JPH11228172A - Plasma corrosion resistant glass and device using the same - Google Patents

Plasma corrosion resistant glass and device using the same

Info

Publication number
JPH11228172A
JPH11228172A JP3525498A JP3525498A JPH11228172A JP H11228172 A JPH11228172 A JP H11228172A JP 3525498 A JP3525498 A JP 3525498A JP 3525498 A JP3525498 A JP 3525498A JP H11228172 A JPH11228172 A JP H11228172A
Authority
JP
Japan
Prior art keywords
plasma
glass
aluminum
atomic
resistant glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3525498A
Other languages
Japanese (ja)
Inventor
Mutsuhisa Nagahama
睦久 永浜
Moriyoshi Kanamaru
守賀 金丸
Atsushi Hisamoto
淳 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3525498A priority Critical patent/JPH11228172A/en
Publication of JPH11228172A publication Critical patent/JPH11228172A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/24Doped silica-based glasses doped with non-metals other than boron or fluorine doped with nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/24Doped silica-based glasses containing non-metals other than boron or halide containing nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Glass Compositions (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide glass superior in high-frequency transmittance, airtightness, as a container using to a plasma generation part, and also superior in corrosion resistance for plasma gas, and a semiconductor production device or a liquid crystal production device using it. SOLUTION: In the glass whose glass forming substance consists essentially of SiO2 , Al is incorporated 0.05-10 atomic % or 0.01-10 atomic % Al and less than 10 atomic % N (not include 0) are incorporated. An aluminum oxide concentrated layer is preferred to be formed on a glass surface, and the contents of alkali metal and/or transition metal are preferred to be less than 90 ppm in the total quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置ま
たは液晶製造装置等においてプラズマを発生させる部分
に用いられるプラズマ耐食性ガラス、及びこのプラズマ
耐食性ガラスを用いた半導体製造装置または液晶製造装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma corrosion-resistant glass used in a part for generating plasma in a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus, and a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus using the plasma corrosion-resistant glass. is there.

【0002】[0002]

【従来の技術】近年、半導体、液晶、薄膜製造における
CVD処理や、エッチング又はレジスト工程には、プラ
ズマを用いたプラズマ反応装置が多用される。ここで、
プラズマの発生は、一般に、プラズマ発生ガスに高周波
やマイクロ波を外部から当ててプラズマ化することによ
り行っている。従って、プラズマ反応容器のプラズマ発
生部分、具体的には高周波の導入部及び出力部には、高
周波の透過性及び真空気密性に優れた材料が用いられ
る。
2. Description of the Related Art In recent years, a plasma reactor using plasma has been frequently used for CVD processing, etching or resist processing in the production of semiconductors, liquid crystals and thin films. here,
In general, plasma is generated by applying a high frequency or microwave from outside to a plasma generating gas to generate plasma. Therefore, a material having excellent high-frequency permeability and vacuum tightness is used for the plasma generating portion of the plasma reaction vessel, specifically, for the high-frequency introduction portion and the output portion.

【0003】高周波透過性、真空気密性に優れた材料と
して、低誘電率、低誘電損失で緻密体である石英ガラ
ス、アルミナセラミックス、単結晶アルミナ(サファイ
ア)、窒化アルミニウム(AlN)が考えられる。
As materials having excellent high-frequency transmittance and vacuum tightness, quartz glass, alumina ceramics, single-crystal alumina (sapphire), and aluminum nitride (AlN), which are dense bodies having a low dielectric constant and a low dielectric loss, can be considered.

【0004】しかし、アルミナセラミックスや単結晶ア
ルミナ(サファイア)では、高熱時の耐衝撃性が劣り、
プラズマ発生時に要求される機械的強度が十分とは言え
ない。また、高周波特性の点でも、石英ガラスに比べて
劣っている。また、窒化アルミニウム(AlN)は、表
面平滑性に劣るため、プラズマに曝される表面積が大き
くなって腐食しやすいという問題がある。つまり、プラ
ズマ発生部分に用いられる場合であっても、発生したイ
オンプラズマや高速粒子或いは電子の衝撃や気相中の活
性種による化学反応を受けることがある。このため、プ
ラズマ発生部分の容器としては、上記高周波透過性、真
空気密性の他に、プラズマガスによる腐食に対する耐性
(以下、「プラズマ耐食性」という)が要求される。
However, alumina ceramics and single-crystal alumina (sapphire) have poor impact resistance at high temperatures,
The mechanical strength required when generating plasma is not sufficient. In addition, it is inferior to quartz glass in terms of high frequency characteristics. In addition, aluminum nitride (AlN) has a problem that the surface area exposed to plasma is increased due to poor surface smoothness, and the aluminum nitride (AlN) is easily corroded. In other words, even when used in a plasma generating portion, the generated ion plasma, high-velocity particles, or bombardment of electrons or a chemical reaction due to active species in a gas phase may occur. For this reason, in addition to the high-frequency permeability and the vacuum tightness described above, the container for the plasma generating portion is required to have resistance to corrosion by plasma gas (hereinafter, referred to as “plasma corrosion resistance”).

