to occur during feeding. Therefore, with normal plasma, powder with an average particle size of 30-50 μm and high-power high-efficiency water-stabilized plasma of about 100 μm (For example, see Yukio Oki et al., Japan Thermal Spray Association, “Introduction to Thermal Spray Technology” (2006), pages 191 to 192). On the other hand, the average particle diameter of the raw material powder used in the present invention is considerably finer than before.

本発明では部材表面への溶射膜の形成の際、基材表面の温度をあらかじめ予熱して溶射することが好ましい。基材表面をあらかじめ予熱することは、溶射の際に、熱ショックによる基材の割れ防止、並びに密着性高い溶射膜を得るために有効である。予熱温度は用いる基材の種類によっても異なるが、例えば石英ガラス基材の場合50〜800℃、金属基材の場合50〜500℃、樹脂基材の場合50〜200℃の範囲が好ましく、これらの予熱温度は、基材の裏面からの熱電対による測定、或いは非接触の放射温度計等で測定できる。   In the present invention, it is preferable that the temperature of the substrate surface is preheated and sprayed in advance when the sprayed film is formed on the member surface. Preheating the surface of the base material in advance is effective for preventing the base material from cracking due to heat shock and obtaining a thermal sprayed film having high adhesion. The preheating temperature varies depending on the type of base material to be used. For example, the range of 50 to 800 ° C. for a quartz glass base, 50 to 500 ° C. for a metal base, and 50 to 200 ° C. for a resin base is preferable. The preheating temperature can be measured with a thermocouple from the back surface of the substrate or with a non-contact radiation thermometer.

予熱方法としては、基材を外部ヒーターで加熱する、または原料を供給せずに溶射フレームを基材に照射すること等で行えば良い。   As a preheating method, the base material may be heated by an external heater, or the thermal spray frame may be irradiated to the base material without supplying the raw material.

更に、部材の基材表面は、表面粗さRaとして1〜15μmであることが好ましい。表面粗さRaが1μm未満では、基材と溶射膜が剥離し易い場合があり、基材の上に耐蝕性ガラス溶射膜を均一に被覆することが難しい場合がある。一方、基材表面の表面粗さRaが15μmを超えると、溶射膜の表面粗さRaが10μmを超えることで、エッチング中に溶射膜の一部が取れてパーティクルが発生することがある。   Furthermore, it is preferable that the base material surface of a member is 1-15 micrometers as surface roughness Ra. If the surface roughness Ra is less than 1 μm, the substrate and the sprayed coating may be easily peeled off, and it may be difficult to uniformly coat the corrosion-resistant glass sprayed coating on the substrate. On the other hand, when the surface roughness Ra of the substrate surface exceeds 15 μm, the surface roughness Ra of the sprayed film exceeds 10 μm, so that a part of the sprayed film may be removed during etching to generate particles.

基材表面の表面粗さRaを1〜15μmとする方法としては、その様な表面粗さの溶射膜を基材に予め溶射する方法、基材自身をブラスト処理する方法又はブラスト処理とフッ酸等による化学的エッチングを併せて施す方法等を例示できる。   As a method of setting the surface roughness Ra of the substrate surface to 1 to 15 μm, a method of spraying a sprayed film having such a surface roughness on the substrate in advance, a method of blasting the substrate itself, or a blasting treatment and hydrofluoric acid The method etc. which perform the chemical etching by etc. collectively can be illustrated.

本発明で用いる溶射膜形成方法としてはプラズマ溶射であることが好ましい。特に、高出力・高ガス流量のプラズマによって溶射することが好ましい。高出力とは、50kw以上、高ガス流量とは120SLM(Standard Litter Per Minute)以上のプラズマを挙げることが出来る。出力・ガス流量を上げる事の効果は定かではないが、ガス流量を上げる事で、窒化物粉末がプラズマに滞在する時間が短くなり、酸化・分解が抑制されるものと考えられる。通常、ガス流量を増加させると、粉末が溶融しないために溶射膜が堆積しにくいが、プラズマの出力を増加させることで、粉末表面に溶融層が形成されると考える。   The thermal spray film forming method used in the present invention is preferably plasma spraying. In particular, it is preferable to perform thermal spraying with plasma having a high output and a high gas flow rate. Examples of the high output include plasma of 50 kw or more, and the high gas flow rate of 120 SLM (Standard Litter Per Minute) or more. Although the effect of increasing the output and gas flow rate is not clear, it is considered that increasing the gas flow rate shortens the time that the nitride powder stays in the plasma and suppresses oxidation and decomposition. Normally, when the gas flow rate is increased, the sprayed film is difficult to deposit because the powder does not melt, but it is considered that a molten layer is formed on the powder surface by increasing the output of the plasma.

