WO2002067312A1 - Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment - Google Patents

Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment Download PDF

Info

Publication number
WO2002067312A1
WO2002067312A1 PCT/JP2002/001527 JP0201527W WO02067312A1 WO 2002067312 A1 WO2002067312 A1 WO 2002067312A1 JP 0201527 W JP0201527 W JP 0201527W WO 02067312 A1 WO02067312 A1 WO 02067312A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
processing apparatus
plasma
component
main body
Prior art date
Application number
PCT/JP2002/001527
Other languages
French (fr)
Japanese (ja)
Inventor
Kosuke Imafuku
Nobuyuki Nagayama
Kouji Mitsuhashi
Hiroyuki Nakayama
Tsuyoshi Hida
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to JP2002566540A priority Critical patent/JP4021325B2/en
Publication of WO2002067312A1 publication Critical patent/WO2002067312A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32559Protection means, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube

Definitions

  • the present invention relates to a component for a plasma processing apparatus, a method for manufacturing the same, and a plasma processing apparatus.
  • a plasma etching apparatus is used to perform an etching process on a workpiece such as a semiconductor wafer and perform desired fine processing on the surface of the workpiece. Is being applied.
  • an upper electrode and a lower electrode are disposed opposite to each other in an airtight apparatus main body, and high-frequency power is applied to the lower electrode on which an object to be processed is placed, so that the lower electrode and the upper electrode And a glow discharge is generated between them.
  • the processing gas supplied into the processing chamber is turned into plasma by the glow discharge, and the workpiece is etched.
  • a CF (fluorocarbon) -based gas has been widely used.
  • the apparatus main body Arumai bets treated A 1 (Aluminum Niu beam) metal is used as the base material, A 1 2 0 3 which is sintered (Aluminum Na)
  • a ceramics member is detachably mounted over the entire inner peripheral surface of the apparatus main body.
  • the conventional plasma edge quenching apparatus comprised of a outer wall portion of the apparatus made body A 1, A 1 2 0 3 that is detachably attached to the inner peripheral surface of the outer wall (alumina) Seise la mission-box member
  • the inner wall of the main unit is cut and damaged by plasma, it can be treated by replacing only the inner wall. Processing of the physical material can be resumed.
  • a focusing ring, a baffle plate, and a like are used in order to effectively confine plasma between an upper electrode and a lower electrode and perform a desired etching process on an object to be processed.
  • Parts such as seal drilling (hereinafter referred to as “parts in chamber”), that is, device parts are arranged at predetermined positions around the upper electrode and the lower electrode.
  • the tea Nba first internal product has a dielectric constant is required for 1 0 less insulation performance, Ri by conventional, quartz (S i 0 2), or poly Lee Mi-de (PI) based or poly A Mi Doi mi de ( PAI) -based resin material.
  • tea Nba in part this and many S i 0 2 material used as a component material of the amount is large adhesion to debris of component surfaces which occurs during machining.
  • the crushed particles become solid fine particles, scatter in the plasma atmosphere, and adhere to the surface of the workpiece.
  • the number of solid fine particles adhering to the object to be processed is within the allowable range (for example, the number of solid fine particles having a particle diameter of 0.2 m or more is within 30).
  • Dump operation is performed using the object to be processed. Then, after the dummy operation, a new workpiece is subjected to a dry etching treatment to obtain a desired microfabricated semiconductor product.
  • 1 a pressure is A 1 a vapor pressure of F 3 (room temperature 2 0 ° C for Ri by the low pressurization ⁇ Pi high power of the processing chamber due to microfabrication of the object to be processed the processing chamber (Cha Nba).
  • 6 X 1 0 - 4 approaches P a) a 1 F 3 becomes solid fine particles.
  • the solid fine particles of A 1 F 3 drop off from the inner wall and the components arranged in the apparatus main body and are scattered in the plasma atmosphere.
  • the scattered solid particles of A 1 F 3 adhere to the surface of the object to be treated, causing A 1 contamination, which is a kind of metal contamination, and lowering the product yield.
  • Et al is, when using the S i 0 2 material as a tea Nba in part, to attach a large amount of debris on the surface of the S i 0 2 material, the number of solid particles scatter a plasma atmosphere There was a problem that long-time dust operation had to be performed until the allowable range was reached.
  • An object of the present invention is to provide a part for a plasma processing apparatus capable of extending a cycle, a method for manufacturing the same, and a plasma processing apparatus.
  • An object is to provide a component for a plasma processing apparatus, a method for manufacturing the same, and a plasma processing apparatus. Disclosure of the invention
  • the present inventors have developed a material for a plasma processing apparatus component having excellent plasma resistance.
  • polybenzimidazole hereinafter referred to as “PBI”
  • PBI polybenzimidazole
  • the plasma processing device component according to the present invention is a plasma processing device component disposed inside the device main body of the plasma processing device, and is characterized by being formed of PBI that has been subjected to a drying process. are doing.
  • the parts for the plasma processing apparatus are formed of the PBI that has been subjected to the drying treatment, so that the plasma resistance of the parts can be improved and the product can be manufactured without performing the dummy operation. Water adhesion can be avoided.
  • the method for manufacturing a part for a plasma processing apparatus includes a step of performing a vacuum drying process on the powder of the present invention, and then subjecting the powder subjected to the vacuum drying process to a molding process to form a predetermined shape. It is characterized by manufacturing molded articles.
  • the PBI powder is subjected to vacuum drying and then molded, so that a desired PBI part can be easily obtained.
  • the second drying treatment is performed at a temperature higher than the first drying treatment temperature set in the vacuum drying treatment. It is preferred that the molded article be vacuum dried again at the processing temperature.
  • the vacuum drying treatment is preferably performed at a temperature of 140 ° C. to 180 ° C. for 5 to 7 hours.
  • the first annealing and the third annealing performed at a temperature of 280 ° C. to 300 ° C. for 2 to 4 hours during the mechanical processing after the forming process are performed. It is preferable to perform a second annealing treatment at a temperature of 40 ° C. to 360 ° C. for 2 to 4 hours.
  • the second annealing process is performed once.
  • a vacuum drying treatment at a temperature of 200 ° C. to 250 ° C. for 2 to 4 hours after performing a cleaning treatment after machining.
  • a plasma processing apparatus is a plasma processing apparatus for exciting a plasma inside an apparatus main body to finely process a surface of an object to be processed.
  • the plasma processing apparatus is disposed inside the apparatus main body and exposed to a plasma atmosphere. It is characterized in that parts are made of PBI that has been dried.
  • the water absorption of the PBI due to the water absorption of the PBI does not occur.
  • Plasma resistance can be improved.
  • PBI has excellent adhesion, it is possible to minimize the accumulation of solid fine particles generated in the apparatus main body on the object to be processed.
  • the water content of the dried PBI is not more than 3700 ppm.
  • PBI is used for plasma processing equipment components installed inside the plasma processing equipment, and is characterized by being dried to a water content of less than or equal to 370 ppm.
  • the inventors of the present invention have conducted intensive studies to improve the durability and the productivity of the components provided in the plasma processing apparatus, and have found that the sintered ceramics containing no aluminum component.
  • S i 3 N 4 (nitride Ke i containing) as a main component
  • Y 2 0 3 consists of (oxide Lee Tsu Application Benefits um), or S i C (carbonization Kei-containing) material, 'or composite material containing two or more of these materials (e.g., S i 3 N 4 and S i C) Ri by the that you use, can trigger improve plasma resistance as compared to the S i 0 2,
  • we can in this transgression to improve the productivity improvement This ensures that to shorten the time it takes to dummy operation as compared to the S i 0 2.
  • a plasma processing apparatus is a plasma processing apparatus that excites plasma inside an apparatus main body to finely process a surface of an object to be processed.
  • the plasma processing apparatus is disposed inside the apparatus main body and inside the apparatus main body. It is characterized in that parts exposed to the plasma atmosphere are formed of sintered ceramic materials that do not contain aluminum components.
  • the parts arranged in the inner wall of the apparatus main body and the inside of the apparatus main body, which are exposed to the atmosphere, are made of a sintered ceramic material containing no aluminum component. As a result, it is possible to prevent A1 contamination of the object to be treated, and to improve the product yield.
  • the plasma processing apparatus of the present invention the sintered Sera Mi click material, S i 3 N 4, Y 2 0 3, or one or more from among the material mainly composed of S i C Is selected.
  • sintered Sera Mi click material S i 3 N 4, Y 2 0 3, or by selecting one or more from among the material mainly composed of S i C Since it is configured, it is possible to reliably avoid A1 contamination of the object to be treated, to improve productivity, and to improve durability. .
  • a sintering aid is added to the sintered ceramic material.
  • the sintering aid is at least one of yttrium and / or yttrium.
  • the plasma processing apparatus component according to the present invention is a plasma processing apparatus component disposed inside the apparatus main body of the plasma processing apparatus, and is a sintered ceramic containing no aluminum component. It is characterized by being formed of a glass material.
  • the sintered ceramic material is one or two or more materials selected from the group consisting of silicon nitride, titanium oxide, and silicon carbide as main components. It is preferable to select and configure.
  • a sintering aid is added to the sintered ceramic material.
  • the sintering aid is at least one of yttrium and yttrium.
  • a method for manufacturing a component for a plasma processing apparatus is a method for manufacturing a component for a plasma processing apparatus disposed inside an apparatus body of the plasma processing apparatus, the method including an aluminum component. It is characterized in that parts for plasma processing equipment are formed from unsintered ceramic materials.
  • the sintered ceramic material may be one or more of materials containing silicon nitride, yttrium oxide, or silicon carbide as a main component. It is preferable to select two or more types.
  • a sintering aid to the sintered ceramic material.
  • the sintering aid is at least one of yttrium and yttrium.
  • the present inventors have conducted intensive research to find a part for a plasma processing apparatus that is more excellent in plasma resistance than a part for a plasma processing apparatus made of a silicon oxide.
  • the object different material, for example, rare earth compound (Y 2 0 3, etc.), Kei-containing compound excluding Kei-containing oxide (S i C, S i 3 N 4 , etc.), Aluminum Niu arm compound (a l 2 ⁇ 3, etc.), or two or more of these components contains a compound (Y 2 a, 5 0 12, etc.) and this which is added to obtain a finding that favored arbitrariness.
  • the component for a plasma processing apparatus is a component for a plasma processing apparatus used for an insulating component disposed inside the apparatus body of the plasma processing apparatus, and mainly includes a silicon oxide. It is characterized in that, in addition to being contained, a predetermined different material other than the silicon oxide is added.
  • the predetermined heterogeneous material is one or more selected from a rare earth compound, a silicon compound other than the silicon oxide, and an aluminum compound. It is characterized by including.
  • an electric melting method and a gas melting method can be considered as a method of manufacturing the above-described plasma processing apparatus parts.
  • a gas melting method In order to uniformly mix the silicon oxide as the main component and the dissimilar material, it is preferable to use a gas melting method.
  • the method for manufacturing a component for a plasma processing apparatus relates to a plasma processing apparatus used for an insulating component disposed inside the apparatus body of the plasma processing apparatus.
  • a method of manufacturing a component for a treatment device comprising adding a specified different material other than the silicon oxide to a silicon oxide, and applying the specified silicon oxide and the different material under an oxyhydrogen flame. Is melted and then cooled to produce parts.
  • the parts are manufactured using the oxyhydrogen melting method as the gas melting method, so that the silicon oxide and the dissimilar material can be easily and uniformly mixed.
  • the silicon oxide and the dissimilar material can be easily and uniformly mixed.
  • the dissimilar material includes one or more selected from rare earth compounds, silicon compounds other than the silicon oxide, and aluminum compounds as described above. It is preferred that
  • the plasma processing apparatus is a plasma processing apparatus that excites plasma inside the apparatus main body to finely process a surface of an object to be processed, wherein the plasma processing apparatus is used for an insulating component disposed inside the apparatus main body.
  • the components for a plasma treatment apparatus to be used are characterized in that silicon oxide is contained as a main component and a predetermined different material other than the silicon oxide is added.
  • the predetermined different material preferably includes one or more selected from a rare earth compound, a silicon compound other than the silicon oxide, and an aluminum compound.
  • FIG. 1 is an internal structure diagram showing an embodiment of a plasma etching apparatus as a plasma processing apparatus according to the present invention
  • FIG. 2 is a diagram showing a method of measuring a shaving amount (abrasion amount).
  • FIG. 3 is a bar graph showing the evaluation results of the plasma resistance of each type of ceramic material in the first embodiment
  • Fig. 5 (a) is a characteristic diagram showing the change over time in the BTM (bottom) dimensions of the etching groove when using PBI resin whose water content was suppressed to 37 ppm.
  • Fig. 5 (b) is a characteristic diagram showing the change over time in the BTM (bottom) dimensions of the etching groove when using PBI resin with a water content of 222 ppm.
  • FIG. 6 is a characteristic diagram showing a change over time of solid fine particles fixed on a semiconductor wafer.
  • FIG. 7 is a graph showing plasma resistance of various ceramic materials in the second embodiment.
  • FIG. 8 is a bar graph showing the evaluation results of FIG. 8, and FIG. 8 is an etching characteristic diagram when Si 3 N 4 material is used as a focusing ring.
  • figure off O over Ri Kas Kinoe Tsu quenching characteristic diagram der and was used S i ⁇ 2 material as a-ring, first 0 figure your sixth real ⁇ FIG.
  • FIG. 11 is a bar graph showing the evaluation results of the plasma resistance of various ceramic materials, and
  • FIG. 11 is an object view showing a method of manufacturing a plasma processing equipment component material according to the third embodiment. is there.
  • FIG. 1 is an internal structure diagram showing an embodiment of a plasma etching apparatus as a plasma processing apparatus according to the present invention.
  • apparatus main body 1 In a processing chamber 22 in a plasma etching apparatus main body 1 (hereinafter, apparatus main body 1), a number of various components in a chamber formed in a predetermined shape are arranged at predetermined positions.
  • a lower electrode 2 made of a conductive material is provided in the apparatus main body 1.
  • An electrostatic chuck 4 is placed on the upper surface of the lower electrode 2 to adsorb and hold the semiconductor wafer 3 (workpiece), and an elevating shaft that can move up and down in the direction of arrow A is provided below the lower electrode 2.
  • the elevating shaft 5 is connected to a high-frequency power source 7 via a matching device 6.
  • the electrostatic chuck 4 has a ceramic sprayed film formed on an aluminum base material by a plasma spraying method. It is preferable to apply methyl methacrylate as an impregnating agent on the surface of the sprayed coating in order to seal the pores of the sprayed coating. By using methyl methacrylate as the impregnating agent, the pores on the surface of the film to be sprayed can be sufficiently closed to provide a desired space between the semiconductor wafer 3 and the electrostatic chuck 4. Thus, the heat transfer gas layer can be formed, whereby the temperature of the semiconductor wafer 3 can be stably controlled.
  • the bottom and side surfaces of the lower electrode 2 are covered and protected by an electrode protection member 8, and the side and bottom surfaces of the electrode protection member 8 are covered by a conductive member 9.
  • a telescopic bellows 10 formed of a conductive material such as stainless steel is attached between the inner bottom surface of the apparatus main body 1 and the inside.
  • a tubular member 11 made of a conductive material such as oxidized A1 is provided on the lower surface of the electrode protection member 8, and the elevating shaft 5 penetrates the tubular member 11.
  • a baffle plate 12 extending in the horizontal direction is fixed to the side surface of the electrode protection member 8, and a gap is formed between the upper end surface of the electrode protection member 8 and the side surface of the electrostatic chuck 4.
  • a focusing ring 13 and an indicator lettering 40 are provided.