【0005】上記材料のうち、石英ガラスは、高周波特
性、耐熱性の点で優れているが、プラズマ耐食性が十分
ではない。特にフッ素プラズマ中では、石英ガラスの構
成物質であるSiO2 と下記反応してSiF4 を生成
し、生成したSiF4 は融点−90.2℃、沸点−86℃であ
るため、通常のCVD 処理やエッチング工程では気相が安
定である。このため、反応により生成したSiF4 はす
ぐに蒸発し、新たに表面に表れるSiO2 と下記反応が
どんどん進行することになってフッ素系プラズマによる
腐食が進行することになる。 SiO2 +4F→SiF4 ↑+O2 ↑ このような反応の進行は、石英ガラスの寿命が短くなる
だけでなく、SiF4 が発生し続けることにより、当初
は透明であった石英ガラスが次第に白くなって透光性の
低下をもたらすという問題もある。
[0005] Among the above materials, quartz glass is excellent in high-frequency characteristics and heat resistance, but has insufficient plasma corrosion resistance. In particular, in a fluorine plasma, the following reaction occurs with SiO 2 that is a constituent material of quartz glass to generate SiF 4, and the generated SiF 4 has a melting point of −90.2 ° C. and a boiling point of −86 ° C. The gas phase is stable in the process. Therefore, SiF 4 generated by the reaction evaporates immediately, and the following reaction with SiO 2 newly appearing on the surface progresses more and more, so that corrosion by the fluorine-based plasma proceeds. SiO 2 + 4F → SiF 4 ↑ + O 2 ↑ The progress of such a reaction not only shortens the life of the quartz glass, but also causes the initially transparent quartz glass to gradually become white due to the continued generation of SiF 4. There is also a problem that light transmittance is reduced.

【0006】石英ガラスの特性を生かしつつ、石英ガラ
スと同程度以上の耐熱性を有し、しかもプラズマ耐食性
に優れるように、石英ガラスの表面を酸窒化処理又は石
英ガラスの表面に窒化珪素(Si3N4)層を形成すること
が提案されている。
The surface of quartz glass is oxynitrided or the surface of quartz glass is silicon nitride (Si) so as to have the same or higher heat resistance as quartz glass and excellent plasma corrosion resistance while utilizing the characteristics of quartz glass. 3 N 4) to form a layer has been proposed.

【0007】例えば、特開昭60-246281 号公報、特開平
4-59633 号公報等では、アンモニア雰囲気中で石英材を
処理する方法が、また特開平7-53242 号公報、特開平8-
222575号公報では、アンモニアガスと炭素発生源、炭化
水素ガスによる熱処理を使用し、石英ガラス表面を酸窒
化処理または石英ガラス表面に窒化珪素コーティング層
を形成する方法が提案されている。また、特開昭62-963
49号公報では、1200℃以上の高温で、四塩化珪素(Si
Cl4 )及びアンモニアガス(NH3 )を真空下で流通
させるCVD 法を用いて、石英ガラスの表面に緻密質の窒
化珪素層を形成した半導体熱処理用石英ガラス反応管が
提案されている。
For example, JP-A-60-246281, JP-A-60-246281
In Japanese Patent Application Laid-Open No. 4-59633, a method of treating a quartz material in an ammonia atmosphere is disclosed in JP-A-7-53242 and JP-A-8-53242.
Japanese Patent No. 222575 proposes a method of oxidizing and nitriding the surface of quartz glass or forming a silicon nitride coating layer on the surface of quartz glass using a heat treatment using an ammonia gas, a carbon source, and a hydrocarbon gas. In addition, JP-A-62-963
No. 49 discloses that silicon tetrachloride (Si
There has been proposed a quartz glass reaction tube for semiconductor heat treatment in which a dense silicon nitride layer is formed on the surface of quartz glass using a CVD method in which Cl 4 ) and ammonia gas (NH 3 ) are passed under vacuum.

【0008】[0008]

【発明が解決しようとする課題】しかし、窒化珪素層
は、石英ガラスよりも耐食性に優れるものの、やはりフ
ッ素プラズマ中では表面がエッチングされ、プラズマ反
応容器材料としてはプラズマ耐食性が未だ満足できるレ
ベルにはない。
However, although the silicon nitride layer has better corrosion resistance than quartz glass, its surface is also etched in fluorine plasma, and the plasma corrosion resistance is still at a level that is satisfactory as a material for a plasma reactor. Absent.

【0009】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、半導体製造プ
ロセス等に用いられるプラズマ反応容器材料として、特
にフッ素系のプラズマガスに対する耐食性に優れたプラ
ズマ耐食性ガラスを提供することにある。
The present invention has been made in view of such circumstances, and it is an object of the present invention as a material for a plasma reaction vessel used in a semiconductor manufacturing process or the like, which is particularly excellent in corrosion resistance to a fluorine-based plasma gas. To provide a plasma corrosion resistant glass.

【0010】[0010]

【課題を解決するための手段】すなわち、第1発明に係
るプラズマ耐食性ガラスは、ガラス形成物質の主体がS
iO2 であるガラスにおいて、アルミニウムが0.05
〜1 0原子%含有されていることを特徴とする。
That is, in the plasma corrosion resistant glass according to the first invention, the main constituent of the glass forming material is S.
In the glass is iO 2, aluminum 0.05
-10 at%.

【0011】第2発明に係るプラズマ耐食性ガラスは、
ガラス形成物質の主体がSiO2 であるガラスにおい
て、アルミニウムが0.01〜1 0原子%及び窒素が1
0原子%以下(0を含まない)が含有されていることを
特徴とする。
[0011] The plasma corrosion-resistant glass according to the second invention comprises:
In a glass in which the main component of the glass-forming substance is SiO 2 , 0.01 to 10 atomic% of aluminum and 1% of nitrogen are contained.
0 atomic% or less (not including 0) is contained.