基材表面への窒化物溶射膜の形成の際、プラズマ溶射を用いる場合、基材がガラスやセラミックスのときには、基材温度は100〜800℃が好ましい。基材温度が100℃より低いと溶射粉末が十分に溶けないため、溶射膜が付着しない場合があり、基材温度が800℃よりも高いと、基材と溶射膜の熱膨張率の違いから溶射膜に亀裂が発生して耐蝕性が低下したり、溶射原料である窒化物の分解によって窒素の消失が発生する場合がある。また、基材が金属材料のときには、基材温度は50〜400℃が好ましい。更に基材が樹脂であるときには、樹脂の種類にもよるが、基材温度は50〜300℃が好ましい。   When plasma spraying is used in forming the nitride sprayed film on the surface of the base material, the base material temperature is preferably 100 to 800 ° C. when the base material is glass or ceramics. If the substrate temperature is lower than 100 ° C., the sprayed powder will not melt sufficiently, so the sprayed film may not adhere. If the substrate temperature is higher than 800 ° C., the difference in thermal expansion coefficient between the substrate and the sprayed film In some cases, cracks occur in the thermal sprayed film, resulting in a decrease in corrosion resistance, and the disappearance of nitrogen may occur due to the decomposition of the nitride as the thermal spray raw material. When the substrate is a metal material, the substrate temperature is preferably 50 to 400 ° C. Furthermore, when the substrate is a resin, the substrate temperature is preferably 50 to 300 ° C., although it depends on the type of resin.

また、本発明の製造方法において、原料粉末の溶射ガンへの供給としては、プラズマ内部へ供給する方式であることが好ましい。プラズマ内部への粉末を供給する方式の溶射ガンとしては、例えば、Northwest Mettech社製の商品名「AxialIII」が挙げられる。この溶射ガンでは、3個のプラズマ電極が溶射粉末供給ノズルの周囲に120度の間隔で配置されていることから、プラズマ中心に溶射粉末が投入されるため、プラズマがNやH等の還元雰囲気である場合には、溶射粉末が酸素に触れることによる酸化を防ぐことも出来る。図1にプラズマ内部への粉末供給方式のプラズマ溶射装置の概念図を示す。プラズマ溶射装置は3つのアノード11とカソード10との間に流れたプラズマガス12がアーク放電にすることによって形成されるプラズマジェットをコンバージェンス14で集合させる。この集合したプラズマジェットを熱源として、その中央に溶射粉末13が投入されて溶融し、溶融した溶射粉末はプラズマガスの流速で基材16にぶつかり堆積するものである。 In the production method of the present invention, the supply of the raw material powder to the spray gun is preferably a method of supplying the inside of the plasma. As a spray gun of a system for supplying powder into the plasma, for example, trade name “Axial III” manufactured by Northwest Mettech is mentioned. In this spray gun, since the three plasma electrodes are arranged at intervals of 120 degrees around the spray powder supply nozzle, since the spray powder is introduced into the plasma center, the plasma is N 2 or H 2, etc. In the case of a reducing atmosphere, the thermal spraying powder can also prevent oxidation due to contact with oxygen. FIG. 1 shows a conceptual diagram of a plasma spraying apparatus of a powder supply system into the plasma. In the plasma spraying apparatus, a plasma jet formed by the plasma gas 12 flowing between the three anodes 11 and the cathode 10 being arc-discharged is collected by a convergence 14. Using the assembled plasma jet as a heat source, the sprayed powder 13 is introduced into the center and melted, and the melted sprayed powder collides with the base material 16 at the flow rate of the plasma gas.