  • a first bellows cover 14 extending downward is fixed to the lower surface of the notch plate 12, and a first bellows cover is attached to the inner bottom surface of the apparatus body 1.
  • a second bellows cano 15 is erected so that it partially overlaps with 4.
  • an upper electrode 16 made of a conductive material is provided so as to face the lower electrode 2.
  • a large number of gas discharge holes 17 are formed in the upper electrode 16 and are provided on the upper surface of the apparatus main body 1.
  • a processing gas containing a CF-based gas is supplied from a gas supply port 18 to a processing chamber 22 through a gas discharge hole 17.
  • the gas supply port 18 is connected to a gas supply source 21 via a flow rate regulating valve 19 and an on-off valve 20 provided in the gas pipe G. Accordingly, the processing gas supplied from the gas supply source 21 reaches the gas supply port 18 via the on-off valve 20 and the flow control valve 19, and is discharged from the gas discharge hole 17 to the processing chamber 22. be introduced.
  • the upper electrode 16 is held at its peripheral edge by a seal ring 41 formed of an insulating material, and further, a protective ring 42 is formed around the seal ring 41.
  • a shield member 43 is suspended from the outer periphery of the protection ring 42.
  • An outlet 23 is formed at the bottom of the apparatus body 1.
  • the discharge port 23 is connected to a vacuum pump 24, and a workpiece transfer port 25 is formed on the lower side of the apparatus main body 1. Loading and unloading of the body wafer 3 is performed.
  • the semiconductor wafer 3 transferred into the processing chamber 22 through the processing object transfer port 25 is masked and electrostatically held by the electrostatic chuck 4.
  • a permanent magnet 26 is provided on the side surface of the apparatus main body 1 along the outer periphery.
  • the permanent magnet generates a magnetic field in the processing chamber 22 in a direction parallel to the processing surface of the semiconductor wafer 3 held by the electrostatic chuck 4.
  • the position of the semiconductor wafer 3 is adjusted by moving the elevating shaft 5 in the direction of arrow A by a driving mechanism (not shown).
  • the elevating shaft 5 acts as a power supply rod, and high-frequency power of, for example, 13.56 MHz can be applied to the lower electrode 2 from the high-frequency power source 7.
  • high-frequency power of, for example, 13.56 MHz
  • a glow discharge can be generated between the lower electrode 2 and the upper electrode 6.
  • the orthogonal electric field and the magnetic field are orthogonal.
  • a magnetic field is formed.
  • the pressure in the processing chamber 22 is reduced to a predetermined vacuum atmosphere by the vacuum pump 24, and the processing gas from the gas supply source 21 is supplied to the processing chamber 22.
  • This processing gas is turned into plasma, and the plasma confined between the lower electrode 2 and the upper electrode 16 performs desired fine processing on the surface to be processed of the masked semiconductor wafer 3. .
  • the components inside the chamber exposed to the plasma atmosphere that is, the focus ring 13, the seal ring 41, the protection ring 42, the shield member 43,
  • the first and second bellows covers 14, 15 are made of PBI resin with excellent plasma resistance.
  • the semiconductor wafer 3 is subjected to the dry etching treatment, and the surfaces of the components in the chamber exposed to the plasma atmosphere are also etched and consumed. Parts need to be replaced with new parts.
  • quartz, PI resin, and PAI resin which have been used as component materials for chamber components, have poor plasma resistance, and require frequent replacement of chamber components. However, it was a hindrance to improving productivity.
  • the experimental results of the present inventors have revealed that the PBI resin has better plasma resistance than the quartz, PI resin, and PAI resin.
  • the components inside the chamber that are exposed to water are made of PBI resin.
  • the PBI resin Since the PBI resin has excellent adhesiveness, solid fine particles generated by the reaction with the CF-based gas in the processing chamber 22 and scattered in the plasma atmosphere are easily applied to the PBI resin chamber components. The solid fine particles can be effectively prevented from being deposited on the object to be treated.
  • the molecular structural formula of PBI is represented by the following general formula (1), and PBI contains an imido group (one NH group).
  • the processing gas is generally a mixed gas containing Ar gas, O 2 gas, etc. in a CF-based gas
  • the PBI imido group reacts with O 2 in the processing chamber 22.
  • a reactant containing hydroxyl groups mono-OH groups
  • the amount of water absorbed by the PBI resin increases, and the water absorbed by the PBI resin may adhere to the semiconductor wafer 3.
  • a predetermined etching process is performed on the semiconductor wafer 3, and then the supply of the processing gas is stopped and a dummy operation is performed for a predetermined time. In some cases, it may be possible to eliminate moisture, but this requires extra time for the dummy operation and cannot improve productivity.
  • the PBI resin is subjected to a drying treatment in advance, and the dried PBI resin is used as a component material of the components in the chamber.
  • FIG. 4 is a flowchart showing a manufacturing process of the components in the chamber.
  • the PBI powder was reduced by a vibrating vacuum dryer under a reduced pressure of 1,995 Pa (15 Torr) at a temperature of 140 t to 180 ° C for 5 to 7 hours.
  • Vacuum drying (S101) and then, under a predetermined condition, by a well-known pressure sintering (Hot Press) method, to a predetermined shape, for example, focusing ring 13 or shield.
  • a molded article having a shape substantially corresponding to the ring 41 or the like is manufactured (S102), and thereafter, Machining such as cutting is performed (S103), followed by degreasing and pure water washing (S104).
  • anneal treatment of heating at a temperature of 280 ° C. to 300 ° C. for 2 to 4 hours was performed twice, and then at a temperature of 340 ° C. to 360 ° C. It is preferable to perform the annealing process once for 2 to 4 hours.
  • Sample B contains phthalic anhydride and isobutyl alcohol. Only a small amount of impurities such as cerazole, that is, the effect of removing impurities in cerazole by performing once annealing treatment at 350 X: for 3 hours .
  • the water content was measured by high-precision temperature-separated gas analysis.
  • FIG. 5 is a characteristic diagram showing the change over time of the BTM (bottom) dimension of the etching groove.
  • FIG. 5 (a) shows that the PBI resin in which the water content was suppressed to 700 ppm was used.
  • the BTM (bottom) of the etching groove is different between the case where the PBI resin whose moisture content is suppressed to 370 ppm and the case where the PBI resin whose moisture content is 224 ppm are used. ) The dimensional variation and the change over time were compared. This indicates that when the water content of the PBI resin is suppressed, the variation in the BTM (bottom) dimension of the etching groove and the change with time can be suppressed.
  • the cleaning process after machining is performed as follows.
  • the molded product after machining is subjected to degreasing and pure water washing to remove heavy metals adhering to the surface with hydrofluoric acid, and then to pure water washing and ultrasonic cleaning, and then to natural polymer material. Polishing (polishing) the surface to remove solid fine particles on the surface, followed by high-pressure cleaning and ultrapure water cleaning, and then cleaning after machining. I have.
  • the first embodiment of the present invention exposure to a plasma atmosphere is performed.
  • the components inside the chamber are made of dried PBI resin, so the plasma resistance is higher than those made of quartz, PI resin and PAI resin.
  • the durability of the product is improved, the frequency of component replacement is reduced, and productivity can be improved.
  • PBI resin has excellent adhesion, even if solid fine particles of the reaction product generated by reacting with the processing gas are scattered in the plasma atmosphere, they are easily adsorbed on the PBI chamber components. Therefore, it is possible to prevent solid fine particles from being deposited on the semiconductor product.
  • the apparatus main body 1 is detachably mounted on an alumite-treated outer wall 1a made of A1 and over the entire inner peripheral surface of the outer wall 1a.
  • the inner wall 1b is formed of a sintered ceramic material containing no aluminum component, that is, an aluminum-less sintered ceramic material.
  • the focus ring 13 exposed to the plasma atmosphere, the insulator ring 40, the electrode protection member 8, the notch plate 12 and the first and second plates are provided.
  • the components inside the chamber such as the rose covers 14 and 15 are arranged at predetermined positions.
  • the components inside the chamber are also made of an aluminum-less sintered ceramic. It is formed of a box material.
  • Is an Aluminum-less sintering Sera Mi click scan materials for example, S i 3 N 4, Y 2 0 3, S i C 1 kind of material or two or more composite material mainly use the Sa It is.
  • S i 0 2 excellent plasma resistance as compared with, moreover machining debris generated during even rather small compared to S i 0 2, was but One with dummy operation also short the kinds of materials requires time, i.e. S i 3 N 4, Y 2 0 3, S i C 1 kind of material or two or more composite material mainly composed of, preferred and rather is tempered aid and Les Te Lee A material to which at least one of tribium (Yb) and yttrium (Y) is added is used.
  • the above-described chamber inner part (plasma-resistant part) was formed of the above-described aluminum-less sintered ceramic material similarly to the inner wall part 1b.
  • Ri Do clear that the this that can have a this micromachining a connexion semiconductor wafer 3 also in Chiya Nba parts S i ⁇ If formed by two material substantially equal Etchingu speed, therefore, the desired edge It is also possible to secure the switching speed.
  • these aluminum-less ceramic materials having excellent plasma resistance are obtained by a normal pressure sintering method, a pressure sintering method (Hot Press) method, or an isotropic pressure sintering method (Hot Isostatic Press method). Needless to say, it can be easily formed into a predetermined shape using a well-known sintering method.
  • the semiconductor wafer 3 to be processed is formed of A 1 Contamination can be avoided, and product yield can be improved.
  • the components inside the chamber arranged inside the main body 1 also As with b, superior S i 3 N There Y 2 0 3, S i aluminum-less sintering Serra a C like as a main component Mi click scan material plasma resistance, and rather is a sintering aid like Since it is made of aluminum-less sintered ceramics material to which at least one of yttrium and yttrium is added, a conventional method is used.
  • a magnetic field assist type plasma etching apparatus in which permanent magnets 26 are arranged on the outer periphery of the apparatus main body 1 has been described as an example, but other methods, for example, permanent magnets 26 are provided. Instead, the same can be applied to an ion-assist type plasma etching apparatus in which high-frequency power is applied to both the upper electrode 16 and the lower electrode 2 to generate plasma. Needless to say.
  • FIG. 11 is a schematic view showing a method of manufacturing a component material of a plasma processing apparatus according to the third embodiment.
  • the component material for a plasma processing apparatus is manufactured by an oxyhydrogen melting method.
  • Is the above predetermined different materials, plasma resistance excellent material specifically, such as Y 2 0 3 rare earth compound or a, S i C and S i 3 of N 4, such as S i 0 2 other than Kei-containing compounds, a 1 2 0 aluminum Niu beam compounds such 3, or Y 2 a, 5 0 12 (I Tsu Application Benefits U arm one aluminum - Gane Tsu DOO; YAG) rare earth compounds such as aluminum A reaction product with a nickel compound can be used.
  • the content of the above-mentioned different material with respect to SiO 2 is set to 1 wt% to 5 wt%.
  • the content of the above-mentioned heterogeneous material is set to 1 wt% to 5 wt% because, when the content of the above-mentioned heterogeneous material is less than 1 wt%, the content of the heterogeneous material is too small and the plasma resistance On the other hand, even if the content of different materials exceeds 5 wt%, the plasma resistance becomes saturated, and the effect of adding different materials cannot be obtained. It is.
  • the plasma resistance of a rare earth compound or the like is high. Since addition of superior predetermined different materials uniformly S i 0 2 powder 1 0 in 1 in an oxyhydrogen melting method (mixing) is to manufactures component material 1 0 6, using parts materials 1 0 6 Of plasma processing equipment (sealing rings 41, focusing rings 13, insulating rings, etc.) manufactured by using this method has improved plasma resistance, and the frequency of replacement of equipment parts has been improved compared to the past. And the productivity of semiconductor manufacturing can be improved.
  • the present inventors found that two types of PBI (PBI-A, PBI-B) were used as PBI materials, and three types of PIs (PI_A, PI-B, PI—C), one type of PAI (PAI-A) was used as the PAI material, and each of these materials was used to measure a length of 20 mm, a width of 20 mm, and a thickness of 2 mm. Test pieces were prepared. Then, as shown in Fig. 2, the outer peripheral portion 30 of each test piece was masked with polyimide film (DuPont, registered trademark "Pyton”) and the central portion 31 was formed.
  • An irradiation surface of 10 mm in length and 10 mm in width is provided, plasma is irradiated for 20 hours under the following discharge conditions, and the amount of shaving in the X-axis direction and Y-axis direction is measured by a surface roughness meter. ) was measured, and the plasma resistance was evaluated.
  • Processing chamber pressure 1 3 3 Pa (1.0 Torr)
  • FIG. 3 is a bar graph showing the measurement results, in which the abscissa indicates the material of each test piece and the ordinate indicates the shaving amount (m) after 20 hours.
  • the PBI material consumes less than the PI material and the PAI material, and has excellent plasma resistance.
  • the present inventors first used the S i N 4 material mainly composed of S i 3 N 4 as an embodiment, S i 0 mainly composed of S i 0 2 and Comparative Example Using two materials, an insulator ring 40 having an approximate diameter of 23 Oram, an outer diameter of 280 mm, and a total height of 15 mm was manufactured.
  • the insulating ring 40 is disposed at a predetermined position in the processing chamber 22, and the 8-inch (203.2 mm) semiconductor wafer 3 is placed on the electrostatic chuck 4. Then, plasma irradiation was performed by generating a glow discharge under predetermined discharge conditions, and the number of solid fine particles before and after plasma irradiation was measured. Specifically, since the crushed debris is adhered to the surface of the insulator ring 40 by machining, five semiconductor wafers 3 are used to remove the crushed debris.
  • a dummy operation is performed for 1 minute each, for a total of 5 minutes.
  • a new semiconductor wafer 3 is sucked and held on the electrostatic chuck 4 and plasma irradiation is performed for 30 seconds, and before and after the plasma irradiation.
  • the number of solid fine particles was measured with KLA—Tencor Surfscan6420.
  • the discharge conditions are as follows.
  • Processing chamber pressure 5.32 Pa (4.0 X 10 -2 Torr)
  • Reactive gas species C 4 F 8 / C 0 / A r / 0 2
  • Table 2 shows the number of solid particles adhered on the semiconductor wafer 3 before and after the test.
  • the S i 0 2 material showed an increase in solid fine particles of 0.2 ⁇ m or more by 115 before and after plasma irradiation. 3 in the N 4 material not increased only nine.
  • Y 2 0 3 material in the present invention example was composed mainly of Y 2 0 3, mainly composed of A 1 2 0 3 and Comparative Example A by using the 1 2 0 3 material, to produce a second embodiment similar to Lee Nshiyu les Isseki-ring 4 0.
  • FIG. 6 is a characteristic diagram showing the measurement results, in which the horizontal axis represents the application time (hr) of the high-frequency power, and the vertical axis represents the number of solid fine particles having a diameter of not less than 0.1 ⁇ m. Also, in the figure, the solid line a generation number of the solid particles of Y 2 0 3 material is present invention embodiment shows, dashed line shows the number of generated solid particulates of A 1 2 0 3 material is a comparative example I have.
  • the A 1 F 3 reacts A 1 2 0 3 is a C 4 F 8 gas in the comparative example and generate, the A 1 F 3 scatters the plasma atmosphere becomes solid particulates, the Re this Thus, it is presumed that the solid fine particles adhere to the semiconductor wafer 3.
  • the present inventors S i C as an embodiment, the Y 2 0 3, S i 3 N 4, and the ratio Comparative Examples A 1 2 0 3, the material of the S i 0 2 , 20 mm in length, 20 mm in width, and 2 mm in thickness were prepared.