【0012】プラズマ耐食性ガラスは、酸化アルミニウ
ムの濃化層が形成されていることが好ましく、さらに、
アルカリ金属及び/又は遷移金属の含有量は、総量で9
0ppm 以下であることが好ましい。
Preferably, the plasma corrosion resistant glass has a thickened layer of aluminum oxide formed thereon.
The content of alkali metal and / or transition metal is 9 in total.
It is preferably 0 ppm or less.

【0013】また、本発明の半導体製造装置又は液晶製
造装置は、上記本発明のプラズマ耐食性ガラスを用いた
ことを特徴とする。
Further, a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus of the present invention is characterized by using the above-mentioned plasma corrosion resistant glass of the present invention.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。まず、第1の発明に係るプラズマ耐食性ガ
ラスは、ガラス形成物質の主体がSiO2 であるガラス
において、アルミニウムが0.05〜1 0原子%含有さ
れていることを特徴とする。
Embodiments of the present invention will be described below. First, the plasma corrosion resistant glass according to the first invention is characterized in that a glass mainly composed of SiO 2 contains 0.05 to 10 atomic% of aluminum.

【0015】石英ガラスを主体とすることにより、プラ
ズマ発生部分及びプラズマ封入部分に要求される高周波
透過性、真空気密性を満足できるからである。
[0015] By using quartz glass as a main component, high-frequency transmittance and vacuum airtightness required for a plasma generating portion and a plasma sealing portion can be satisfied.

【0016】SiO2 中に固溶状態にあるアルミニウム
原子は、プラズマガス、特に酸素プラズマに曝される
と、表層部で濃化を起こし、ガラス表面部に、酸化アル
ミニウム濃化層を形成する。ここで、酸化アルミニウム
(Al23 )は、原子状フッ素との反応において大き
なマイナスの自由エネルギー値を有するため、熱力学的
には反応が進行し得るが、反応速度がSiO2 とFとの
反応速度に比べて遅いため、反応は進行しにくい。従っ
て、ガラス表面に酸化アルミニウム(Al23)層が
形成されることにより、ガラス構成物質であるSiO2
とフッ素系プラズマとの反応が進行することを防止す
る。たとえ、酸化アルミニウムとフッ素とが反応してフ
ッ化アルミニウム(AlF3 )を生成する場合であって
も、フッ化アルミニウムは沸点が1200℃以上もある昇華
性物質で、石英ガラス表面に存在し続けることができる
ので、新たな腐食の進行を防止できる。
When aluminum atoms in a solid solution state in SiO 2 are exposed to a plasma gas, in particular, oxygen plasma, the aluminum atoms are concentrated in the surface layer, and an aluminum oxide concentrated layer is formed on the glass surface. Here, since aluminum oxide (Al 2 O 3 ) has a large negative free energy value in the reaction with atomic fluorine, the reaction can proceed thermodynamically, but the reaction speed is SiO 2 and F Since the reaction speed is slower than the reaction speed, the reaction hardly proceeds. Therefore, by forming an aluminum oxide (Al 2 O 3 ) layer on the glass surface, SiO 2 which is a glass constituent substance is formed.
And the reaction of fluorine with the plasma. Even if aluminum oxide reacts with fluorine to produce aluminum fluoride (AlF 3 ), aluminum fluoride is a sublimable substance having a boiling point of 1200 ° C. or more and continues to exist on the quartz glass surface. Therefore, new corrosion can be prevented from progressing.

【0017】尚、本発明にかかるプラズマ耐食性ガラス
表面に形成された酸化アルミニウム濃化層は、SiO2
中に固溶されているAlの表層部濃化によって形成され
たものであるから、石英ガラス表面にCVD法等により
形成されるAl23 コーティング膜を有する場合と比
べて、遥かにガラス基体との一体性が強いために、プラ
ズマ耐食性にも優れることになる。
The concentrated aluminum oxide layer formed on the surface of the plasma corrosion resistant glass according to the present invention is made of SiO 2
Since it is formed by concentrating the surface layer portion of Al dissolved therein, the glass substrate is far more in comparison with the case where the quartz glass surface has an Al 2 O 3 coating film formed by a CVD method or the like. Because of the strong integration with the above, plasma corrosion resistance is also excellent.

【0018】第1の発明にかかる高耐食性ガラスのアル
ミニウム含有量は、アルミニウムが0.05〜1 0原子
%である。0.05原子%未満では、石英ガラス面を完
全に覆うような酸化アルミニウム濃化層の形成が不十分
となるからである。一方、SiO2 を主体とする石英ガ
ラス中にアルミニウム単体を固溶させると、Si原子の
一部がアルミニウムに置換された状態で〔SiO4 〕の
4面体の3次元構造を形成することとなるため、架橋結
合を形成しない酸素原子が生じる(この酸原子を「非架
橋酸素原子」という)。図1において、(a)が石英ガ
ラス状態を示したもので、Siが中心となって4面体の
頂点に酸素原子が配置され、隣接の4面体のSi原子と
Si−O−Si架橋結合を保持した〔SiO4 〕の4面
体の3次元配列を無秩序に形成している。一方、図1
(b)は、Alがガラス骨格網目構造中に組み込まれた
結果、陽電荷が不足して、3次元網目構造を切断した状
態の非架橋酸素原子が存在している。
The high corrosion resistant glass according to the first invention has an aluminum content of 0.05 to 10 atomic% of aluminum. If the content is less than 0.05 at%, formation of the aluminum oxide concentrated layer that completely covers the quartz glass surface becomes insufficient. On the other hand, when aluminum alone is dissolved in quartz glass mainly composed of SiO 2 , a tetrahedral three-dimensional structure of [SiO 4 ] is formed with a part of Si atoms being replaced by aluminum. Therefore, an oxygen atom that does not form a cross-link is generated (this acid atom is referred to as a “non-cross-linked oxygen atom”). In FIG. 1, (a) shows a quartz glass state, in which oxygen atoms are arranged at the vertices of a tetrahedron with Si as a center, and Si—O—Si cross-links with Si atoms of an adjacent tetrahedron. The held [SiO 4 ] tetrahedral three-dimensional array is randomly formed. On the other hand, FIG.
In (b), as a result of Al being incorporated into the glass skeleton network structure, the positive charge is insufficient, and non-crosslinked oxygen atoms in a state where the three-dimensional network structure is cut off are present.