本発明の製造方法において、溶射膜形成の際の溶射ガスとしては、N、Ar等不活性ガスあるいはH等還元性ガスを用いることができる。溶射ガス中に酸素が存在すると溶射原料粉末中の窒素が溶射中に酸化されて、溶射膜の窒素含有量が大きく低下するため、溶射ガス中の酸素濃度はできる限り低い方が好ましいが、大気中で窒化物粉末を溶射する際、溶射の出力を上げることで、高温になって飛行する溶射粉末や、堆積後の溶射粉末の表面の少量が酸化物に変化し、この酸化物が窒化物同士をつなげる役割になることもある。溶射膜中の窒化物の存在とその量は、溶射膜表面をX線回折法によって確認可能であり、溶射膜中の窒素量は、EPMAによって測定することが可能である。 In the production method of the present invention, an inert gas such as N 2 or Ar or a reducing gas such as H 2 can be used as the spray gas in forming the sprayed film. If oxygen is present in the spraying gas, the nitrogen in the spraying raw material powder is oxidized during the spraying, and the nitrogen content of the spraying film is greatly reduced, so the oxygen concentration in the spraying gas is preferably as low as possible, When spraying nitride powder in it, by increasing the power of spraying, a small amount of the surface of the sprayed powder that flies at high temperature and the sprayed powder after deposition changes to oxide, and this oxide is converted into nitride. It may be a role to connect each other. The presence and amount of nitride in the sprayed film can be confirmed on the surface of the sprayed film by X-ray diffraction, and the amount of nitrogen in the sprayed film can be measured by EPMA.

本発明の製造方法において、常圧下での溶射ガン先端と基板との間の距離である溶射距離は、40〜150mmが好ましい。溶射距離が150mmをこえると基板に溶射粉末が付着するまでに冷却されてしまい、基板上に溶射膜が堆積されない場合があり、溶射距離が40mmより短いと基材、溶射膜両方の温度が上昇してしまい、溶射膜や基材の割れの原因や、溶射膜中の窒素含有量が低下する場合がある。   In the production method of the present invention, the spray distance, which is the distance between the tip of the spray gun and the substrate under normal pressure, is preferably 40 to 150 mm. If the spraying distance exceeds 150 mm, the sprayed powder will be cooled until it adheres to the substrate, and the sprayed film may not be deposited on the substrate. If the spraying distance is shorter than 40 mm, the temperature of both the base material and the sprayed film will rise. Therefore, the cause of cracking of the sprayed film and the base material and the nitrogen content in the sprayed film may be reduced.

更に、溶射フレームを基材に溶射する際の投入する溶射パワーは用いる装置によっても異なるが、例えば図1に示すようなプラズマ溶射装置の場合、溶射パワーとして、50kW以上を例示することができる。   Furthermore, although the spraying power to be charged when spraying the spray frame on the base material varies depending on the apparatus to be used, for example, in the case of a plasma spraying apparatus as shown in FIG. 1, 50 kW or more can be exemplified as the spraying power.

本発明のプラズマ処理装置用部材は、窒化物の持つ優れた特性を溶射によって部材表面に付与することで、半導体等の製造におけるプラズマ処理装置(プラズマエッチング装置、プラズマクリーニング装置、アッシング装置)に使用した際、半導体製品への汚染が少なくなることや、高い熱伝導性を持つ静電チャックが出来ることで、短い時間で多くのウェハーを処理することが出来る。   The member for a plasma processing apparatus of the present invention is used for a plasma processing apparatus (plasma etching apparatus, plasma cleaning apparatus, ashing apparatus) in the manufacture of semiconductors and the like by imparting the excellent characteristics of nitride to the surface of the member by thermal spraying. In this case, it is possible to process many wafers in a short time because the contamination of the semiconductor product is reduced and an electrostatic chuck having high thermal conductivity can be formed.

本発明を実施例に基づき詳細に説明するが本発明はこれらの実施例のみに限定されるものではない。   The present invention will be described in detail based on examples, but the present invention is not limited to these examples.

実施例1
東洋アルミニウム(株)製窒化アルミニウム粉末FLC(平均粒径4.2μm、窒化アルミニウム表面に二酸化ケイ素が1.3wt%コーティングされている)をNorthwest Mettech社製AxialIII溶射装置を用いて石英ガラス基材上に溶射を行った。微粉末の供給としては、サーミコ社製のCPF−2HPを使用した。
Example 1
Aluminum nitride powder FLC manufactured by Toyo Aluminum Co., Ltd. (average particle size 4.2 μm, aluminum nitride surface coated with 1.3 wt% silicon dioxide) on quartz glass substrate using Northwest Mettech Axial III thermal spraying device Thermal spraying was performed. As a fine powder supply, CPF-2HP manufactured by Thermico Corporation was used.

溶射に用いた石英ガラス基板は、ブラストにより表面粗さRaを5μmとした石英ガラスに対し、5%フッ酸で2時間処理して表面粗さRaを8μmとしたものを使用した。   As the quartz glass substrate used for thermal spraying, a quartz glass having a surface roughness Ra of 5 μm by blasting and treated with 5% hydrofluoric acid for 2 hours to have a surface roughness Ra of 8 μm was used.