  • the outer periphery 30 of each test piece was made of polyimide film (DuPont, Inc.). (Registered trademark “Kabton”)), and an irradiation surface of 10 mm in length and 10 mm in width is provided in the center 31, and plasma is applied under the same discharge conditions as in the second embodiment. Irradiation was performed for 0 hour, and the amount of wear (consumed amount) in the X-axis direction and the Y-axis direction was measured with a surface roughness meter.
  • FIG. 7 is a bar graph showing the measurement results.
  • the horizontal axis shows each ceramic material, and the vertical axis shows the amount of shaving (m) after 20 hours.
  • the A 1 2 0 3 material have been excellent in plasma resistance even as compared with the S i 3 N 4 material Ya S i C material, earthenware pots by apparent from the experimental results of the second embodiment, since the solid particles a 1 2 0 3 consists of a 1 F 3 reacts with C 4 F 8 gas is generated, not suitable for part materials for flops plasma processing apparatus.
  • the present inventors used the Si 3 N 4 material as the present example, and used the SiO 2 material as a comparative example. Letter The etching rates were compared under the above-mentioned discharge conditions.
  • Figure 8 is shows the measurement results of the S i 3 N 4 material
  • Figure 9 shows the measurement results of the S i 0 2 material.
  • the horizontal axis represents the wafer diameter (mm) of the semiconductor wafer
  • the vertical axis represents the etching speed (nm / min). The measurement was performed on the XY plane of the semiconductor wafer in both the X-axis direction and the Y-axis direction.
  • the etching speed of the Si 3 N 4 material shown in FIG. 8 is 3.1% at 3.4 nm / min, and the etching speed of the Si 0 2 material shown in FIG. 9 is 302 nm / min. % and Do Ri, even when used in the S i 3 N 4 material as plasma resistance component (Cha Nba in part), it is the this to secure substantially the same etching performance as si 0 2 material Was confirmed.
  • the present inventors set the purity of Si 3 N 4 obtained by adding yttrium and yttrium to Si 3 N 4 as a sintering aid in this example.
  • Application Benefits Piumu ⁇ Pi Lee Tsu S i 3 N 4 purity Application Benefits ⁇ beam was pressurized Introduction 9 1% S i 3 N 4 - B, and S i 3 N 4 to S i 3 N 4 purity plus b tree
  • Application Benefits um as a sintering aid is 9 8% S i 3 N 4 - C, and as Comparative example S i 3 N 4 to S i 3 N 4 purity plus magnesium as a sintering aid of 9 9.
  • Fig. 10 is a bar graph showing the measurement results. The horizontal axis shows each ceramic material, and the vertical axis shows the amount of shaving 20 hours after Quartz was 100. Shows the amount of scraping.
  • S i 3 N 4 was added Lee Tsu Application Benefits um as a sintering aid to the S i 3 N 4 - scraping amount of C is Ri about 6 Waridea the scraping amount of Q uartz, S i 3 N 4 S i 3 N 4 was added magnesium as a sintering agent - small Ri by abrasion amount of D.
  • scraping amount Ri does not depend on S i 3 N 4 purity by the this adding dry ⁇ agent S i 3 N 4, scraping amount Ri is Do rather small, also drying aid Thus, it is found that it is appropriate to use at least one of yttrium and yttrium.
  • the components for the plasma processing apparatus are formed of dried polybenzoimidazole (PBI), quartz and PI
  • PBI polybenzoimidazole
  • quartz quartz
  • PI polybenzoimidazole
  • the plasma resistance is improved compared to conventional products made of resin and PAI resin, and therefore the durability of the components inside the chamber can be improved, thereby extending the maintenance cycle.
  • Can The frequency of parts replacement is also reduced.
  • the components for the plasma processing apparatus according to the present invention are formed of dried polybenzoimidabour, moisture does not adhere to products such as semiconductor devices, and therefore, unnecessary waste operation There is no need to do this.
  • the method for manufacturing a part for a plasma processing apparatus is characterized in that after performing a vacuum drying process on a polybenzomidazole powder, a molding process is performed on the vacuum-dried powder to form a molded product having a predetermined shape. Because of this, it is possible to easily manufacture parts for plasma processing equipment that excel in plasma resistance and remove water absorption. Therefore, the BTM (bottom) portion of the etching groove can be manufactured. Variations in dimensions and changes over time can be suppressed.
  • the components disposed inside the apparatus main body and exposed to the plasma atmosphere are formed of a dry-processed polybenzimidazole, the components are The plasma resistance of these components is improved, and therefore the durability of these components is also improved. As a result, the frequency of component replacement is reduced, and the productivity of products such as semiconductor devices can be improved.
  • the plasma processing apparatus includes an inner wall of the apparatus main body and components exposed to a plasma atmosphere provided inside the processing chamber.
  • the sintered ceramic material may be composed of one or more materials selected from materials containing silicon nitride, yttrium oxide, or silicon carbide as a main component. Since it is composed of one or more selected from the above, so-called dummy operation can be shortened and productivity can be improved.
  • the frequency of these sintered Yuise La Mi click material also enabling high- also improve durability because of its excellent in ⁇ Pu plasma resistance as compared with quartz (S i 0 2), and wanted to replace parts And maintainability is improved.
  • these sintered ceramic materials contain at least one of yttrium beam and yttrium as a sintering aid, they are resistant to sintering.
  • the plasma properties can be further improved, and the durability can be further improved.
  • the plasma processing device component according to the present invention is a plasma processing device used for an insulating component disposed inside a device main body of a plasma processing device. Since it is a component for equipment that contains silicon oxide as a main component and is added with a predetermined dissimilar material other than the silicon oxide, it has plasma resistance as a predetermined dissimilar material. By selecting an excellent material, it is possible to manufacture a component for a plasma processing apparatus having an excellent plasma resistance, thereby improving the durability of the component and improving the semiconductor performance. Production productivity can be improved.
  • the method for manufacturing a component for a plasma processing apparatus is a method for manufacturing a component for a plasma processing apparatus used for an insulating component disposed inside an apparatus body of the plasma processing apparatus, comprising: Since a predetermined heterogeneous material other than silicon oxide is added to the material, the silicon oxide and the heterogeneous material are melted in an oxyhydrogen flame, and then cooled to manufacture parts for a plasma processing apparatus.
  • the elemental oxide and the dissimilar material can be surely and uniformly mixed, and a desired component for a plasma processing apparatus having excellent plasma resistance can be obtained. Wear.
  • the different materials are selected from rare earth compounds, silicon compounds other than the above silicon oxides, and substances containing one or more selected from aluminum compounds, In addition, the plasma resistance described above can be easily improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Parts of an apparatus for plasma treatment which is to be disposed inside of the body of the apparatus and to be exposed to a plasma atmosphere (a focus ring, a shield ring, a protecting ring, a shielding member, and a first or second bellows cover), characterized in that they are formed of one of a polybenzimidazole material having been subjected to a drying treatment, a sintered ceramic material and a material containing a silicon oxide as a primary component and another material specified.

Description

明 細 書 プラズマ処理装置用部品及びその製造方法、 並びにプラズマ処理装置 技術分野  Description: Components for plasma processing apparatus, method for manufacturing the same, and plasma processing apparatus
この発明は、 プラズマ処理装置用部品及びその製造方法、 並びにブラ ズマ処理装置に関する。 背景技術  The present invention relates to a component for a plasma processing apparatus, a method for manufacturing the same, and a plasma processing apparatus. Background art
従来よ り 、 半導体製造工程では、 例えば、 プラズマエ ッチ ング装置を 使用する こ と によ り 、 半導体ウェハ等の被処理物にエッチング処理を施 し、 被処理物の表面に所望の微細加工を施すこ とが行われている。  2. Description of the Related Art Conventionally, in a semiconductor manufacturing process, for example, a plasma etching apparatus is used to perform an etching process on a workpiece such as a semiconductor wafer and perform desired fine processing on the surface of the workpiece. Is being applied.
この種のプラズマ処理装置では、 気密な装置本体内に上部電極と下部 電極と を対向して配設し、 被処理物が載置された下部電極に高周波電力 を印加して下部電極と上部電極との間にグロ一放電を生じさせる。 この グロ一放電によ り処理室内に供給される処理ガスがプラズマ化され、 被 処理物にエッ チ ング加工を施している。 また、 処理ガス と しては、 従来 よ り 、 C F (フロ ロカーボン) 系ガスが広 く使用されている。  In this type of plasma processing apparatus, an upper electrode and a lower electrode are disposed opposite to each other in an airtight apparatus main body, and high-frequency power is applied to the lower electrode on which an object to be processed is placed, so that the lower electrode and the upper electrode And a glow discharge is generated between them. The processing gas supplied into the processing chamber is turned into plasma by the glow discharge, and the workpiece is etched. As a processing gas, a CF (fluorocarbon) -based gas has been widely used.
この上記.プラズマエッチング装置では、 装置本体はアルマイ ト処理さ れた A 1 (アル ミ ニウ ム) 金属が基材と して使用され、 焼結処理された A 1 2 0 3 (アル ミ ナ) 製セラ ミ ッ ク ス部材が着脱可能に前記装置本体の 内周面全域に亙って装着されている。 The above. In plasma etching apparatus, the apparatus main body Arumai bets treated A 1 (Aluminum Niu beam) metal is used as the base material, A 1 2 0 3 which is sintered (Aluminum Na) A ceramics member is detachably mounted over the entire inner peripheral surface of the apparatus main body.
従来のプラズマエッ チング装置では、 装置本体が A 1 製の外壁部と、 外壁部の内周面に着脱可能に装着された A 1 2 0 3 (アルミ ナ) 製セ ラ ミ ッ クス部材からなる内壁部とで構成されてお り 、 装置本体の内壁がブラ ズマによ り削られて損傷した場合であっても、 内壁部のみの交換で被処 理物の処理を再開でき る。 In the conventional plasma edge quenching apparatus comprised of a outer wall portion of the apparatus made body A 1, A 1 2 0 3 that is detachably attached to the inner peripheral surface of the outer wall (alumina) Seise la mission-box member Even if the inner wall of the main unit is cut and damaged by plasma, it can be treated by replacing only the inner wall. Processing of the physical material can be resumed.
また、 従来のプラズマエッチング装置では、 上部電極と下部電極との 間でプラズマを効果的に閉 じ込めて被処理物に所望のエッチング処理を 施すべく 、 フ ォーカス リ ング、 バッ フル板、 及ぴシール ドリ ング等の部 品類 (以下、 「チャ ンバ内部品」 という ) 、 すなわち装置部品が上部電 極及び下部電極の周辺所定位置に配設されている。  In addition, in a conventional plasma etching apparatus, a focusing ring, a baffle plate, and a like are used in order to effectively confine plasma between an upper electrode and a lower electrode and perform a desired etching process on an object to be processed. Parts such as seal drilling (hereinafter referred to as “parts in chamber”), that is, device parts are arranged at predetermined positions around the upper electrode and the lower electrode.
このチャ ンバ一内部品は、 誘電率が 1 0以下の絶縁性能を要求され、 従来よ り 、 石英 ( S i 0 2 ) 、 或いはポリ イ ミ ド ( P I ) 系やポリ ア ミ ドイ ミ ド ( P A I ) 系の樹脂材料で形成されている。 The tea Nba first internal product has a dielectric constant is required for 1 0 less insulation performance, Ri by conventional, quartz (S i 0 2), or poly Lee Mi-de (PI) based or poly A Mi Doi mi de ( PAI) -based resin material.
しかし、 チャ ンバ内部品の部品材料と して使用される こ とが多い S i 0 2 材は、 機械加工時に生じる破砕屑の部品表面への付着量が多い。 こ の破砕屑の'付着した状態でブラズマエ ッ チング装置を稼動させる と、 破 砕屑が固体微粒子となってプラズマ雰囲気中を飛散し、 被処理物の表面 に付着する こ と となる。 However, tea Nba in part this and many S i 0 2 material used as a component material of the amount is large adhesion to debris of component surfaces which occurs during machining. When the plasma etching device is operated with the crushed particles attached, the crushed particles become solid fine particles, scatter in the plasma atmosphere, and adhere to the surface of the workpiece.
このため、 従来から、 被処理物に付着する固体微粒子の個数が許容範 囲内 (例えば、 粒径 0 . 2 m以上の固体微粒子の個数が 3 0個以内) と なる まで、 ダミ ー と しての被処理物を使用 してダミ 一運転を行なって いる。 そ して、 ダミ ー運転の後、 新規な被処理物に ドラ イエッ チング処 理を施して所望の微細加工がなされた半導体製品を得ている。  Therefore, until now, the number of solid fine particles adhering to the object to be processed is within the allowable range (for example, the number of solid fine particles having a particle diameter of 0.2 m or more is within 30). Dump operation is performed using the object to be processed. Then, after the dummy operation, a new workpiece is subjected to a dry etching treatment to obtain a desired microfabricated semiconductor product.
しか しながら、 上述したよ う に、 石英、 或いは P I 系や P A I 系の樹 脂材料で形成されている従来のチヤ ンバ內部品は、 プラズマ雰囲気に晒 される も のの、 これら石英、 或いは P I 系や P A I 系の樹脂材料は耐プ ラズマ性に.劣るため、プラズマ化した処理ガスによ り 容易に削 り 取られ、 したがってこれらチャ ンバ内部品を消耗部品と して頻繁に新品に交換し なければならず、 装置の保守 ' 点検に手間を要し、 生産性に も劣る とい う 問題点があった。 また、 上記従来のプラズマエッチング装置では、 上述したよ う に装置 本体の内壁部が A 1 2 0 3 製セラ ミ ッ クス部材で形成されているため、 A 1 2 0 3 と処理ガス と しての C F系ガス とが反応して、 A 1 F 3 (フ ツイ匕 アルミ ニウム) が生成される。 被処理物の微細加工化に伴う処理室の低 圧化及ぴ高パワー化に よ り処理室 (チャ ンバ) の圧力が A 1 F 3 の蒸気 圧 (室温 2 0 °Cで 1 . 6 X 1 0 -4 P a ) に近付き 、 A 1 F 3 が固体微粒 子と なる。 この A 1 F 3 の固体微粒子が内壁部及び装置本体内に配され ている部品類から脱落してプラズマ雰囲気中に飛散する。 この飛散した A 1 F 3 の固体微粒子が被処理物の表面に固着し、 金属汚染の一種であ る A 1 汚染を招来し、 製品歩留ま り が低下する という ¾題点があった。 さ ら に、 チャ ンバ内部品と して S i 0 2材を使用 した場合は、 S i 0 2 材の表面に多量の破砕屑が付着するため、 プラズマ雰囲気中を飛散する 固体微粒子の個数が許容範囲となる まで、 長時間のダミ一運転を行なわ なければな らないという 問題点があった。 However, as described above, conventional chamber parts made of quartz or PI-based or PAI-based resin materials are exposed to a plasma atmosphere. -Based and PAI-based resin materials have poor plasma resistance; they are easily removed by the plasma-treated gas, and the components in these chambers are frequently replaced with new ones as consumable parts. However, the maintenance and inspection of the equipment is troublesome, and the productivity is low. Further, the above-mentioned conventional plasma etching apparatus, since the inner wall of the apparatus body cormorants I described above is formed by A 1 2 0 3 made canceler mission-box member, as the process gas and the A 1 2 0 3 Reacts with the CF-based gas to produce A 1 F 3 (aluminium). 1 a pressure is A 1 a vapor pressure of F 3 (room temperature 2 0 ° C for Ri by the low pressurization及Pi high power of the processing chamber due to microfabrication of the object to be processed the processing chamber (Cha Nba). 6 X 1 0 - 4 approaches P a), a 1 F 3 becomes solid fine particles. The solid fine particles of A 1 F 3 drop off from the inner wall and the components arranged in the apparatus main body and are scattered in the plasma atmosphere. The scattered solid particles of A 1 F 3 adhere to the surface of the object to be treated, causing A 1 contamination, which is a kind of metal contamination, and lowering the product yield. Et al is, when using the S i 0 2 material as a tea Nba in part, to attach a large amount of debris on the surface of the S i 0 2 material, the number of solid particles scatter a plasma atmosphere There was a problem that long-time dust operation had to be performed until the allowable range was reached.