【0019】このように、アルミニウムの含有量が多く
なりすぎると、非架橋酸素原子の増加に伴って、ガラス
の反応性が高く(換言するとプラズマ耐食性を包含する
一般的な耐食性が低く)なる。また、アルミニウム含有
量の増大に伴い、Al23濃化層の厚みが大きくなっ
て、高周波透過性の低下をもたらすことになるからであ
る。よって、アルミニウム含有量を10原子%以下にす
る必要がある。次に、第2の発明に係る耐食性ガラスに
ついて説明する。
As described above, when the content of aluminum is too large, the reactivity of the glass becomes high (in other words, general corrosion resistance including plasma corrosion resistance becomes low) with an increase in non-crosslinked oxygen atoms. Also, as the aluminum content increases, the thickness of the Al 2 O 3 enriched layer increases, resulting in a decrease in high-frequency transmittance. Therefore, the aluminum content needs to be 10 atomic% or less. Next, the corrosion-resistant glass according to the second invention will be described.

【0020】第2の発明に係る耐食性ガラスは、ガラス
形成物質の主体がSiO2 であるガラスにおいて、アル
ミニウムが0.01〜1 0原子%及び窒素が10原子%
以下(0を含まない)が含有されていることを特徴とす
る。
The corrosion-resistant glass according to the second invention is a glass in which the glass-forming substance is mainly SiO 2 , wherein aluminum is 0.01 to 10 atomic% and nitrogen is 10 atomic%.
The following (not including 0) is contained.

【0021】第1の発明で述べたように、アルミニウム
の含有により、ガラス表面に耐食性に優れた酸化アルミ
ニウム濃化層を形成できるが、非架橋酸素原子も増加さ
せることになる。第2の発明では、窒素を含有させるこ
とにより、アルミニウムの切断作用による耐食性の低下
を防止している。すなわち、図2に示すように、酸素の
一部が3つの結合手がある窒素に置換されてSi=N結
合を形成し、また、Si−Al−O−N(サイアロン)
の形態をなして系全体の結合エネルギーを増加させるの
で、プラズマに対する耐食性が強化される。Al原子を
添加することで発生する正電荷の不足を補償して、非架
橋酸素原子を低減させることによって、耐食性の低下を
防止する。
As described in the first aspect of the present invention, by containing aluminum, an aluminum oxide-enriched layer having excellent corrosion resistance can be formed on the glass surface, but the number of non-crosslinked oxygen atoms also increases. In the second invention, by containing nitrogen, a decrease in corrosion resistance due to the cutting action of aluminum is prevented. That is, as shown in FIG. 2, a part of oxygen is replaced by nitrogen having three bonds to form a Si = N bond, and Si-Al-ON (Sialon)
, The binding energy of the entire system is increased, so that the corrosion resistance to plasma is enhanced. By compensating for the lack of positive charges generated by adding Al atoms and reducing non-bridging oxygen atoms, a decrease in corrosion resistance is prevented.

【0022】第2の発明にかかるアルミニウムの含有割
合0.01〜1 0原子%である。窒素の添加により、S
i−Al−O−N(サイアロン)構造の形成によるガラ
ス全体の耐食性の向上を図ることができるので、ガラス
表面を酸化アルミニウム濃化層で覆うのに十分量のアル
ミニウムを含有していなくても、耐食性を発揮できるか
らである。一方、10原子%を超える量を含有させて
も、アルミニウム添加の効果が飽和して、耐食性向上の
効果が得られないばかりか、アルミニウム量の増大によ
り、AlNなどの結晶が析出してきて、石英ガラスが本
来有する高周波透過性を低下せしめる原因となるからで
ある。
The content ratio of aluminum according to the second invention is 0.01 to 10 atomic%. By adding nitrogen, S
Since the corrosion resistance of the entire glass can be improved by forming the i-Al-ON (Sialon) structure, even if the glass surface does not contain a sufficient amount of aluminum to cover the glass surface with the aluminum oxide concentrated layer. This is because corrosion resistance can be exhibited. On the other hand, even if the content exceeds 10 atomic%, the effect of adding aluminum is saturated and the effect of improving the corrosion resistance is not obtained, and crystals such as AlN are precipitated due to the increase of the amount of aluminum, and quartz is added. This is because it causes a decrease in the high-frequency transmittance inherent to glass.

【0023】窒素の含有量は、10原子%以下(0を含
まない)で、アルミニウムの含有量に応じて適宜選択す
ればよい。窒素の含有によりアルミニウムの添加による
非架橋酸素原子を減少させることができるが、窒素の含
有量が増大しすぎると、SiNやAlNなどの結晶が析
出するからである。
The nitrogen content is 10 atomic% or less (excluding 0) and may be appropriately selected according to the aluminum content. Non-bridging oxygen atoms can be reduced by adding aluminum by adding nitrogen, but if the nitrogen content is too high, crystals such as SiN and AlN are precipitated.