このときの予熱、溶射条件としては、まず、常圧にて、溶射距離100mm、プラズマパワーを140kW、溶射ガスとしてNとHガス合わせて280SLM流し、粉末を供給することなく、基板の予熱を行った。次に、上記窒化アルミニウム素粉末を10g/分の供給量で流し、溶射ガンを400mm/秒の速度で移動させながら、5パス溶射を行った。溶射の際の溶射距離、プラズマパワー、溶射ガスの条件は予熱と同様である。 Preheating at this time, as the spraying conditions, firstly, at atmospheric pressure, spraying distance 100 mm, the plasma power 140kW, N 2 and H 2 gas together flow 280SLM as spraying gas, the powder without supplying, the substrate preheating Went. Next, the aluminum nitride powder was flowed at a supply rate of 10 g / min, and 5-pass spraying was performed while moving the spray gun at a speed of 400 mm / sec. The conditions of spraying distance, plasma power, and spraying gas during spraying are the same as those for preheating.

この成膜した溶射膜の膜厚は100μm、表面粗さRaは9μmであり、X線回折法による構成相の解析では、六方晶窒化アルミニウムとεアルミナが観察され六方晶窒化アルミニウム100面とεアルミナ034面のX線回折のピーク面積から算出した窒化物の含有量は、六方晶窒化アルミニウムの結晶相が66%であった。
The deposited thermal spray film has a film thickness of 100 μm and a surface roughness Ra of 9 μm. In the analysis of the constituent phases by the X-ray diffraction method, hexagonal aluminum nitride and ε-alumina were observed, and the hexagonal aluminum nitride 100 surface and ε The nitride content calculated from the peak area of the X-ray diffraction of the alumina 034 surface was 66% of the crystal phase of hexagonal aluminum nitride.

実施例2
東洋アルミニウム(株)製窒化アルミニウム粉末FLC(平均粒径4.2μm、窒化アルミニウム表面に二酸化ケイ素が1.3wt%コーティングされている)をNorthwest Mettech社製AxialIII溶射装置を用いて石英ガラス基材上に溶射を行った。微粉末の供給としては、サーミコ社製のCPF−2HPを使用した。
Example 2
Aluminum nitride powder FLC manufactured by Toyo Aluminum Co., Ltd. (average particle size 4.2 μm, aluminum nitride surface coated with 1.3 wt% silicon dioxide) on quartz glass substrate using Northwest Mettech Axial III thermal spraying device Thermal spraying was performed. As a fine powder supply, CPF-2HP manufactured by Thermico Corporation was used.

溶射に用いた石英ガラス基板は、ブラストにより表面粗さRaを5μmとした石英ガラスに対し、5%フッ酸で2時間処理して表面粗さRaを8μmとしたものを使用した。   As the quartz glass substrate used for thermal spraying, a quartz glass having a surface roughness Ra of 5 μm by blasting and treated with 5% hydrofluoric acid for 2 hours to have a surface roughness Ra of 8 μm was used.

このときの予熱、溶射条件としては、まず、常圧にて、溶射距離100mm、プラズマパワーを145kW、溶射ガスとしてNとHガス合わせて230SLM流し、粉末を供給することなく、基板の予熱を行った。次に、上記窒化アルミニウム粉末を10g/分の供給量で流し、溶射ガンを400mm/秒の速度で移動させながら、5パス溶射を行った。溶射の際の溶射距離、プラズマパワー、溶射ガスの条件は予熱と同様である。
この成膜した溶射膜の膜厚は100μm、表面粗さRaは9μmであり、X線回折法による構成相の解析では、六方晶窒化アルミニウムとεアルミナ、αアルミナの結晶相が観察された。六方晶窒化アルミニウム100面とεアルミナ034面、αアルミナ104面のX線回折のピーク面積から算出した窒化物の含有量は、六方晶窒化アルミニウム51%であった。また、この溶射膜の断面の走査型電子顕微鏡(SEM)による観察(図2)とEPMAによるSi原子の分布の観察(図3)を行った。Si原子分布のEPMA像では、明るい部分がSi原子の存在割合が多いが、粒子周辺部(粒界)が明るくなっているため、Siが多いことが示され、粒子周囲がSiO化合物で覆われているように見られた。
Preheating at this time, as the spraying conditions, firstly, at atmospheric pressure, spraying distance 100 mm, the plasma power 145kW, N 2 and H 2 gas together flow 230SLM as spraying gas, the powder without supplying, the substrate preheating Went. Next, the aluminum nitride powder was flowed at a supply rate of 10 g / min, and 5-pass spraying was performed while moving the spray gun at a speed of 400 mm / sec. The conditions of spraying distance, plasma power, and spraying gas during spraying are the same as those for preheating.
The deposited thermal spray film had a film thickness of 100 μm and a surface roughness Ra of 9 μm. In the analysis of the constituent phases by the X-ray diffraction method, crystal phases of hexagonal aluminum nitride, ε alumina, and α alumina were observed. The nitride content calculated from the X-ray diffraction peak areas of the hexagonal aluminum nitride 100 surface, the ε alumina 034 surface, and the α alumina 104 surface was 51% hexagonal aluminum nitride. Further, the cross section of the sprayed film was observed with a scanning electron microscope (SEM) (FIG. 2) and the distribution of Si atoms was observed with EPMA (FIG. 3). In the EPMA image of the Si atom distribution, the bright part has a large proportion of Si atoms, but the periphery of the particle (grain boundary) is bright, indicating that there is a lot of Si, and the periphery of the particle is covered with a SiO 2 compound. It looked like it was.