従って、 本発明は、 このよ う な問題点に鑑みなされたものであって、 装置本体内'に配設されたプラズマ雰囲気に晒されている部品類の耐プラ ズマ性を向上させてメ ンテナンスサイ クルの延長を図るこ とのでき る プ ラズマ処理装置用部品及びその製造方法、 並びにプラズマ処理装置を提 供する こ と を目的と している。  Therefore, the present invention has been made in view of such a problem, and has been developed by improving the plasma resistance of components exposed to a plasma atmosphere disposed in an apparatus main body, thereby improving maintenance. An object of the present invention is to provide a part for a plasma processing apparatus capable of extending a cycle, a method for manufacturing the same, and a plasma processing apparatus.
また、 本発明は、 被処理物の金属汚染を回避して製品歩留ま り の向上 を図る こ とができ、 さ らに部品の耐久性向上と共に生産性の向上を図る こ とのでき るプラズマ処理装置用部品及びその製造方法、 並びにプラズ マ処理装置を提供する こ と を目的とする。 発明の開示  Further, the present invention can improve the product yield by avoiding metal contamination of the object to be processed, and can further improve the durability and the productivity of the parts as well. An object is to provide a component for a plasma processing apparatus, a method for manufacturing the same, and a plasma processing apparatus. Disclosure of the invention
本発明者らは、 耐プラズマ性に優れたプラズマ処理装置用部品の材料 を見出すべく 鋭意研究を したと ころ、 ポリべンゾイ ミ ダゾール (以下、 「 P B I 」 という) が、 石英や P I樹脂或いは P A I樹脂等、 従来のチ ャ ンバ内部品に使用されていた部品材料に比べて耐プラズマ性に優れ、 しかも密着性に優れている ため処理室内で発生する固体微粒子を容易に 吸着し、 固体微粒子が飛散して被処理物に堆積するのを極力回避する こ とができ る という知見を得た。 The present inventors have developed a material for a plasma processing apparatus component having excellent plasma resistance. After diligent research to find out, polybenzimidazole (hereinafter referred to as “PBI”) has been compared to the materials used in conventional chamber components, such as quartz, PI resin, or PAI resin. It has excellent plasma resistance and excellent adhesion, so it can easily adsorb solid fine particles generated in the processing chamber and minimize the scattering of solid fine particles and the accumulation on the workpiece. I got the knowledge.
一方、 P B I は吸水性が高いという性質を有するので、 P B I をその ま ま吸水した状態で使用 した場合は、 被処理物に水分が付着して製品に 悪影響を及ぼす虞がある。  On the other hand, since PBI has a property of high water absorption, if PBI is used as it is, water may adhere to the object to be treated and adversely affect the product.
被処理物に付着した水分を除去する方策と して、 被処理物にエツ チン グ加工を施した後、 処理ガスの供給を停止して一定時間ダミ一運転する こ と によ り水分を飛ばすこ と も考えられるが、 ダミ ー運転のために余分 な時間が必要とな り 、 生産性の低下を招来する。  As a measure to remove moisture adhering to the workpiece, after etching the workpiece, the supply of the processing gas is stopped and the moisture is blown off by performing a dummy operation for a certain period of time. It is possible, however, that extra time is required for the dummy operation, which leads to lower productivity.
そこで、 本発明に係る プラズマ処理装置用部品は、 プラズマ処理装置 の装置本体内部に配設されるプラズマ処理装置用部品であって、 乾燥処 理された P B I で形成されている こ と を特徴と している。  Therefore, the plasma processing device component according to the present invention is a plasma processing device component disposed inside the device main body of the plasma processing device, and is characterized by being formed of PBI that has been subjected to a drying process. are doing.
上記構成によれば、 プラズマ処理装置用部品は乾燥処理された P B I で形成されているので、 部品の耐プラズマ性向上を図る こ とができ る と 共に、ダミ ー運転を行わずに製品への水分付着を回避するこ とができ る。  According to the above configuration, the parts for the plasma processing apparatus are formed of the PBI that has been subjected to the drying treatment, so that the plasma resistance of the parts can be improved and the product can be manufactured without performing the dummy operation. Water adhesion can be avoided.
さ ら に、 '本発明に係る プラズマ処理装置用部品の製造方法は、 Ρ Β Ϊ の粉末に真空乾燥処理を施した後、 該真空乾燥処理された粉末に成形処 理を施して所定形状の成形品を製造する こ と を特徴と している。  Further, the method for manufacturing a part for a plasma processing apparatus according to the present invention includes a step of performing a vacuum drying process on the powder of the present invention, and then subjecting the powder subjected to the vacuum drying process to a molding process to form a predetermined shape. It is characterized by manufacturing molded articles.
上記製造方法によれば、 P B I 粉末に真空乾燥処理を施した後、 成形 加工しているので、 所望の P B I 製部品を容易に得る こ とができ る。  According to the above-described manufacturing method, the PBI powder is subjected to vacuum drying and then molded, so that a desired PBI part can be easily obtained.
また、 プラズマ処理装置用部品の割れの発生を回避する観点からは、 真空乾燥処理で設定される第 1 の乾燥処理温度よ り も高い第 2 の乾燥処 理温度で成.形品を再度真空乾燥処理するのが好ま しい。 In addition, from the viewpoint of avoiding the occurrence of cracks in the components for the plasma processing apparatus, the second drying treatment is performed at a temperature higher than the first drying treatment temperature set in the vacuum drying treatment. It is preferred that the molded article be vacuum dried again at the processing temperature.
また、 プラズマ処理装置用部品の製造方法において、 真空乾燥処理は 温度 1 4 0 °C 〜 1 8 0 °Cで 5 〜 7時間行う こ とが好ま しい。  In the method of manufacturing a part for a plasma processing apparatus, the vacuum drying treatment is preferably performed at a temperature of 140 ° C. to 180 ° C. for 5 to 7 hours.
また、 プラズマ処理装置用部品の製造方法において、 成形処理後の機 械加工時に、 2 8 0 °C 〜 3 0 0 °Cの温度で 2 〜 4時間行う 第 1 のァニ ー ル処理と 3 4 0 °C 〜 3 6 0 °Cの温度で 2 〜 4時間行う 第 2 のァニール処 理と を施すこ とが好ま しい。  Also, in the method of manufacturing parts for a plasma processing apparatus, the first annealing and the third annealing performed at a temperature of 280 ° C. to 300 ° C. for 2 to 4 hours during the mechanical processing after the forming process are performed. It is preferable to perform a second annealing treatment at a temperature of 40 ° C. to 360 ° C. for 2 to 4 hours.
ま た、 プラズマ処理装置用部品の製造方法において、 第 1 のァ二-ル 処理を 2 回行った後、 第 2 のァ二-ル処理を 1 回行う こ とが好ま しい。  Further, in the method for manufacturing a part for a plasma processing apparatus, it is preferable that after performing the first annealing process twice, the second annealing process is performed once.
また、 プラズマ処理装置用部品の製造方法において、 機械加工後に洗 浄処理を行った後、 温度 2 0 0 °C 〜 2 5 0 °Cで 2 〜 4時間行う真空乾燥 処理を施すこ とが好ま しい。  Further, in the method of manufacturing parts for a plasma processing apparatus, it is preferable to perform a vacuum drying treatment at a temperature of 200 ° C. to 250 ° C. for 2 to 4 hours after performing a cleaning treatment after machining. New
また、 本発明に係る プラズマ処理装置は、 装置本体の内部にプラズマ を励起して被処理物の表面を微細加工するプラズマ処理装置において、 前記装置本体の内部に配設されてプラズマ雰囲気に晒される部品類が、 乾燥処理された P B I で形成されている こ と を特徴と している。  A plasma processing apparatus according to the present invention is a plasma processing apparatus for exciting a plasma inside an apparatus main body to finely process a surface of an object to be processed. The plasma processing apparatus is disposed inside the apparatus main body and exposed to a plasma atmosphere. It is characterized in that parts are made of PBI that has been dried.
上記構成によれば、 プラズマ雰囲気に晒される部品類が、 乾燥処理さ れた P B I で形成されているので、 P B I の吸水性に起因する被処理物 への水分の付着を生じるこ と もな く耐プラズマ性の向上を図る こ とがで き る。 しかも、 P B I は密着性に優れているため、 装置本体内で発生す る固体微粒子が被処理物上に堆積するのを極力回避する こ とができ る。 また、 本発明に係るプラズマ処理装置において、 乾燥処理された P B I の含有水分量が 3 7 0 p p m以下である こ とが好ま しい。  According to the above configuration, since the parts exposed to the plasma atmosphere are formed of the dried PBI, the water absorption of the PBI due to the water absorption of the PBI does not occur. Plasma resistance can be improved. Moreover, since PBI has excellent adhesion, it is possible to minimize the accumulation of solid fine particles generated in the apparatus main body on the object to be processed. Further, in the plasma processing apparatus according to the present invention, it is preferable that the water content of the dried PBI is not more than 3700 ppm.
また、 P B I は、 プラズマ処理装置の装置本体内部に配設される ブラ ズマ処理装置用部品に用い られ、 含有水分量が 3 7 0 p p m以下に乾燥 処理されたこ と を特徴と している。 また、 本発明者らは、 プラズマ処理装置内に配設される部品類の耐久 性向上と共に生産性を改善すべく 鋭意研究したと ころ、 アル ミ 成分を含 有してない焼結セラ ミ ッ ク ス、 例えば、 主成分と して S i 3 N 4 (窒化ケ ィ素) 、 Y 2 0 3 (酸化イ ッ ト リ ウム) 、 又は S i C (炭化ケィ素) から なる材料、 '或いはこれら材料の二種以上を含有した複合材料 (例えば、 S i 3 N 4 と S i C ) を使用する こ と によ り 、 S i 0 2 に比べ耐プラズマ 性を向上させる こ とができ、 しかも S i 0 2 に比べてダミ ー運転に要す る時間を短縮化する こ とができ、 これによ り 生産性向上を図る こ とがで き る という 知見を得た。 In addition, PBI is used for plasma processing equipment components installed inside the plasma processing equipment, and is characterized by being dried to a water content of less than or equal to 370 ppm. In addition, the inventors of the present invention have conducted intensive studies to improve the durability and the productivity of the components provided in the plasma processing apparatus, and have found that the sintered ceramics containing no aluminum component. click scan, for example, S i 3 N 4 (nitride Ke i containing) as a main component, Y 2 0 3 consists of (oxide Lee Tsu Application Benefits um), or S i C (carbonization Kei-containing) material, 'or composite material containing two or more of these materials (e.g., S i 3 N 4 and S i C) Ri by the that you use, can trigger improve plasma resistance as compared to the S i 0 2, Moreover, to obtain a finding that can be and child, ∎ we can in this transgression to improve the productivity improvement This ensures that to shorten the time it takes to dummy operation as compared to the S i 0 2.
本発明に係る プラズマ処理装置は、 装置本体の内部にプラズマを励起 して被処理物の表面を微細加工する プラズマ処理装置において、 装置本 体の内壁及び該装置本体の内部に配設されている プラズマ雰囲気に晒さ れる部品類が、 アルミ ニウ ム成分を含有していない焼結セラ ミ ッ クス材 料で形成されている こ と を特徴と している。  A plasma processing apparatus according to the present invention is a plasma processing apparatus that excites plasma inside an apparatus main body to finely process a surface of an object to be processed. The plasma processing apparatus is disposed inside the apparatus main body and inside the apparatus main body. It is characterized in that parts exposed to the plasma atmosphere are formed of sintered ceramic materials that do not contain aluminum components.
上記構成によれば、 装置本体の内壁及び装置本体の内部に配設されて いる ブラズ.マ雰囲気に晒される部品類が、 アルミ ニゥム成分を含有して いない焼結セラ ミ ッ クス材料で形成されているので、 被処理物の A 1 汚 染を防止する こ とができ、 製品歩留ま り の向上を図る こ とができ る。  According to the above configuration, the parts arranged in the inner wall of the apparatus main body and the inside of the apparatus main body, which are exposed to the atmosphere, are made of a sintered ceramic material containing no aluminum component. As a result, it is possible to prevent A1 contamination of the object to be treated, and to improve the product yield.
また、 本発明のプラズマ処理装置は、 前記焼結セラ ミ ッ ク材料が、 S i 3 N 4、 Y 2 0 3、 又は S i C を主成分と した材料の中から 1 種又は 2 種 以上を選択して構成されている こ と を特徴と している。 The plasma processing apparatus of the present invention, the sintered Sera Mi click material, S i 3 N 4, Y 2 0 3, or one or more from among the material mainly composed of S i C Is selected.
上記構成によ れば、 焼結セラ ミ ッ ク材料が、 S i 3 N 4、 Y 2 0 3、 又は S i C を主成分と した材料の中から 1 種又は 2種以上を選択して構成さ れているので、 被処理物の A 1 汚染を確実に回避する こ とができ る と共 に、 生産性向上を図る こ とができ 、 且つ耐久性の向上を図る こ とができ る。 また、 プラズマ処理装置において、 焼結セ ラ ミ ッ ク材料に焼結助剤が 添加されている こ とが好ま しい。 By the above-described configuration lever, sintered Sera Mi click material, S i 3 N 4, Y 2 0 3, or by selecting one or more from among the material mainly composed of S i C Since it is configured, it is possible to reliably avoid A1 contamination of the object to be treated, to improve productivity, and to improve durability. . In the plasma processing apparatus, it is preferable that a sintering aid is added to the sintered ceramic material.
また、 プラズマ処理装置において、 焼結助剤がイ ツ ト リ ビゥ ム及ぴィ ッ ト リ ウムのう ちの少な く と もいずれか一方である こ とが好ま しい。 また、 本癸明に係る プラズマ処理装置用部品は、 プラズマ処理装置の 装置本体内部に配設される プラズマ処理装置用部品であって、 アルミ 二 ゥム成分を含有していない焼結セラ ミ ッ クス材料で形成されている こ と を特徴と している。  In the plasma processing apparatus, it is preferable that the sintering aid is at least one of yttrium and / or yttrium. The plasma processing apparatus component according to the present invention is a plasma processing apparatus component disposed inside the apparatus main body of the plasma processing apparatus, and is a sintered ceramic containing no aluminum component. It is characterized by being formed of a glass material.
また、 プラズマ処理装置用部品において、 焼結セラ ミ ッ ク材料は、 窒 化ケィ素、 酸化ィ ッ ト リ ゥム、 又は炭化ケィ素を主成分と した材料の中 から 1 種又は 2種以上を選択して構成されている こ とが好ま しい。  In the parts for the plasma processing apparatus, the sintered ceramic material is one or two or more materials selected from the group consisting of silicon nitride, titanium oxide, and silicon carbide as main components. It is preferable to select and configure.
また、 プラズマ処理装置用部品において、 焼結セラ ミ ッ ク材料には、 焼結助剤が添加されている こ とが好ま しい。  Further, in the parts for the plasma processing apparatus, it is preferable that a sintering aid is added to the sintered ceramic material.
また、 プラズマ処理装置用部品において、 焼結助剤は、 イ ツ ト リ ピウ ム及びイ ッ ト リ ウムのう ちの少な く と もいずれか一方である こ とが好ま しい。  Further, in the parts for the plasma processing apparatus, it is preferable that the sintering aid is at least one of yttrium and yttrium.