【0024】さらに、上記第1の発明及び第2の発明に
おいて、アルカリ金属及び/又は遷移金属の含有量が、
総量で90ppm 以下であることが好ましい。アルカリ金
属及び/又は遷移金属は、高周波特性を劣化させる原因
となるので、これらの含有量を少なくすることによっ
て、内部にプラズマ発生ガスを封入し、外部から高周波
を透過させてプラズマを発生させるプラズマ発生容器と
して好適に用いられる。
Further, in the first and second aspects of the present invention, the content of the alkali metal and / or the transition metal is preferably
The total amount is preferably 90 ppm or less. Alkali metals and / or transition metals cause high-frequency characteristics to deteriorate. Therefore, by reducing the content thereof, a plasma generating gas is sealed inside, and plasma is generated by transmitting high frequency from the outside to generate plasma. It is suitably used as a generating container.

【0025】従って、本発明の半導体製造装置又は液晶
製造装置は、プラズマ発生部分が上記本発明のプラズマ
耐食性に優れ、しかも高周波透過性、真空気密性に優れ
た材料で構成されているので、プラズマエッチングやレ
ジスト工程を精度よく、長期間使用することができる。
Therefore, in the semiconductor manufacturing apparatus or the liquid crystal manufacturing apparatus according to the present invention, since the plasma generating portion is made of the above-described material of the present invention having excellent plasma corrosion resistance, high-frequency transmittance, and vacuum tightness, the plasma generating portion is excellent. The etching and the resist process can be used accurately for a long period of time.

【0026】[0026]

【実施例】〔アルミニウム含有の効果〕SiO2 粉末、
Al23 粉末を調合し、不活性雰囲気または還元雰囲
気下1700〜1900℃で熱処理を行って、アルミニウム含有
量を表1に示すように調整した石英ガラスを作製した。
[Example] [Effect of aluminum content] SiO 2 powder,
Al 2 O 3 powder was prepared and heat-treated at 1700 to 1900 ° C. in an inert atmosphere or a reducing atmosphere to produce quartz glass whose aluminum content was adjusted as shown in Table 1.

【0027】作製した石英ガラスを、高周波プラズマリ
アクター中に入れて、CF4 /O2混合ガス中又はSF6
ガス中で100時間プラズマエッチングさせた。プラ
ズマエッチング前後の重量減少量を測定し、エッチング
前の重量に対する減少割合(%)を求めた。その結果を
表1及び図3(CF4 /O2 プラズマ)、図4(SF 6
プラズマ)に示す。
The produced quartz glass is subjected to a high frequency plasma reactor.
Put in the actor, CFFour / OTwoIn mixed gas or SF6
 Plasma etching was performed for 100 hours in a gas. Plastic
Measure the amount of weight loss before and after Zuma etching and etch
The reduction ratio (%) with respect to the previous weight was determined. The result
Table 1 and FIG. 3 (CFFour / OTwo Plasma), FIG. 4 (SF 6 
Plasma).

【0028】[0028]

【表1】 [Table 1]

【0029】表1及び図3、図4からわかるように、ア
ルミニウム添加量が0.05原子%以上になると重量減
少量が0.003〜0.01%と劇的に減少してプラズ
マに対する耐久性が向上するが、10原子%以上になる
と、非架橋酸素原子が増えるためフッ素プラズマによる
腐蝕が進行して重量減少量が増加した。
As can be seen from Table 1 and FIGS. 3 and 4, when the addition amount of aluminum is 0.05 atomic% or more, the weight reduction amount is drastically reduced to 0.003 to 0.01%, and the durability against plasma is increased. However, when the content exceeds 10 atomic%, the amount of non-crosslinked oxygen atoms increases, so that corrosion by fluorine plasma progresses and the weight loss increases.

【0030】〔窒素含有の効果〕SiO2 粉末、Al2
3 粉末、Si34 粉末、AlN粉末を調合し、不活
性雰囲気または還元雰囲気下1700〜1900℃で熱処理を行
って、アルミニウム含有量を表2に示すように調整した
石英ガラスを作製した。作製した石英ガラスを、高周波
プラズマリアクター中に入れて、前記実験と同一条件、
すなわちCF4 /O2 混合ガス中で100時間プラズマ
エッチングさせた。プラズマエッチング前後の重量減少
量を測定し、エッチング前の重量に対する減少割合
(%)を求めた。その結果を表2及び図5に示す。
[Effect of Nitrogen Content] SiO 2 powder, Al 2
O 3 powder, Si 3 O 4 powder, and AlN powder were mixed and heat-treated at 1700 to 1900 ° C. under an inert atmosphere or a reducing atmosphere to produce quartz glass whose aluminum content was adjusted as shown in Table 2. . Put the produced quartz glass in a high-frequency plasma reactor, the same conditions as in the experiment,
That is, plasma etching was performed for 100 hours in a CF 4 / O 2 mixed gas. The weight loss before and after the plasma etching was measured, and the reduction ratio (%) to the weight before the etching was determined. The results are shown in Table 2 and FIG.

【0031】[0031]

【表2】 [Table 2]

【0032】表2と、表1のCF4 /O2 混合ガスプラ
ズマに対する重量減少量を比べると、Al添加量が同じ
でもNの添加量により重量減少量が異なり、Nの添加量
を調整することにより重量減少量をAl単独の場合より
も低減させることができることがわかる。
Comparing the weight loss with respect to the CF 4 / O 2 mixed gas plasma in Table 2 and Table 1, the weight loss differs depending on the N addition amount even when the Al addition amount is the same, and the N addition amount is adjusted. This shows that the weight loss can be reduced as compared with the case of using Al alone.