比較例1
窒化ケイ素粉末(平均粒径15μm)について、実施例1と同様の基板に対して、実施例1と同様の方法で予熱と溶射を行ったが、溶射膜は付着しなかった。
Comparative Example 1
For silicon nitride powder (average particle size 15 μm), the same substrate as in Example 1 was preheated and sprayed in the same manner as in Example 1, but the sprayed film did not adhere.

プラズマ溶射装置の一例を示す図である。It is a figure which shows an example of a plasma spraying apparatus. 作製した窒化アルミニウム溶射膜の断面をSEMにより測定した図を示す。The figure which measured the cross section of the produced aluminum nitride sprayed film by SEM is shown. 作製した窒化アルミニウム溶射膜の断面をEPMAにより測定したSiの分布状態を示す図である。It is a figure which shows the distribution state of Si which measured the cross section of the produced aluminum nitride sprayed film by EPMA.

符号の説明Explanation of symbols

10:カソード
11:アノード
12:プラズマガス
13:溶射粉末(供給口)
14:コンバージェンス
15:溶射距離
16:基材
17:溶射膜
18:電源
10: Cathode 11: Anode 12: Plasma gas 13: Thermal spray powder (supply port)
14: Convergence 15: Thermal spray distance 16: Base material 17: Thermal spray film 18: Power supply

Claims (11)