また、 本発明に係る プラズマ処理装置用部品の製造方法は、 プラズマ 処理装置の装置本体内部に配設される プラズマ処理装置用部品の製造方 法であって、 アル ミ ニ ウ ム成分を含有していない焼結セラ ミ ッ ク ス材料 でプラズマ処理装置用部品を形成する こ と を特徴とする。  Further, a method for manufacturing a component for a plasma processing apparatus according to the present invention is a method for manufacturing a component for a plasma processing apparatus disposed inside an apparatus body of the plasma processing apparatus, the method including an aluminum component. It is characterized in that parts for plasma processing equipment are formed from unsintered ceramic materials.
また、 プラズマ処理装置用部品の製造方法において、 焼結セラ ミ ッ ク 材料は、 窒化ケィ素、 酸化イ ッ ト リ ウ ム、 又は炭化ケィ素を主成分と し た材料の中から 1 種又は 2種以上を選択して構成されている こ とが好ま しい。  In the method of manufacturing a part for a plasma processing apparatus, the sintered ceramic material may be one or more of materials containing silicon nitride, yttrium oxide, or silicon carbide as a main component. It is preferable to select two or more types.
また、 プラズマ処理装置用部品の製造方法において、 焼結セラ ミ ッ ク 材料に焼結助剤を添加する こ とが好ま しい。 また、 プラズマ処理装置用部品の製造方法において、 焼結助剤は、 ィ ッ ト リ ビゥム及びイ ツ ト リ ウムのう ちの少な く と もいずれか一方である こ とが好ま.しい。 Further, in the method of manufacturing a part for a plasma processing apparatus, it is preferable to add a sintering aid to the sintered ceramic material. Further, in the method for producing a part for a plasma processing apparatus, it is preferable that the sintering aid is at least one of yttrium and yttrium.
さ ら に、 本発明者らは、 ケィ素酸化物からなるプラズマ処理装置用部 品に比べて耐プラズマ性に優れたブラズマ処理装置用部品を見出すベく 、 鋭意研究したと ころ、 ケィ素酸化物に、 異種材料、 例えば、 希土類化合 物 ( Y 2 0 3 等) 、 ケィ素酸化物を除く ケィ素化合物 ( S i C、 S i 3 N 4 等) 、 アル ミ ニウ ム化合物 (A l 23 等) 、 又はこれら 2種以上の成分 を含有する化合物 ( Y 2 A , 5 0 12等) が添加されている こ とが好ま しい という 知見を得た。 In addition, the present inventors have conducted intensive research to find a part for a plasma processing apparatus that is more excellent in plasma resistance than a part for a plasma processing apparatus made of a silicon oxide. the object, different material, for example, rare earth compound (Y 2 0 3, etc.), Kei-containing compound excluding Kei-containing oxide (S i C, S i 3 N 4 , etc.), Aluminum Niu arm compound (a l 23, etc.), or two or more of these components contains a compound (Y 2 a, 5 0 12, etc.) and this which is added to obtain a finding that favored arbitrariness.
本発明に係るプラズマ処理装置用部品は、 プラズマ処理装置の装置本 体内部に配設される絶縁性部品に使用される ブラズマ処理装置用部品で あって、 ケィ素酸化物が主成分と して含有される と共に、 前記ケィ素酸 化物以外の所定の異種材料が添加されている こ と を特徴と している。  The component for a plasma processing apparatus according to the present invention is a component for a plasma processing apparatus used for an insulating component disposed inside the apparatus body of the plasma processing apparatus, and mainly includes a silicon oxide. It is characterized in that, in addition to being contained, a predetermined different material other than the silicon oxide is added.
また、 本発明に係る プラズマ処理装置用部品は、 所定の異種材料が、 希土類化合物、 前記ケィ素酸化物以外のケィ素化合物、 及びアルミ ニゥ ム化合物の中から選択された 1種又は 2種以上を含むこ と を特徴と して いる。  Further, in the component for a plasma processing apparatus according to the present invention, the predetermined heterogeneous material is one or more selected from a rare earth compound, a silicon compound other than the silicon oxide, and an aluminum compound. It is characterized by including.
上記構成によれば、 ケィ素酸化物以外の所定の異種材料が添加されて いるので、 耐プラズマ性の向上した部品材料を得る こ とができ る。  According to the above configuration, since a predetermined different material other than the silicon oxide is added, a component material having improved plasma resistance can be obtained.
また、 上記プラズマ処理装置部品の製造方法と しては、 一般的には電 気溶融法と ガス溶融法とが考えられる力?、 主成分であるケィ素酸化物と 異種材料と を均一に混合させるためにはガス溶融法を使用する のが好ま しい。  In addition, as a method of manufacturing the above-described plasma processing apparatus parts, generally, an electric melting method and a gas melting method can be considered. In order to uniformly mix the silicon oxide as the main component and the dissimilar material, it is preferable to use a gas melting method.
そこで、 本発明に係るプラズマ処理装置用部品の製造方法は、 プラズ マ処理装置の装置本体内部に配設される絶縁性部品に使用される プラズ マ処理装置用部品の製造方法であって、 ケィ素酸化物に前記ケィ素酸化 物以外の所.定の異種材料を添加し、 酸水素炎下で前記ケ.ィ素酸化物及び 前記異種材料を溶融し、 その後冷却して部品を製造する こ と を特徴と し ている。 In view of the above, the method for manufacturing a component for a plasma processing apparatus according to the present invention relates to a plasma processing apparatus used for an insulating component disposed inside the apparatus body of the plasma processing apparatus. A method of manufacturing a component for a treatment device, comprising adding a specified different material other than the silicon oxide to a silicon oxide, and applying the specified silicon oxide and the different material under an oxyhydrogen flame. Is melted and then cooled to produce parts.
上記製造方法に よれば、 ガス溶融法と しての酸水素溶融法を使用 して 部品を製造しているので、 ケィ素酸化物と異種材料と を容易に均一に混 合させる こ とができ、 耐プラズマ性に優れた絶縁性部品を容易に得る こ とが可能となる。  According to the above manufacturing method, the parts are manufactured using the oxyhydrogen melting method as the gas melting method, so that the silicon oxide and the dissimilar material can be easily and uniformly mixed. In addition, it is possible to easily obtain an insulating component having excellent plasma resistance.
また、 異種材料と しては、 上述したよ う に希土類化合物、 前記ケィ素 酸化物以外のケィ素化合物、 及びアルミ ニゥム化合物の中から選択され た 1種又は 2種以上を含むこ と を特徴とするのが好ま しい。  Further, as described above, the dissimilar material includes one or more selected from rare earth compounds, silicon compounds other than the silicon oxide, and aluminum compounds as described above. It is preferred that
また、 本発明に係る プラズマ処理装置は、 装置本体の内部にプラズマ を励起して被処理物の表面を微細加工する プラズマ処理装置において、 前記装置本体の内部に配設される絶縁性部品に使用されるブラズマ処理 装置用部品類が、 ケィ 素酸化物が主成分と して含有される と共に、 前記 ケィ素酸化物以外の所定の異種材料が添加されている こ と を特徴とする。 また、 プラズマ処理装置において、 所定の異種材料は、 希土類化合物、 前記ケィ素酸化物以外のケィ素化合物、 及びアルミ ニゥム化合物の中か ら選択された 1種又は 2種以上を含むこ とが好ま しい。 図面の簡単な説明  Further, the plasma processing apparatus according to the present invention is a plasma processing apparatus that excites plasma inside the apparatus main body to finely process a surface of an object to be processed, wherein the plasma processing apparatus is used for an insulating component disposed inside the apparatus main body. The components for a plasma treatment apparatus to be used are characterized in that silicon oxide is contained as a main component and a predetermined different material other than the silicon oxide is added. In the plasma processing apparatus, the predetermined different material preferably includes one or more selected from a rare earth compound, a silicon compound other than the silicon oxide, and an aluminum compound. New BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明に係るプラズマ処理装置と してのプラズマエツ チン グ装置の一実施の形態を示す内部構造図であ り 、 第 2 図は、 削れ量 (消 耗量) の測定方法を説明するための図であ り 、 第 3 図は、 第 1 の実施例 における各'種セラ ミ ッ クス材料の耐プラズマ性の評価結果を示す棒グラ フであ り 、 第 4 図は, P B I の加工工程及び洗浄工程のフローチャー ト であ り 、 第 5図 ( a ) は、 含有水分量が 3 7 0 p p mに抑制された P B I 樹脂を用いた と きのエッ チング溝の B T M (ボ ト ム) 寸法の経時変化 を示す特性図であ り、 第 5 図 ( b ) は、 含有水分量が 2 2 4 0 p p mで ある P B I樹脂を用いたと きのエ ッチング溝の B T M (ボ ト ム) 寸法の 経時変化を示す特性図であ り 、 第 6 図は、 半導体ウェハ上に固着する固 体微粒子の経時的変化を示す特性図であ り 、 第 7 図は、 第 2 の実施例に おける各種セラ ミ ッ クス材料の耐プラズマ性の評価結果を示す棒グラ フ であ り 、 第 8図は、 フ ォ ーカス リ ングと して S i 3 N 4 材を使用 した と き のエ ッ チ ン グ特性図であ り 、 第 9 図は、 フ ォ ー カス リ ングと して S i 〇 2 材を使用 したと きのエ ッ チング特性図であ り 、 第 1 0 図は、 第 6 の実 施例における各種セラ ミ ッ クス材料の耐プラズマ性の評価結果を示す棒 グラ フであ り 、 第 1 1 図は、 第 3 の実施の形態における プラズマ処理装 置部品材料の製造方法を示す目的図である。 発明を実施するための最良の形態 FIG. 1 is an internal structure diagram showing an embodiment of a plasma etching apparatus as a plasma processing apparatus according to the present invention, and FIG. 2 is a diagram showing a method of measuring a shaving amount (abrasion amount). FIG. 3 is a bar graph showing the evaluation results of the plasma resistance of each type of ceramic material in the first embodiment, and FIG. Flow chart of processing and cleaning process Fig. 5 (a) is a characteristic diagram showing the change over time in the BTM (bottom) dimensions of the etching groove when using PBI resin whose water content was suppressed to 37 ppm. Fig. 5 (b) is a characteristic diagram showing the change over time in the BTM (bottom) dimensions of the etching groove when using PBI resin with a water content of 222 ppm. FIG. 6 is a characteristic diagram showing a change over time of solid fine particles fixed on a semiconductor wafer. FIG. 7 is a graph showing plasma resistance of various ceramic materials in the second embodiment. FIG. 8 is a bar graph showing the evaluation results of FIG. 8, and FIG. 8 is an etching characteristic diagram when Si 3 N 4 material is used as a focusing ring. figure off O over Ri Kas Kinoe Tsu quenching characteristic diagram der and was used S i 〇 2 material as a-ring, first 0 figure your sixth real施例FIG. 11 is a bar graph showing the evaluation results of the plasma resistance of various ceramic materials, and FIG. 11 is an object view showing a method of manufacturing a plasma processing equipment component material according to the third embodiment. is there. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態に係る ブラズマ処理装置用部品及びその製 造方法、並びにプラズマ処理装置を図面を参照しながら詳細に説明する。 第 1 図は本発明に係る プラズマ処理装置と してのプラズマエ ッ チ ング 装置の一実施例の形態を示す内部構造図である。  Hereinafter, components for a plasma processing apparatus, a method for manufacturing the same, and a plasma processing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an internal structure diagram showing an embodiment of a plasma etching apparatus as a plasma processing apparatus according to the present invention.
プラズマエッチング装置本体 1 (以下、 装置本体 1 ) 内の処理室 2 2 には、 所定形状に形成された多数の各種チャ ンバ内部品が所定位置に配 設されている。  In a processing chamber 22 in a plasma etching apparatus main body 1 (hereinafter, apparatus main body 1), a number of various components in a chamber formed in a predetermined shape are arranged at predetermined positions.
具体的には、 装置本体 1 には導電性材科で形成された下部電極 2 が配 設されている。 下部電極 2 の上面には半導体ウェハ 3 (被処理物) を吸 着保持する ·静電チャ ッ ク 4 が載設される と共に、 下部電極 2 の下方には 矢印 A方向に昇降可能な昇降軸 5 が配設され、 下部電極 2 は該昇降軸 5 に支持されている。 また、 昇降軸 5 は整合器 6 を介して高周波電源 7 に 接続されている。 Specifically, a lower electrode 2 made of a conductive material is provided in the apparatus main body 1. An electrostatic chuck 4 is placed on the upper surface of the lower electrode 2 to adsorb and hold the semiconductor wafer 3 (workpiece), and an elevating shaft that can move up and down in the direction of arrow A is provided below the lower electrode 2. 5 is provided, and the lower electrode 2 is It is supported by. The elevating shaft 5 is connected to a high-frequency power source 7 via a matching device 6.
尚、 静電チャ ッ ク 4 は、 プラズマ溶射法によ り アル ミ ニウム製の基材 上にセラ ミ ッ ク溶射被膜が形成されている。 この溶射被膜表面には、 溶 射被膜の気孔を封ずる 目的でメ タ ク リ ル酸メ チルを含浸剤と して塗布す るのが好ま しい。 含浸剤と してメ タ ク リ ル酸メ チルを使用する こ と によ り 、 溶射被'膜表面の気孔を充分に閉塞して半導体ウェハ 3 と静電チャ ッ ク 4 との間に所望の熱伝達ガス層を形成する こ とができ、 これによ り 半 導体ウェハ 3 を安定的に温調する こ とが可能と なる。  The electrostatic chuck 4 has a ceramic sprayed film formed on an aluminum base material by a plasma spraying method. It is preferable to apply methyl methacrylate as an impregnating agent on the surface of the sprayed coating in order to seal the pores of the sprayed coating. By using methyl methacrylate as the impregnating agent, the pores on the surface of the film to be sprayed can be sufficiently closed to provide a desired space between the semiconductor wafer 3 and the electrostatic chuck 4. Thus, the heat transfer gas layer can be formed, whereby the temperature of the semiconductor wafer 3 can be stably controlled.
また、 下部電極 2 の底面及び側面は電極保護部材 8 で覆われて保護さ れている と共に、 電極保護部材 8 の側面及び底面は導電性部材 9 で覆わ れ、 さ ら に導電性部材 9 と装置本体 1 の内部底面との間にはス テ ン レス 等の導電性材料で形成された伸縮自在なべローズ 1 0 が取り付けられて いる。 尚、 電極保護部材 8 の下面には酸化処理された A 1等の導電性材 料からなる管状部材 1 1 が設けられ、 昇降軸 5 は管状部材 1 1 に貫揷さ れている。  In addition, the bottom and side surfaces of the lower electrode 2 are covered and protected by an electrode protection member 8, and the side and bottom surfaces of the electrode protection member 8 are covered by a conductive member 9. A telescopic bellows 10 formed of a conductive material such as stainless steel is attached between the inner bottom surface of the apparatus main body 1 and the inside. A tubular member 11 made of a conductive material such as oxidized A1 is provided on the lower surface of the electrode protection member 8, and the elevating shaft 5 penetrates the tubular member 11.
また、 電極保護部材 8 の側面には水平方向に延びたバッ フル板 1 2 が 固定され、 .さ ら に、 電極保護部材 8 の上端面と静電チャ ッ ク 4 の側面と の間にはフ ォーカス リ ング 1 3 及ぴィ ンシユ レ一タ リ ング 4 0 が配設さ ' れている。 また、 ノ ッ フ ル板 1 2 の下面には下方に延びた第 1 のべロ ー ズカバー 1 4が固定され、 さ らに装置本体 1 の内部底面には第 1 のべ口 —ズカノ 一 1 4 と一部が重な り合う よ う に第 2 のべローズカノ 一 1 5 が 立設されている。  A baffle plate 12 extending in the horizontal direction is fixed to the side surface of the electrode protection member 8, and a gap is formed between the upper end surface of the electrode protection member 8 and the side surface of the electrostatic chuck 4. A focusing ring 13 and an indicator lettering 40 are provided. A first bellows cover 14 extending downward is fixed to the lower surface of the notch plate 12, and a first bellows cover is attached to the inner bottom surface of the apparatus body 1. A second bellows cano 15 is erected so that it partially overlaps with 4.