【0033】窒素添加量に対する重量減少量の関係を、
図5に示す。減少量が0.01%以下であればよく(図
5中、「●」で示す)、0.01%を超えるとプラズマ
耐食性が不十分である(図5中、「×」で示す)。図5
から重量減少量はNの添加量も関係していることがわか
る。
The relationship of the weight loss to the nitrogen addition is:
As shown in FIG. The reduction may be 0.01% or less (indicated by "●" in FIG. 5), and if it exceeds 0.01%, the plasma corrosion resistance is insufficient (indicated by "x" in FIG. 5). FIG.
From this it can be seen that the weight loss is also related to the amount of N added.

【0034】さらに、表2の結果を、アルミニウム添加
量(横軸)と窒素添加量(縦軸)との関係として、図6
に表す。図6から、アルミニウム添加量が0.01原子%以
上10原子%以下の範囲で、且つ窒素添加量が10原子
%以下では、重量減少量が0.01%以下であるが(図
6中、「●」で示される)、アルミニウム添加量が10
原子%を超えたり、窒素添加量が10原子%を超える
と、重量減少量が0.01%超となり(図6中、「×」
で示される)、プラズマ耐食性が不十分であった。
Further, the results in Table 2 are shown in FIG. 6 as a relationship between the aluminum addition amount (horizontal axis) and the nitrogen addition amount (vertical axis).
To From FIG. 6, when the aluminum addition amount is in the range of 0.01 atomic% to 10 atomic% and the nitrogen addition amount is 10 atomic% or less, the weight loss is 0.01% or less. "), The amount of aluminum added was 10
If the amount exceeds 10 atomic% or the amount of added nitrogen exceeds 10 atomic%, the weight loss exceeds 0.01% (in FIG.
), The plasma corrosion resistance was insufficient.

【0035】[0035]

【発明の効果】本発明の耐食性ガラスは、含有されてい
るアルミニウムが、ガラス表面にてプラズマ耐食性に優
れた酸化アルミニウム濃化層を形成するので、プラズマ
耐食性に優れている。
The corrosion-resistant glass of the present invention has excellent plasma corrosion resistance because the aluminum contained forms an aluminum oxide concentrated layer having excellent plasma corrosion resistance on the glass surface.

【0036】また、アルミニウムとともに窒素を所定範
囲含有する高耐食性ガラスでは、窒素の含有により非架
橋酸素原子を低減させることができるので、アルミニウ
ムを添加したことによる一般的な耐食性の低下もない。
In a high corrosion-resistant glass containing nitrogen in a predetermined range together with aluminum, non-crosslinked oxygen atoms can be reduced by containing nitrogen, so that there is no general decrease in corrosion resistance due to the addition of aluminum.

【0037】さらに、ガラスの主体を高周波透過性、真
空気密性に優れた石英ガラスで構成しているので、アル
カリ金属及び/又は繊維金属の含有量を所定量以下とす
ることにより、プラズマ発生部分の容器材料として好適
に用いることができる。
Further, since the main body of the glass is made of quartz glass which is excellent in high-frequency transmittance and vacuum tightness, the content of the alkali metal and / or the fiber metal is set to a predetermined amount or less, so that the plasma generating portion is formed. It can be suitably used as a container material for.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石英ガラスにアルミニウムを含有させた場合の
問題点を説明するための図である。
FIG. 1 is a view for explaining a problem when aluminum is contained in quartz glass.

【図2】サイアロン形態を説明するための図である。FIG. 2 is a diagram illustrating a sialon configuration.

【図3】石英ガラスにおけるアルミニウム原子含有量と
CF4 /O2 混合ガスプラズマ中での重量減少量との関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the content of aluminum atoms in quartz glass and the amount of weight loss in CF 4 / O 2 mixed gas plasma.

【図4】石英ガラスにおけるアルミニウム原子含有量と
SF6 ガスプラズマ中での重量減少量との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the content of aluminum atoms in quartz glass and the weight loss in SF 6 gas plasma.

【図5】石英ガラスにおける窒素原子含有量とCF4
2 混合ガスプラズマエッチングした場合の重量減少量
との関係を示すグラフである。
FIG. 5 shows nitrogen atom content and CF 4 /
5 is a graph showing a relationship with an amount of weight loss when plasma etching is performed using an O 2 mixed gas.

【図6】石英ガラスにおけるアルミニウム原子含有量及
び窒素原子含有量と、CF4 /O2 混合ガスに対するプ
ラズマ耐食性との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the content of aluminum atoms and the content of nitrogen atoms in quartz glass and the plasma corrosion resistance to a CF 4 / O 2 mixed gas.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/22 511 H01L 21/22 511M 21/68 21/68 N ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/22 511 H01L 21/22 511M 21/68 21/68 N