部材表面の少なくとも一部に、窒化物を重量比で50%以上100%未満含有する溶射膜が形成され、溶射膜を構成する粒子は溶射により溶融する成分により被覆されていることを特徴とするプラズマ処理装置用部材。 A sprayed coating containing 50% or more and less than 100% by weight of nitride is formed on at least a part of the surface of the member, and the particles constituting the sprayed coating are covered with a component that melts by spraying. A member for a plasma processing apparatus. 窒化物が窒化アルミニウムであることを特徴とする請求項1に記載のプラズマ処理装置用部材。 The member for a plasma processing apparatus according to claim 1, wherein the nitride is aluminum nitride. 溶射により溶融する成分が金属酸化物であることを特徴とする請求項1に記載のプラズマ処理装置用部材。 The member for a plasma processing apparatus according to claim 1, wherein the component melted by thermal spraying is a metal oxide. 溶射により溶融する成分が二酸化ケイ素であることを特徴とする請求項3に記載のプラズマ処理装置用部材。 The member for a plasma processing apparatus according to claim 3, wherein the component melted by thermal spraying is silicon dioxide. 溶射により溶融する成分により被覆されている窒化物粉末を原料粉末として、プラズマ溶射によって基材表面に溶射して、溶射膜を形成し、当該溶射膜が窒化物を重量比で50%以上100%未満含有し、溶射膜を構成する粒子は溶射により溶融した成分により被覆されていることを特徴とするプラズマ処理装置用部材の製造方法。 A nitride powder coated with a component that is melted by thermal spraying is used as a raw material powder, and sprayed onto the substrate surface by plasma spraying to form a thermal sprayed film. The thermal sprayed film has a nitride ratio of 50% to 100% by weight. The manufacturing method of the member for plasma processing apparatuses characterized by the particle | grains which contain less and comprise the thermal spraying film | membrane being coat | covered with the component fuse | melted by thermal spraying. 平均粒径が1〜10μmの原料粉末を使用することを特徴とする請求項5に記載のプラズマ処理装置用部材の製造方法。 6. The method for producing a member for a plasma processing apparatus according to claim 5, wherein a raw material powder having an average particle diameter of 1 to 10 [mu] m is used. 原料粉末の供給がプラズマの中心方向になされることを特徴とする請求項5に記載のプラズマ処理装置用部材の製造方法。 6. The method for manufacturing a member for a plasma processing apparatus according to claim 5, wherein the raw material powder is supplied in the direction of the center of the plasma. 溶射により溶融する成分が金属酸化物であることを特徴とする請求項5に記載のプラズマ処理装置用部材の製造方法。 The method for producing a member for a plasma processing apparatus according to claim 5, wherein the component melted by thermal spraying is a metal oxide. 金属酸化物が二酸化ケイ素である請求項5に記載のプラズマ処理装置用部材の製造方法。 The method for producing a member for a plasma processing apparatus according to claim 5, wherein the metal oxide is silicon dioxide. プラズマ溶射を行う際のプラズマ出力が50kw以上である請求項5に記載のプラズマ処理装置用部材の製造方法。 The method for producing a member for a plasma processing apparatus according to claim 5, wherein the plasma output during plasma spraying is 50 kW or more. プラズマ溶射を行う際のガス流量が120SLM以上である請求項5に記載のプラズマ処理装置用部材の製造方法。 The method for manufacturing a member for a plasma processing apparatus according to claim 5, wherein a gas flow rate when performing plasma spraying is 120 SLM or more.
JP2007093334A 2007-03-30 2007-03-30 Member for plasma treatment apparatus, and method for producing the same Pending JP2008248345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093334A JP2008248345A (en) 2007-03-30 2007-03-30 Member for plasma treatment apparatus, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093334A JP2008248345A (en) 2007-03-30 2007-03-30 Member for plasma treatment apparatus, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008248345A true JP2008248345A (en) 2008-10-16

Family

ID=39973633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093334A Pending JP2008248345A (en) 2007-03-30 2007-03-30 Member for plasma treatment apparatus, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008248345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145515A (en) * 2014-01-31 2015-08-13 三菱重工業株式会社 Film deposition apparatus, film deposition method, high-temperature part, and gas turbine
JP2019090074A (en) * 2017-11-13 2019-06-13 日本特殊陶業株式会社 Method for manufacturing thermal spray member, and thermal spray member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145515A (en) * 2014-01-31 2015-08-13 三菱重工業株式会社 Film deposition apparatus, film deposition method, high-temperature part, and gas turbine
JP2019090074A (en) * 2017-11-13 2019-06-13 日本特殊陶業株式会社 Method for manufacturing thermal spray member, and thermal spray member

Similar Documents

Publication Publication Date Title
JP6581978B2 (en) High purity metal top coat for semiconductor manufacturing components
JP7033919B2 (en) Plasma spray coating design using phase and stress control
KR101465640B1 (en) CVD Process Chamber Components with Anti-AlF3 Coating Layer
WO2009084606A1 (en) Member coated with aluminum nitride by thermal spraying and process for producing the same
JP2011514933A (en) Yttrium-containing ceramic coating resistant to reducing plasma
US11473181B2 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
KR20100011576A (en) Plasma-resistant ceramic coated substrate
JP2009054984A (en) Component for film forming apparatus and its manufacturing method
US11312637B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
WO2004070076A1 (en) Corrosion-resistant member and method for producing same
JP5526098B2 (en) Corrosion-resistant member and manufacturing method thereof
JP2005097685A (en) Corrosion resistant member and manufacturing method therefor
JP2008248345A (en) Member for plasma treatment apparatus, and method for producing the same
JP2007081218A (en) Member for vacuum device
JP2008274342A (en) Plasma corrosion-resistant material, and member containing the same
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2006307311A (en) Corrosion-resistant member and manufacturing method therefor
US20090053533A1 (en) Corrosion-resistant member and process of producing the same
JP2006097114A (en) Corrosion-resistant spray deposit member
JP2004253793A (en) Corrosion-resistant material and method for producing same
JP5206199B2 (en) Vacuum device parts and manufacturing method thereof
JP2004143583A (en) Quartz glass component, method for producing the same, and apparatus using the same
JP2006265619A (en) Corrosion resistant member and method for producing the same
JP6027712B2 (en) Thermal spray member and manufacturing method thereof