また、 処理室 2 2 内の天井近く には導電性材料で形成された上部電極 1 6 が下部電極 2 と対向して配設されている。 この上部電極 1 6 には多 数のガス吐出孔 1 7 が形成されてお り 、 装置本体 1 の上面に設けられた ガス供給口 1 8 から C F系ガス を含む処理ガスがガス吐出孔 1 7 を通し て処理室 2 2 に供給される。 このガス供給口 1 8 は、 ガス管 G に設けら れた流量調.整弁 1 9及び開閉弁 2 0 を介してガス供給源 2 1 に接続され ている。 従って、 ガス供給源 2 1 から供給される処理ガスは、 開閉弁 2 0 及び流量調整弁 1 9 を介してガス供給口 1 8 に至り 、 ガス吐出孔 1 7 から吐出されて処理室 2 2 に導入される。 In addition, near the ceiling in the processing chamber 22, an upper electrode 16 made of a conductive material is provided so as to face the lower electrode 2. A large number of gas discharge holes 17 are formed in the upper electrode 16 and are provided on the upper surface of the apparatus main body 1. A processing gas containing a CF-based gas is supplied from a gas supply port 18 to a processing chamber 22 through a gas discharge hole 17. The gas supply port 18 is connected to a gas supply source 21 via a flow rate regulating valve 19 and an on-off valve 20 provided in the gas pipe G. Accordingly, the processing gas supplied from the gas supply source 21 reaches the gas supply port 18 via the on-off valve 20 and the flow control valve 19, and is discharged from the gas discharge hole 17 to the processing chamber 22. be introduced.
また、 上部電極 1 6 は絶縁性部材で形成されたシ一ル ドリ ン グ 4 1 に よ って周縁部を保持され、 さ ら に、 シール ドリ ング 4 1 には保護リ ング 4 2 が周設され、 また保護リ ング 4 2 の外周にはシ一ル ド部材 4 3 が垂 設されている。  Further, the upper electrode 16 is held at its peripheral edge by a seal ring 41 formed of an insulating material, and further, a protective ring 42 is formed around the seal ring 41. A shield member 43 is suspended from the outer periphery of the protection ring 42.
装置本体 1 の底部には排出口 2 3 が形成されている。 この排出口 2 3 は真空ポンプ 2 4 に接続され、 さ らに装置本体 1 の下方側面には被処理 物搬送口 2 5が形成されてお り 、 この被処理物搬送口 2 5 を通して半導 体ウェハ 3 の搬入 · 搬出が行われる。  An outlet 23 is formed at the bottom of the apparatus body 1. The discharge port 23 is connected to a vacuum pump 24, and a workpiece transfer port 25 is formed on the lower side of the apparatus main body 1. Loading and unloading of the body wafer 3 is performed.
被処理物搬送口 2 5 を通して処理室 2 2 内に搬送される半導体ウェハ 3 はマスキングされてお り 、 静電チャ ッ ク 4 によ って静電的に保持され る。  The semiconductor wafer 3 transferred into the processing chamber 22 through the processing object transfer port 25 is masked and electrostatically held by the electrostatic chuck 4.
装置本体 1 の側面には外周に沿つて永久磁石 2 6 が配設されている。 この永久磁石に よ っ て、 処理室 2 2 内には、 静電チャ ッ ク 4 に保持さ れた半導体ウェハ 3 の被処理面に対して平行な向き の磁場が生成される。  A permanent magnet 26 is provided on the side surface of the apparatus main body 1 along the outer periphery. The permanent magnet generates a magnetic field in the processing chamber 22 in a direction parallel to the processing surface of the semiconductor wafer 3 held by the electrostatic chuck 4.
このよ う に構成されたプラズマ処理装置においては、 不図示の駆動機 構に よ り 昇降軸 5 を矢印 A方向に移動させて半導体ゥェハ 3 の位置調整 を行う 。 昇降軸 5 は給電棒と しての作用をな し、 高周波電源 7 から、 例 えば、 1 3 . 5 6 M H z の高周波電力を下部電極 2 に印加でき る。 この 高周波電力の印加によ って下部電極 2 と上部電極 6 の間にグロ一放電を 生 じさせる'こ とができ る。 これによ り 、 電場と磁場とが直交する直交電 磁場が形成される。 In the plasma processing apparatus thus configured, the position of the semiconductor wafer 3 is adjusted by moving the elevating shaft 5 in the direction of arrow A by a driving mechanism (not shown). The elevating shaft 5 acts as a power supply rod, and high-frequency power of, for example, 13.56 MHz can be applied to the lower electrode 2 from the high-frequency power source 7. By applying this high-frequency power, a glow discharge can be generated between the lower electrode 2 and the upper electrode 6. Thus, the orthogonal electric field and the magnetic field are orthogonal. A magnetic field is formed.
処理室 2 2 が真空ポンプ 2 4 によ り所定の真空雰囲気に減圧され、 ガ ス供給源 2 1 からの処理ガスが処理室 2 2 に供給される。 この処理ガス はプラズマ化し、 下部電極 2 と上部電極 1 6 との間に閉 じ込め られたプ ラズマに よ り 、 マスキングされている半導体ウェハ 3 の被処理面に所望 の微細加工が施される。  The pressure in the processing chamber 22 is reduced to a predetermined vacuum atmosphere by the vacuum pump 24, and the processing gas from the gas supply source 21 is supplied to the processing chamber 22. This processing gas is turned into plasma, and the plasma confined between the lower electrode 2 and the upper electrode 16 performs desired fine processing on the surface to be processed of the masked semiconductor wafer 3. .
以下、 本発明の第 1 の実施の形態について説明する。  Hereinafter, a first embodiment of the present invention will be described.
本発明の第 1 の実施の形態では、 プラズマ雰囲気に晒されるチヤ ンバ 内部品、 すなわちフ ォ ーカス リ ン グ 1 3 、 シール ドリ ング 4 1 、 保護リ ング 4 2 、 シール ド部材 4 3 、 第 1 及ぴ第 2 のべローズカバー 1 4, 1 5 が、 耐プラズマ性に優れた P B I樹脂で形成されている。  In the first embodiment of the present invention, the components inside the chamber exposed to the plasma atmosphere, that is, the focus ring 13, the seal ring 41, the protection ring 42, the shield member 43, The first and second bellows covers 14, 15 are made of PBI resin with excellent plasma resistance.
上述した よ う に半導体ゥェハ 3 には ドラ イ エツ チング処理が施される と共に、 プラズマ雰囲気に晒されるチャ ンバ内部品の表面もエッチング されて消耗するため、 その消耗度合に応じてこれら消耗した装置部品を 新規部品 と交換する必要がある。 と こ ろが、 従来よ り チャ ンバ内部品の 部品材料と して使用されている石英や P I樹脂、 P A I 樹脂は耐プラズ マ性に劣るため、 チャ ンバ内部品の交換を頻繁に行わなければな らず、 生産性の向上を図る上で支障となっていた。  As described above, the semiconductor wafer 3 is subjected to the dry etching treatment, and the surfaces of the components in the chamber exposed to the plasma atmosphere are also etched and consumed. Parts need to be replaced with new parts. However, quartz, PI resin, and PAI resin, which have been used as component materials for chamber components, have poor plasma resistance, and require frequent replacement of chamber components. However, it was a hindrance to improving productivity.
本発明者らの実験結果によ り 、 上記 P B I 樹脂は、 上記石英や P I 樹 脂、 P A I樹脂に比べ耐プラズマ性に優れている こ とが判明 したので、 第 1 の実施の形態ではプラズマ雰囲気に晒されるチャ ンバ内部品は P B I樹脂で形成されている。  The experimental results of the present inventors have revealed that the PBI resin has better plasma resistance than the quartz, PI resin, and PAI resin. The components inside the chamber that are exposed to water are made of PBI resin.
この P B I 樹脂は密着性に優れている ため、 処理室 2 2内での C F系 ガス と の反応で生成されてプラズマ雰囲気中を飛散する固体微粒子が、 P B I樹脂製のチ ャ ンバ内部品に容易に吸着され、 この固体微粒子が被 処理物に堆積するのを効果的に防止する こ とができ る。 と こ ろで、 P B I の分子構造式は下記一般式 ( 1 ) で表わされ、 P B I にはイ ミ ド基 (一 N H基) が含有されている。 Since the PBI resin has excellent adhesiveness, solid fine particles generated by the reaction with the CF-based gas in the processing chamber 22 and scattered in the plasma atmosphere are easily applied to the PBI resin chamber components. The solid fine particles can be effectively prevented from being deposited on the object to be treated. Here, the molecular structural formula of PBI is represented by the following general formula (1), and PBI contains an imido group (one NH group).
Figure imgf000015_0001
Figure imgf000015_0001
—方、 処理ガスは、 一般に、 C F系ガス に A r ガス、 0 2 ガス等を含 有した混合ガスからなるので、 処理室 2 2 内で、 P B I のイ ミ ド基は 0 2 と反応して水酸基 (一 O H基) を含有した反応物を生成する。 これに よ り、 P B I樹脂の吸水量が多 く な り 、 P B I樹脂の吸水した水分が半 導体ウェハ 3 に付着して しま う虞がある。 On the other hand, since the processing gas is generally a mixed gas containing Ar gas, O 2 gas, etc. in a CF-based gas, the PBI imido group reacts with O 2 in the processing chamber 22. To produce a reactant containing hydroxyl groups (mono-OH groups). As a result, the amount of water absorbed by the PBI resin increases, and the water absorbed by the PBI resin may adhere to the semiconductor wafer 3.
そ して、 半導体ウェハ 3 に付着した水分を除去する方策と しては、 半 導体ウェハ 3 に所定のエ ッ チング加工を施した後、 処理ガスの供給を停 止して一定時間ダミ ー運転する こ と によ り水分を飛ばす方策も考え られ るが、 これではダミ ー運転のために余分な時間が必要と な り 、 生産性向 上を図るこ とができない。  As a measure for removing moisture adhering to the semiconductor wafer 3, a predetermined etching process is performed on the semiconductor wafer 3, and then the supply of the processing gas is stopped and a dummy operation is performed for a predetermined time. In some cases, it may be possible to eliminate moisture, but this requires extra time for the dummy operation and cannot improve productivity.
そこで、 本発明の第 1 の実施の形態では、 予め P B I樹脂に乾燥処理 を施し、 こ.の乾燥処理された P B I樹脂をチャ ンバ内部品の部品材料と して使用する こ と と した。  Therefore, in the first embodiment of the present invention, the PBI resin is subjected to a drying treatment in advance, and the dried PBI resin is used as a component material of the components in the chamber.
以下、 上記チヤ ンバ内部品の製造方法について第 4 図を用いて説明す る。  Hereinafter, a method of manufacturing the above-described chamber internal parts will be described with reference to FIG.
第 4図は、 チャ ンバ内部品の製造工程を示すフ ロ ーチヤ一ト である。 まず、 P B I の粉末を圧力 1 , 9 9 5 P a ( 1 5 T o r r ) の減圧下、 温度 1 4 0 t 〜 1 8 0 °Cで 5時間〜 7時間の間、 振動真空乾燥機によ り 真空乾燥を施し ( S 1 0 1 ) 、 次いで、 所定条件下、 周知の加圧焼結 (Hot Press ) 法に よ り 所定形状、 例えばフ ォ ー カ ス リ ン グ 1 3 や シー ル ド リ ング 4 1 等に略対応した形状の成形品を作製し ( S 1 0 2 ) 、 その後、 切削加工等の機械加工を施 し ( S 1 0 3 ) 、 次いで脱脂洗浄及び純水洗 诤を実施する ( S 1 0 4 ) 。 尚、 前記機械加工時には、 2 8 0 °C〜 3 0 0 °Cの温度で 2 〜 4 時間加熱する ァニール処理を 2 回行っ た後、 3 4 0 °C〜 3 6 0 °Cの温度で 2 〜 4時間のァニール処理を 1 回行う のが好ま しい。 FIG. 4 is a flowchart showing a manufacturing process of the components in the chamber. First, the PBI powder was reduced by a vibrating vacuum dryer under a reduced pressure of 1,995 Pa (15 Torr) at a temperature of 140 t to 180 ° C for 5 to 7 hours. Vacuum drying (S101), and then, under a predetermined condition, by a well-known pressure sintering (Hot Press) method, to a predetermined shape, for example, focusing ring 13 or shield. A molded article having a shape substantially corresponding to the ring 41 or the like is manufactured (S102), and thereafter, Machining such as cutting is performed (S103), followed by degreasing and pure water washing (S104). At the time of the above-mentioned machining, anneal treatment of heating at a temperature of 280 ° C. to 300 ° C. for 2 to 4 hours was performed twice, and then at a temperature of 340 ° C. to 360 ° C. It is preferable to perform the annealing process once for 2 to 4 hours.
以下、 上記のァ二-ル処理温度の検証試験結果について説明する。  Hereinafter, the results of the verification test of the above-mentioned annealing temperature will be described.
ァ二 -ル処理温度の検証試験は、 2 9 0 °Cで 3 時間加熱する ァニー ル 処理を 3 回施したセラゾールのサ ンプル A と、 2 9 0 °Cで 3 時間加熱す るァニール処理を 2 回施した後 3 5 0 °Cで 3 時間加熱するァニール処理 を 1 回施したセラゾールのサンプル B と を、夫々、 1 2 0 °C又は 3 5 0 °C で 3 0分加熱して、 そのと き発生する ァゥ ト ガス成分を測定する も ので あ り 、 その結果を表 1 に示す。  In the verification test of the temperature of the nitrile treatment, a sample A of cerazole subjected to annealing for three hours at 290 ° C for three hours and an annealing treatment for three hours at 290 ° C were used. The cerazole sample B that had been subjected to the annealing treatment once, which was heated twice at 350 ° C. for 3 hours, was heated at 120 ° C. or 350 ° C. for 30 minutes, respectively. The gas gas components generated at that time are measured, and the results are shown in Table 1.
表 1 table 1
Figure imgf000016_0001
表 1 から明らかなよ う に 3 5 0 °Cで 3 0分加熱した と き、 1 gのサン プル Aから無水フ タル酸が 4 4 μ g、 イ ソブチルアルコールが 1 7 μ g 発生 しているのに対して、 1 gのサンプル Bからは無水フ タル酸が 5 g、 イ ソブチルアルコールが 1 μ しか発生していない。
Figure imgf000016_0001
As is evident from Table 1, when heated at 350 ° C for 30 minutes, 1 μg of sample A generated 44 μg of phthalic anhydride and 17 μg of isobutyl alcohol. In contrast, 1 g of sample B produced only 5 g of phthalic anhydride and 1 μ of isobutyl alcohol.
このこ と よ り 、 サンプル B には、 無水フ タ ル酸及びイ ソブチルアルコ ール等の不純物が少量しか含まれていない、 即ち、 3 5 0 X:で 3 時間加 熱するァニール処理を 1 回施したこ とで、 セラゾール内の不純物を取り 除く効果がある こ とが分かる。 Thus, Sample B contains phthalic anhydride and isobutyl alcohol. Only a small amount of impurities such as cerazole, that is, the effect of removing impurities in cerazole by performing once annealing treatment at 350 X: for 3 hours .