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガラス形成物質の主体がSiO2 である
ガラスにおいて、 アルミニウムが0.05〜1 0原子%含有されているこ
とを特徴とするプラズマ耐食性ガラス。
1. A plasma corrosion resistant glass, wherein the glass forming substance is mainly SiO 2 , wherein aluminum is contained in an amount of 0.05 to 10 atomic%.
【請求項2】 ガラス形成物質の主体がSiO2 である
ガラスにおいて、 アルミニウムが0.01〜1 0原子%及び窒素が10原
子%以下(0を含まない)含有されていることを特徴と
するプラズマ耐食性ガラス。
2. A glass in which the main constituent of the glass-forming substance is SiO 2 , wherein the glass contains 0.01 to 10 atomic% of aluminum and 10 atomic% or less (excluding 0) of nitrogen. Plasma corrosion resistant glass.
【請求項3】 請求項1又は請求項2のガラス表面部に
は、酸化アルミニウムの濃化層が形成されていることを
特徴とするプラズマ耐食性ガラス。
3. A plasma corrosion-resistant glass according to claim 1, wherein a concentrated layer of aluminum oxide is formed on the surface of the glass according to claim 1.
【請求項4】 アルカリ金属及び/又は遷移金属の含有
量は、総量で90ppm 以下である請求項1〜3のいずれ
かに記載のプラズマ耐食性ガラス。
4. The plasma corrosion-resistant glass according to claim 1, wherein the content of the alkali metal and / or the transition metal is 90 ppm or less in total.
【請求項5】 請項項1〜4に記載のプラズマ耐食性ガ
ラスを用いた半導体製造装置。
5. A semiconductor manufacturing apparatus using the plasma corrosion-resistant glass according to claim 1.
【請求項6】 請項項1〜4に記載のプラズマ耐食性ガ
ラスを用いた液晶製造装置。
6. A liquid crystal manufacturing apparatus using the plasma corrosion-resistant glass according to claim 1.
JP3525498A 1998-02-17 1998-02-17 Plasma corrosion resistant glass and device using the same Withdrawn JPH11228172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3525498A JPH11228172A (en) 1998-02-17 1998-02-17 Plasma corrosion resistant glass and device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3525498A JPH11228172A (en) 1998-02-17 1998-02-17 Plasma corrosion resistant glass and device using the same

Publications (1)

Publication Number Publication Date
JPH11228172A true JPH11228172A (en) 1999-08-24

Family

ID=12436696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3525498A Withdrawn JPH11228172A (en) 1998-02-17 1998-02-17 Plasma corrosion resistant glass and device using the same

Country Status (1)

Country Link
JP (1) JPH11228172A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188722A1 (en) * 2000-08-23 2002-03-20 Heraeus Quarzglas GmbH & Co. KG Article comprising a body made of quartz glass having improved resistance against plasma corrosion, and method for production thereof
SG90270A1 (en) * 2000-12-22 2002-07-23 Shinetsu Quartz Prod Quartz glass and quartz glass jig having excellent resistance against plasma corrosion, and method for producing the same
WO2002030840A3 (en) * 2000-10-13 2002-07-25 Heraeus Quarzglas Glass member resistant to plasma corrosion
WO2002067312A1 (en) * 2001-02-21 2002-08-29 Tokyo Electron Limited Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment
JP2002356337A (en) * 2001-06-01 2002-12-13 Tosoh Corp Method for producing composite quarts glass containing aluminum and/or yttrium by plasma fusion and its application
US6797110B2 (en) 2000-03-21 2004-09-28 Tokyo Electron Limited Glass, plasma resisting component, component for electromagnetic wave-transparent window and plasma processing apparatus
JP2005097722A (en) * 2003-08-25 2005-04-14 Tosoh Corp Corrosion resistant member, and method for manufacturing the same
WO2005110936A1 (en) * 2004-05-07 2005-11-24 Heiko Hessenkemper Method for treating the surface of glasses with metallic aluminum and glasses obtainable by said method
JP2005336011A (en) * 2004-05-27 2005-12-08 Tosoh Corp Corrosion resistant glass member, method of manufacturing the same and apparatus using the same
EP1894896A1 (en) * 2006-08-31 2008-03-05 Heraeus Quarzglas GmbH & Co. KG Mixed powder and a method for producing quartz glass using the powder
US7365037B2 (en) 2004-09-30 2008-04-29 Shin-Etsu Quartz Products Co., Ltd. Quartz glass having excellent resistance against plasma corrosion and method for producing the same
JP2008535764A (en) * 2005-04-15 2008-09-04 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
WO2009025077A1 (en) * 2007-08-23 2009-02-26 Shin-Etsu Quartz Products Co., Ltd. Chemical-resistant silica glass and method for producing chemical-resistant silica glass
US7923063B2 (en) 2007-12-10 2011-04-12 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Method of making glass including surface treatment with aluminum chloride using combustion deposition prior to deposition of antireflective coating
US8677782B2 (en) 2006-07-25 2014-03-25 Guardian Industries Corp. Method of making glass including surface treatment with aluminum chloride at or just prior to annealing LEHR
WO2021060583A1 (en) * 2019-09-25 2021-04-01 주식회사 하스 Crystallized glass having plasma corrosion resistance and parts for dry etching process comprising same
CN114156153A (en) * 2020-09-08 2022-03-08 细美事有限公司 Substrate processing apparatus, cover ring thereof, and method of manufacturing the cover ring