その後部品割れが生じるのを回避するために、圧力 5 , 3 2 0 P a ( 4 0 Torr) の減圧下、 温度 2 0 0 :〜 2 5 0 で 2 時間〜 4時間の間、 再 度真空乾燥を施した ( S 1 0 5 ) 。 その結果、 所望形状に形成され、 含 有水分量が 3 7 0 p p m以下である P B I樹脂製のチャ ンバ内部品を製 造する こ とができ る。  In order to avoid subsequent cracking of the parts, re-evacuate at a pressure of 5,320 Pa (40 Torr) and a temperature of 200: 250 for 2 to 4 hours. Drying was applied (S105). As a result, it is possible to manufacture a PBI resin component in a chamber formed into a desired shape and having a water content of not more than 3700 ppm.
なお、 含有水分量は高精度昇温脫離ガス分析によ り 測定した。  The water content was measured by high-precision temperature-separated gas analysis.
また、 第 5 図は、 エッチング溝の B T M (ボ ト ム) 寸法の経時変化を 示す特性図であ り 、 ( a ) は、 含有水分量が 3 7 0 p p mに抑制された P B I樹脂を用いたと き、 ( b ) は、 含有水分量が 2 2 4 0 p p mであ る P B I 樹脂を用いたと き を夫々示す。  FIG. 5 is a characteristic diagram showing the change over time of the BTM (bottom) dimension of the etching groove. FIG. 5 (a) shows that the PBI resin in which the water content was suppressed to 700 ppm was used. (B) shows the case where a PBI resin having a water content of 224 ppm was used, respectively.
また、 含有水分量が 3 7 0 p p mに抑制された P B I樹脂を用いた場 合と含有水分量が 2 2 4 0 p p mである P B I樹脂を用いた場合と で、 エッチング溝の B T M (ボ ト ム) 寸法のばらつき及び経時変化を比較し た。 これによ り 、 P B I樹脂の含有水分量が抑制されている とエ ツ チン グ溝の B T M (ボ トム) 寸法のばらつ き及び経時変化を抑制する こ とが でき る こ どが分かる。  In addition, the BTM (bottom) of the etching groove is different between the case where the PBI resin whose moisture content is suppressed to 370 ppm and the case where the PBI resin whose moisture content is 224 ppm are used. ) The dimensional variation and the change over time were compared. This indicates that when the water content of the PBI resin is suppressed, the variation in the BTM (bottom) dimension of the etching groove and the change with time can be suppressed.
また、 機械加工後の洗浄処理は、 以下のよ う に して行われる。  The cleaning process after machining is performed as follows.
機械加工後の成形品に脱脂洗浄及び純水洗净を施し、 フ ッ酸にて表面 に付着 している重金属を取り 除き、純水洗浄及び超音波洗浄を施した後、 天然高分子材料で表面に研磨処理 (ポリ ッ シング) を施して表面上の固 体微粒子を除去し、 この後、 高圧化洗浄及び超純水洗浄を実施し、 これ によ り機械加工後の洗浄処理を行っている。  The molded product after machining is subjected to degreasing and pure water washing to remove heavy metals adhering to the surface with hydrofluoric acid, and then to pure water washing and ultrasonic cleaning, and then to natural polymer material. Polishing (polishing) the surface to remove solid fine particles on the surface, followed by high-pressure cleaning and ultrapure water cleaning, and then cleaning after machining. I have.
この よ う に本発明の第 1 の実施の形態によれば、 プラズマ雰囲気に晒 されるチ ヤ ンバ内部品が、 乾燥処理された P B I 樹脂で形成されている ので、 石英、 P I樹脂、 P A I樹脂で形成された部品よ り も耐プラズマ 性が向上し、 その結果、 チャ ンバ内部品の耐久性が向上し、 部品交換の 頻度も少な く な り 、 生産性の向上を図る こ とができ る。 As described above, according to the first embodiment of the present invention, exposure to a plasma atmosphere is performed. The components inside the chamber are made of dried PBI resin, so the plasma resistance is higher than those made of quartz, PI resin and PAI resin. The durability of the product is improved, the frequency of component replacement is reduced, and productivity can be improved.
また、 P B I樹脂は乾燥処理されているため、 半導体製品に水分が付 着する こ と も な く 、 したがって余計なダミ ー運転を行う 必要も な く 、 使 い勝手を損なう こ と も ない。  In addition, since the PBI resin is dried, no moisture adheres to the semiconductor product, so that there is no need to perform an extra dummy operation, and the usability is not impaired.
しかも、 P B I 樹脂は密着性に優れているため、 処理ガス と反応 して 生成された反応生成物の固体微粒子がプラズマ雰囲気中を飛散して も、 P B I 製のチャ ンバ内部品に容易に吸着され、 したがって、 固体微粒子 が半導体製品上に堆積するのを回避する こ とができ る。  In addition, because PBI resin has excellent adhesion, even if solid fine particles of the reaction product generated by reacting with the processing gas are scattered in the plasma atmosphere, they are easily adsorbed on the PBI chamber components. Therefore, it is possible to prevent solid fine particles from being deposited on the semiconductor product.
以下、 本発明の第 2 の実施の形態について説明する。  Hereinafter, a second embodiment of the present invention will be described.
本発明の第 2 の実施の形態では、 装置本体 1 は、 アルマイ ト処理され た A 1 製の外壁部 1 a と、 該外壁部 1 a の内周面全域に亙って着脱可能 に装着された内壁部 1 b とから構成され、 さ ら に該内壁部 1 b はアル ミ ニゥ ム成分を含まない焼結セラ ミ ッ ク ス材料、 すなわちアルミ レス焼結 セラ ミ ッ クス材料で形成され、 これに よ り プラズマによ り内壁部 1 b が 削られて も被処理物である半導体ウェハ 3 は A 1 に汚染される こ とがな く 、 製品歩留ま り の向上を図っている。  In the second embodiment of the present invention, the apparatus main body 1 is detachably mounted on an alumite-treated outer wall 1a made of A1 and over the entire inner peripheral surface of the outer wall 1a. The inner wall 1b is formed of a sintered ceramic material containing no aluminum component, that is, an aluminum-less sintered ceramic material. As a result, even if the inner wall portion 1b is shaved by the plasma, the semiconductor wafer 3, which is the object to be processed, is not contaminated by A1, and the product yield is improved.
上記プラズマ処理装置では、 プラズマ雰囲気に晒されるフ ォ ーカ ス リ ング 1 3 、 イ ンシユ レー タ リ ング 4 0 、 電極保護部材 8 、 ノ ツ フル板 1 2、第 1 及ぴ第 2 のべローズカバー 1 4 、 1 5等のチャ ンバ内部品が夫々 の所定位置に配設されているが、 本発明の第 2 の実施の形態では、 チ ヤ ンバ内部品も アル ミ レス焼結セラ ミ ッ ク ス材料で形成されている。  In the above-described plasma processing apparatus, the focus ring 13 exposed to the plasma atmosphere, the insulator ring 40, the electrode protection member 8, the notch plate 12 and the first and second plates are provided. The components inside the chamber such as the rose covers 14 and 15 are arranged at predetermined positions. However, in the second embodiment of the present invention, the components inside the chamber are also made of an aluminum-less sintered ceramic. It is formed of a box material.
アル ミ レス焼結セラ ミ ッ ク ス材料と しては、 例えば、 S i 3 N 4、 Y 2 0 3、 S i C を主成分とする 1 種の材料又は 2種以上の複合材料が使用 さ れる。 Is an Aluminum-less sintering Sera Mi click scan materials, for example, S i 3 N 4, Y 2 0 3, S i C 1 kind of material or two or more composite material mainly use the Sa It is.
また、 従来よ り チャ ンバ内部品の部品材料と して広 く 使用されている. S i 0 2 材は、 機械加工時に発生する多量の破砕屑がその表面に付着す るため、 長時間のダミ ー運転を行なう必要があ り 、 しかも耐プラズマ性 に も劣るため、 その交換頻度も多く 、 生産性が悪い。 Further, the prior art by Ri as a tea Nba in parts of the component materials are widely used. S i 0 2 material, order to adhere to the large amount of debris is the surface generated during machining, the long Since it is necessary to perform a dummy operation and has poor plasma resistance, the frequency of replacement is high and productivity is low.
このため、 本実施の形態では、 S i 0 2に比べて耐プラズマ性に優れ、 しかも機械加工時に発生する破砕屑も S i 0 2 に比べて少な く 、 したが つ てダミ ー運転も短時間で済む材料種、 すなわち S i 3 N 4、 Y 2 0 3、 S i C を主成分とする 1 種の材料又は 2種以上の複合材料、 好ま し く は焼 結助剤と レてイ ツ ト リ ビゥ ム ( Y b ) 及びイ ッ ト リ ウム ( Y ) のう ちの 少な く と もいずれか一方を添加した材料を使用 している。 Therefore, in the present embodiment, S i 0 2 excellent plasma resistance as compared with, moreover machining debris generated during even rather small compared to S i 0 2, was but One with dummy operation also short the kinds of materials requires time, i.e. S i 3 N 4, Y 2 0 3, S i C 1 kind of material or two or more composite material mainly composed of, preferred and rather is tempered aid and Les Te Lee A material to which at least one of tribium (Yb) and yttrium (Y) is added is used.
本発明者らの実験結果によ り 、 上記チャ ンバ内部品 (耐プラズマ性部 品) を、 内壁部 1 b と 同様、 上述したアルミ レス焼結セラ ミ ッ クス材料 で形成 した場合であって も 、 チヤ ンバ内部品を S i 〇 2 材で形成 した場 合と略同等のェッチング速度でも つて半導体ウェハ 3 を微細加工する こ とができ る こ とが明らかと な り 、 したがって、 所望のエッ チング速度を 確保する こ と もでき る。 According to the experimental results of the present inventors, it was found that the above-described chamber inner part (plasma-resistant part) was formed of the above-described aluminum-less sintered ceramic material similarly to the inner wall part 1b. also, Ri Do clear that the this that can have a this micromachining a connexion semiconductor wafer 3 also in Chiya Nba parts S i 〇 If formed by two material substantially equal Etchingu speed, therefore, the desired edge It is also possible to secure the switching speed.
尚、 これら耐プラズマ性に優れたアルミ レスのセラ ミ ッ クス材料は、 常圧焼結法、 加圧焼結 (Hot Press ) 法、 等方加圧焼結 (Hot Is ostatic Pres s ) 法な ど、 周知の焼結法を使用 して容易に所定形状に成形する こ とができ るのはいう.までも ない。  Note that these aluminum-less ceramic materials having excellent plasma resistance are obtained by a normal pressure sintering method, a pressure sintering method (Hot Press) method, or an isotropic pressure sintering method (Hot Isostatic Press method). Needless to say, it can be easily formed into a predetermined shape using a well-known sintering method.
このよ う に本発明の第 2 の実施の形態では、 内壁部 1 b がアル ミ レス 焼結セラ ミ ッ クス材料で形成されているので、 被処理物である半導体ゥ ェハ 3 が A 1 汚染する事態を回避する こ とができ 、 製品歩留ま り の向上 を図る こ とができ る。  As described above, in the second embodiment of the present invention, since the inner wall portion 1b is formed of an aluminum-less sintered ceramic material, the semiconductor wafer 3 to be processed is formed of A 1 Contamination can be avoided, and product yield can be improved.
さ ら に、 装置本体 1 の内部に配設されたチャ ンバ内部品 も、 内壁部 1 b と 同様、 耐プラズマ性に優れた S i 3 Nい Y 2 0 3、 S i C等を主成分 とする アルミ レス焼結セラ ミ ッ ク ス材料、 好ま し く は焼結助剤 と してィ ッ ト リ ピウム及ぴイ ツ ト リ ゥ ムの う ちの少な く と もいずれか一方を添カロ したアル ミ レス焼結セラ ミ ッ クス材料で形成されているので、 従来のよ う な S i 0 2 材を使用 した場合に比べ、 ダミ ー運転に要する時間を短縮 ィ匕する こ とができ、 したがってチ ャ ンバ内部品を S i 0 2 で形成した場 合と略同等のエッチング速度を確保しつつ生産性の向上を図る こ とがで き 、 更には部品の耐プラズマ性、 すなわち耐久性の向上を図る こ とがで き る。 Furthermore, the components inside the chamber arranged inside the main body 1 also As with b, superior S i 3 N There Y 2 0 3, S i aluminum-less sintering Serra a C like as a main component Mi click scan material plasma resistance, and rather is a sintering aid like Since it is made of aluminum-less sintered ceramics material to which at least one of yttrium and yttrium is added, a conventional method is used. compared with the case of using the S i 0 2 material can and this shorten spoon the time required for the dummy operation, therefore if the switch catcher Nba in part formed by S i 0 2 and the etching rate substantially equal Thus, it is possible to improve productivity while ensuring the reliability, and it is also possible to improve the plasma resistance, that is, the durability of the parts.
S i 3 N 4、 Y 2 0 3、 S i C等を主成分とする アルミ レス焼結セラ ミ ツ クス材科を使用するこ と に よ り 、 上述したよ う に A 1 汚染については確 実に回避する こ とができ るが、 これら アルミ レス焼結セラ ミ ッ クス材料 の市販品には、不純物と して F e成分が混入している可能性があるので、 A 1 汚染以外の金属汚染と して F e汚染が生じる虞がある。 しかしなが ら、 斯かる F e 汚染については F e の含有量を低減させるこ と によ り容 易に解消する こ とができ る。 S i 3 N 4, Y 2 0 3, Ri by the and S i C such child using aluminum-less sintering Sera Mi Tsu box member family consisting mainly of, probability for A 1 contamination cormorants I described above Although it can actually be avoided, commercial products of these aluminum-less sintered ceramic materials may contain Fe components as impurities, so metals other than A1 contamination Fe contamination may occur as contamination. However, such Fe contamination can be easily eliminated by reducing the Fe content.
なお、 上記実施の形態では装置本体 1 の外周に永久磁石 2 6 を配設し た磁場ア シス ト方式のプラズマエ ッチング装置を例に説明したが、 他の 方式、 例えば、 永久磁石 2 6 を設ける代わ り に、 上部電極 1 6 及び下部 電極 2 の双方に高周波電力を印加してプラズマを発生させる イ オ ンァシ ス ト方式のプラズマエッチ ング装置についても同様に適用する こ とがで き るのはいう までもない。  In the above embodiment, a magnetic field assist type plasma etching apparatus in which permanent magnets 26 are arranged on the outer periphery of the apparatus main body 1 has been described as an example, but other methods, for example, permanent magnets 26 are provided. Instead, the same can be applied to an ion-assist type plasma etching apparatus in which high-frequency power is applied to both the upper electrode 16 and the lower electrode 2 to generate plasma. Needless to say.
以下、 本発明の第 3 の実施の形態について第 1 1 図を参照 しながら説 明する。  Hereinafter, a third embodiment of the present invention will be described with reference to FIG.
第 1 1 図は、 第 3 の実施の形態におけるプラズマ処理装置部品材料の 製造方法を示す模式図である。 本発明の第 3の実施の形態では、 プラズマ処理装置用部品材料は、 酸 水素溶融法で製造される。 FIG. 11 is a schematic view showing a method of manufacturing a component material of a plasma processing apparatus according to the third embodiment. In the third embodiment of the present invention, the component material for a plasma processing apparatus is manufactured by an oxyhydrogen melting method.