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797110B2 (en) 2000-03-21 2004-09-28 Tokyo Electron Limited Glass, plasma resisting component, component for electromagnetic wave-transparent window and plasma processing apparatus
EP1188722A1 (en) * 2000-08-23 2002-03-20 Heraeus Quarzglas GmbH & Co. KG Article comprising a body made of quartz glass having improved resistance against plasma corrosion, and method for production thereof
WO2002030840A3 (en) * 2000-10-13 2002-07-25 Heraeus Quarzglas Glass member resistant to plasma corrosion
US7015163B2 (en) 2000-10-13 2006-03-21 Heraeus Quarzglas Gmbh & Co. Kg Glass member resistant to plasma corrosion
SG90270A1 (en) * 2000-12-22 2002-07-23 Shinetsu Quartz Prod Quartz glass and quartz glass jig having excellent resistance against plasma corrosion, and method for producing the same
WO2002067312A1 (en) * 2001-02-21 2002-08-29 Tokyo Electron Limited Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment
JPWO2002067312A1 (en) * 2001-02-21 2004-06-24 東京エレクトロン株式会社 Parts for plasma processing apparatus, method for manufacturing the same, and plasma processing apparatus
JP2002356337A (en) * 2001-06-01 2002-12-13 Tosoh Corp Method for producing composite quarts glass containing aluminum and/or yttrium by plasma fusion and its application
JP2005097722A (en) * 2003-08-25 2005-04-14 Tosoh Corp Corrosion resistant member, and method for manufacturing the same
WO2005110936A1 (en) * 2004-05-07 2005-11-24 Heiko Hessenkemper Method for treating the surface of glasses with metallic aluminum and glasses obtainable by said method
EA010695B1 (en) * 2004-05-07 2008-10-30 Склострой Турнов Чешская Республика С.Р.О. Method for treating the surface of glasses with metallic aluminum
JP2005336011A (en) * 2004-05-27 2005-12-08 Tosoh Corp Corrosion resistant glass member, method of manufacturing the same and apparatus using the same
US7365037B2 (en) 2004-09-30 2008-04-29 Shin-Etsu Quartz Products Co., Ltd. Quartz glass having excellent resistance against plasma corrosion and method for producing the same
US7661277B2 (en) 2004-09-30 2010-02-16 Shin-Etsu Quartz Products Co., Ltd. Quartz glass having excellent resistance against plasma corrosion and method for producing the same
JP2008535764A (en) * 2005-04-15 2008-09-04 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Cage made of quartz glass for processing semiconductor wafers and method of manufacturing the cage
US8677782B2 (en) 2006-07-25 2014-03-25 Guardian Industries Corp. Method of making glass including surface treatment with aluminum chloride at or just prior to annealing LEHR
EP1894896A1 (en) * 2006-08-31 2008-03-05 Heraeus Quarzglas GmbH & Co. KG Mixed powder and a method for producing quartz glass using the powder
US7905932B2 (en) 2006-08-31 2011-03-15 Heraeus Quarzglas Gmbh & Co. Kg Mixed powder and a method for producing quartz glass using the powder
US8156761B2 (en) 2006-08-31 2012-04-17 Heraeus Quarzglas Gmbh & Co. Kg Method for producing quartz glass using a mixed powder
WO2009025077A1 (en) * 2007-08-23 2009-02-26 Shin-Etsu Quartz Products Co., Ltd. Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP2009051677A (en) * 2007-08-23 2009-03-12 Shinetsu Quartz Prod Co Ltd Chemically resistant silica glass and its production method
US7923063B2 (en) 2007-12-10 2011-04-12 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Method of making glass including surface treatment with aluminum chloride using combustion deposition prior to deposition of antireflective coating
WO2021060583A1 (en) * 2019-09-25 2021-04-01 주식회사 하스 Crystallized glass having plasma corrosion resistance and parts for dry etching process comprising same
CN114156153A (en) * 2020-09-08 2022-03-08 细美事有限公司 Substrate processing apparatus, cover ring thereof, and method of manufacturing the cover ring
US20220076929A1 (en) * 2020-09-08 2022-03-10 Semes Co., Ltd. Substrate treating apparatus and cover ring thereof
KR20220032949A (en) * 2020-09-08 2022-03-15 세메스 주식회사 Apparatus for treating substrate and cover ring of the same

Similar Documents

Publication Publication Date Title
JPH11228172A (en) Plasma corrosion resistant glass and device using the same
Zazzera et al. XPS and SIMS Study of Anhydrous HF and UV/Ozone‐Modified Silicon (100) Surfaces
EP0584252B1 (en) A PROCESS FOR DEPOSITING A SIOx FILM HAVING REDUCED INTRINSIC STRESS AND/OR REDUCED HYDROGEN CONTENT
JPH0464177B2 (en)
GB2081159A (en) Method of manufacturing a semiconductor device
JPH04226025A (en) Method forming titanium silicide con- ducting layer on silicon wafer
JPH1045467A (en) Corrosion resistant member
US5100504A (en) Method of cleaning silicon surface
JP2009004747A (en) Method for depositing high quality silicon dielectric film on germanium by high-quality interface
US5045346A (en) Method of depositing fluorinated silicon nitride
JPH11157916A (en) Corrosion-resistant member
US5407506A (en) Reaction bonding through activation by ion bombardment
JPS63117423A (en) Method of etching silicon dioxide
JPH11219937A (en) Process device
JP3457052B2 (en) Cleaning gas composition
JP4012714B2 (en) Corrosion resistant material
JPS6277466A (en) Formation of thin film
JPH11111686A (en) Low-pressure plasma etching method
Kroll et al. Formation of silica films on silicon using silane and carbon dioxide
JPH06291253A (en) Formation of dielectric film of electric charge storage section of semiconductor element
JP4453944B2 (en) Plasma resistant quartz glass jig
JP2003234471A (en) Semiconductor device and method for manufacturing the same
JP3393640B2 (en) Low gas pressure plasma etching method for single crystal silicon
JPH04186827A (en) Manufacture of semiconductor device
JPH0339475A (en) Method for strengthening formed oxidized film in plasma cvd device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510