具体的には、 耐プラズマ性に優れた所定の異種材料を H 2及び 02 と共 に天然の水晶粉末 1 0 1 (以下、 S i 02 粉末 1 0 1 ) に加え、 混合缶 1 0 2の中で S i 02 粉末 1 0 1 と異種材料と を混合させる。 こ れに よ り 、 混合物 1 0 3 を得る。 次いで、 所定の高温ガス雰囲気 1 0 4下 (例 えば、 2 0 0 0 °C ) で、 混合物 1 0 3 を溶融させ、 溶融した混合物 1 0 3 を矢印 A方向に回転しているィ ン ゴッ ト ケース 1 0 5 に積層 し、 その 後自然冷却させて铸塊状の部品材料 1 0 6 を製造している。 Specifically, plasma resistance excellent given different materials H 2 and 0 2 co natural crystal powder 1 0 1 (hereinafter, S i 0 2 powder 1 0 1) was added, mixed can 1 0 It is mixed with S i 0 2 powder 1 0 1 and different materials in two. As a result, a mixture 103 is obtained. Next, the mixture 103 is melted under a predetermined high-temperature gas atmosphere 104 (for example, 200 ° C.), and the melted mixture 103 is rotated in the direction of arrow A. They are laminated on a case 105 and then naturally cooled to produce a bulk component material 106.
このよ う に第 3の実施の形態では、 S i 02 粉末 1 0 1 に所定の異種 材料を添加させた混合物 1 0 3 を、 ガス溶融法と しての酸水素溶融法に よ り 高温ガス雰囲気 1 0 4下で溶融させ、 これによ り S i 02 中に異種 材料が均一に混合した部品材料 1 0 6 を製造している。 In the third embodiment of this good earthenware pots, S i 0 2 powder 1 0 Mixture 1 0 3 obtained by adding a predetermined different materials in 1, hot Ri by the oxyhydrogen melting method of a gas fusion method gas atmosphere 1 0 4 is melted under, different materials manufactures component material 1 0 6 were uniformly mixed in S i 0 2 This ensures.
上記所定の異種材料と しては、 耐プラズマ性に優れた材料、 具体的に は、 Y203 等の希土類化合物や、 S i Cや S i 3N4 等の S i 02 以外の ケィ素化合物、 A 1203等のアル ミ ニウ ム化合物、 或いは Y2A , 5012 (ィ ッ ト リ ウ ム 一アルミ ニ ウム —ガーネ ッ ト ; Y A G) 等の希土類化合物と アル ミ ニウム化合物との反応生成物を使用するこ とができ る。 Is the above predetermined different materials, plasma resistance excellent material, specifically, such as Y 2 0 3 rare earth compound or a, S i C and S i 3 of N 4, such as S i 0 2 other than Kei-containing compounds, a 1 2 0 aluminum Niu beam compounds such 3, or Y 2 a, 5 0 12 (I Tsu Application Benefits U arm one aluminum - Gane Tsu DOO; YAG) rare earth compounds such as aluminum A reaction product with a nickel compound can be used.
ま た、 第 3の実施の形態では、 S i 02 に対する上記異種材料の含有 率は 1 w t %〜 5 w t %に設定されている。 Further, in the third embodiment, the content of the above-mentioned different material with respect to SiO 2 is set to 1 wt% to 5 wt%.
こ こで上記異種材料の含有率を 1 w t %〜 5 w t % と したのは、 上記 異種材料の含有率が 1 w t %未満の場合は、 異種材料の含有率が少な過 ぎる ため耐プラズマ性の向上に寄与する こ とができず、 一方、 5 w t % を超えて異種材料を含有させても 、 耐プラズマ性が飽和状態と な り 、 異 種材料添加の効果を奏する こ とができないからである。  Here, the content of the above-mentioned heterogeneous material is set to 1 wt% to 5 wt% because, when the content of the above-mentioned heterogeneous material is less than 1 wt%, the content of the heterogeneous material is too small and the plasma resistance On the other hand, even if the content of different materials exceeds 5 wt%, the plasma resistance becomes saturated, and the effect of adding different materials cannot be obtained. It is.
こ の よ う に、 第 3の実施の形態では、 希土類化合物等の耐プラズマ性 に優れた所定の異種材料を酸水素溶融法で均一に S i 02粉末 1 0 1 中 に添加 (混合) させて部品材料 1 0 6 を製造している ので、 部品材料 1 0 6 を使用 して製造されたプラズマ処理装置用部品 (シール ドリ ング 4 1、 フ ォ ー カス リ ン グ 1 3、 絶縁リ ン グ等) の耐プラズマ性が向上 し、 従来に比べて装置部品の交換頻度が減少し、 半導体製造の生産性向上を 図る こ とができ る。 As described above, in the third embodiment, the plasma resistance of a rare earth compound or the like is high. Since addition of superior predetermined different materials uniformly S i 0 2 powder 1 0 in 1 in an oxyhydrogen melting method (mixing) is to manufactures component material 1 0 6, using parts materials 1 0 6 Of plasma processing equipment (sealing rings 41, focusing rings 13, insulating rings, etc.) manufactured by using this method has improved plasma resistance, and the frequency of replacement of equipment parts has been improved compared to the past. And the productivity of semiconductor manufacturing can be improved.
実施例 Example
次に、 本発明の実施例を具体的に説明する。  Next, examples of the present invention will be described specifically.
以下、 本発明の第 1 め実施の形態に対応する第 1 の実施例について説 明する。  Hereinafter, a first example corresponding to the first embodiment of the present invention will be described.
〔第 1 の実施例〕  [First embodiment]
本発明者らは、本実施例において、 P B I材と して 2種類の P B I ( P B I — A、 P B I — B とする) 、 P I材と して 3種類の P I ( P I _ A、 P I — B、 P I — C とする) 、 P A I材と して 1種類の P A I ( P A I 一 Aとする) を使用 し、 これら各材料を使用 して夫々縦 2 0 mm、 横 2 0 mm、 厚さ 2 mmの試験片を作製した。 そ して、 第 2図に示すよ う に、 各試験片の外周部 3 0 をポリ イ ミ ドフ ィ ルム (デュポン社、登録商標「力 プト ン」 ) でマス ク し、 中央部 3 1 に縦 1 0 m m、 横 1 0 m mの照射面 を設け、 以下の放電条件でも ってプラズマを 2 0時間照射し、 表面粗度 計によ っ て X軸方向及び Y軸方向の削れ量 (消耗量) を計測し、 耐プラ ズマ性を評価した。  In the present example, the present inventors found that two types of PBI (PBI-A, PBI-B) were used as PBI materials, and three types of PIs (PI_A, PI-B, PI—C), one type of PAI (PAI-A) was used as the PAI material, and each of these materials was used to measure a length of 20 mm, a width of 20 mm, and a thickness of 2 mm. Test pieces were prepared. Then, as shown in Fig. 2, the outer peripheral portion 30 of each test piece was masked with polyimide film (DuPont, registered trademark "Pyton") and the central portion 31 was formed. An irradiation surface of 10 mm in length and 10 mm in width is provided, plasma is irradiated for 20 hours under the following discharge conditions, and the amount of shaving in the X-axis direction and Y-axis direction is measured by a surface roughness meter. ) Was measured, and the plasma resistance was evaluated.
〔放電条件〕  (Discharge conditions)
高周波電力 : 1 3 0 0 W  High frequency power: 1300 W
電源周波数 : 1 3. 5 6 MH z  Power supply frequency: 1 3.56 MHz
処理室の圧力 : 1 3 3 P a ( 1. 0 Torr)  Processing chamber pressure: 1 3 3 Pa (1.0 Torr)
処理ガスの成分 : C F4 /A r /02 第 3図は測定結果を示す棒グラ フであ り 、横軸は各試験片材料を示し、 縦軸は 2 0時間後の削れ量 ( m) を示している。 Processing gas component: CF 4 / A r / 0 2 FIG. 3 is a bar graph showing the measurement results, in which the abscissa indicates the material of each test piece and the ordinate indicates the shaving amount (m) after 20 hours.
この第 3·図から明らかなよ う に、 P B I材は P I材ゃ P A I材に比べ 消耗量が少な く 、 耐プラズマ性に優れている こ とが分かる。  As is clear from FIG. 3, the PBI material consumes less than the PI material and the PAI material, and has excellent plasma resistance.
以下、 本発明の第 2の実施の形態に対応する第 2の実施例について説 明する。  Hereinafter, a second example corresponding to the second embodiment of the present invention will be described.
〔第 2の実施例〕  [Second embodiment]
本発明者ら は、 まず、 本実施例と して S i 3N4 を主成分と した S i N 4 材を使用 し、 比較例 と して S i 02 を主成分と した S i 02 材を使用 し、 概略寸法が内径 2 3 O ram, 外径 2 8 0 m m、 全高 1 5 m mのイ ン シュ レータ リ ング 4 0 を製造した。 The present inventors first used the S i N 4 material mainly composed of S i 3 N 4 as an embodiment, S i 0 mainly composed of S i 0 2 and Comparative Example Using two materials, an insulator ring 40 having an approximate diameter of 23 Oram, an outer diameter of 280 mm, and a total height of 15 mm was manufactured.
次いで、 該イ ンシユ レ一タ リ ング 4 0 を処理室 2 2内の所定位置に配 設する と共に、 8 イ ンチ ( 2 0 3 . 2 mm) の半導体ウェハ 3 を静電チ ャ ッ ク 4 に吸着保持させ、 所定の放電条件でグロ一放電を生じさせてプ ラズマ照射を行い、 プラズマ照射前後の固体微粒子の個数を測定した。 具体的には、 上記イ ンシュ レー タ リ ング 4 0の表面には機械加工によ り破砕屑が付着しているため、 該破砕屑を除去すべく 、 5枚の半導体ゥ ェハ 3 を使用 して各々 1分間ずつ、 計 5分間のダミ ー運転を行い、 その 後新たな半導体ウェハ 3 を静電チャ ッ ク 4 に吸着保持させて 3 0秒間プ ラズマ照射を行い、 プラ ズマ照射前後の固体微粒子の個数を K L A— Tencor社製 Surfscan6420で測定した。  Next, the insulating ring 40 is disposed at a predetermined position in the processing chamber 22, and the 8-inch (203.2 mm) semiconductor wafer 3 is placed on the electrostatic chuck 4. Then, plasma irradiation was performed by generating a glow discharge under predetermined discharge conditions, and the number of solid fine particles before and after plasma irradiation was measured. Specifically, since the crushed debris is adhered to the surface of the insulator ring 40 by machining, five semiconductor wafers 3 are used to remove the crushed debris. Then, a dummy operation is performed for 1 minute each, for a total of 5 minutes.After that, a new semiconductor wafer 3 is sucked and held on the electrostatic chuck 4 and plasma irradiation is performed for 30 seconds, and before and after the plasma irradiation. The number of solid fine particles was measured with KLA—Tencor Surfscan6420.
尚、 放電条件は以下の通り である。  The discharge conditions are as follows.
〔放電条件〕  (Discharge conditions)
高周波電力 : 1 5 0 0 W  High frequency power: 150 W
電源周波数 : 1 3. 5 6 MH z  Power supply frequency: 1 3.56 MHz
処理室の圧力 : 5. 3 2 P a ( 4. 0 X 1 0 -2Torr) 反応ガス種 : C4F8 / C 0/ A r /02 Processing chamber pressure: 5.32 Pa (4.0 X 10 -2 Torr) Reactive gas species: C 4 F 8 / C 0 / A r / 0 2
表 2 は試験前後における半導体ウェハ 3上に付着 した固体微粒子の個 数を示している。  Table 2 shows the number of solid particles adhered on the semiconductor wafer 3 before and after the test.
表 2 Table 2
Figure imgf000024_0001
Figure imgf000024_0001
.この表 2から明らかな よ う に、 比較例である S i 02 材では 0. 2 μ m以上の固体微粒子がプラズマ照射前後では 1 1 5個も増加しているの に対し、 S i 3N 4材では 9個しか増加していない。 As is evident from Table 2, in the comparative example, the S i 0 2 material showed an increase in solid fine particles of 0.2 μm or more by 115 before and after plasma irradiation. 3 in the N 4 material not increased only nine.
すなわち、 S i 02 材では、 その表面に多量の破砕屑が付着 している ため、 5分間程度のダミ ー運転では不十分であ り 、 長時間に亙る ダミ ー 運転が必要である こ とが判る。 That is, since a large amount of crushed debris adheres to the surface of the SiO 2 material, a dummy operation of about 5 minutes is not sufficient, and a long-time dummy operation is required. I understand.
これに対して S i 3N4 材では、 その表面に付着 している破砕屑が少量 であるため、 短時間のダミ 一運転で表面に付着している破碎屑を除去す る こ とができ、 半導体ゥェハ 3 の微細加工を行な う本運転に迅速に移行 可能である こ とが確認された。 On the other hand, in the case of Si 3 N 4 material, the amount of crushed debris adhering to its surface is small, so it is possible to remove the crushed debris adhering to the surface in a short damp operation. However, it was confirmed that it was possible to promptly shift to the main operation for performing microfabrication of semiconductor wafer 3.
以下、 本発明の第 2 の実施の形態に対応する第 3 の実施例について説 明する。 Hereinafter, a third example corresponding to the second embodiment of the present invention will be described. I will tell.
〔第 3 の実施例〕  [Third embodiment]
次に、 本発明者らは、 本発明実施例と して Y 2 0 3 を主成分と した Y 2 0 3 材を使用 し、 比較例と して A 1 2 0 3 を主成分と した A 1 2 0 3 材を使 用 して、 第 2 の実施例と同様のイ ンシユ レ一夕 リ ング 4 0 を製造した。 次いで、 第 2 の実施例 と同様の放電条件でも って Y 2 0 3 材 (本発明実 施例) については 5枚のダミ ーウェハを使用 して各 1 分間ずつ、 計 5分 間のダミ ー運転を行い、 Α 1 2 0 3 材 (比較例) については 2 5枚のダミ 一ウェハを使用 して各 3分間ずつ、 計 7 5分間のダミ 一運転を行い、 そ の後、 1 0 0 時間のラ ンニ ングテス ト を行い、 半導体ウェハ 3 上に固着 した 0 . 2 m以上の固体微粒子個数の経時的変化を測定した。 Next, we use the Y 2 0 3 material in the present invention example was composed mainly of Y 2 0 3, mainly composed of A 1 2 0 3 and Comparative Example A by using the 1 2 0 3 material, to produce a second embodiment similar to Lee Nshiyu les Isseki-ring 4 0. Then, one each minute using five dummy Weha for Y 2 0 3 material (the present invention real施例) I in the same discharge conditions as in the second embodiment, dummy between five minutes performs the operation, Alpha 1 2 0 for 3 material (Comparative example) by each 3 minutes using a 2 five dummy one wafer performs dummy one operation of seven 5 minutes, Later, 1 0 0 A time running test was performed, and a change with time of the number of solid fine particles having a diameter of 0.2 m or more fixed on the semiconductor wafer 3 was measured.
第 6 図は測定結果を示す特性図であ り 、 横軸は高周波電力の印加時間 ( h r ) 、 縦軸は 0 . μ m以上の固体微粒子の個数を示している。 ま た、 図中、 実線は本発明実施例である Y 2 0 3 材の固体微粒子の発生個数 を示 し、 破線は比較例である A 1 2 0 3 材の固体微粒子の発生個数を示し ている。 FIG. 6 is a characteristic diagram showing the measurement results, in which the horizontal axis represents the application time (hr) of the high-frequency power, and the vertical axis represents the number of solid fine particles having a diameter of not less than 0.1 μm. Also, in the figure, the solid line a generation number of the solid particles of Y 2 0 3 material is present invention embodiment shows, dashed line shows the number of generated solid particulates of A 1 2 0 3 material is a comparative example I have.
この第 6 図から明らかなよ う に、 比較例では印加時間が約 2 5 時間程 度を経過した後、 固体微粒子の個数が急激に増加しているのに対し、 本 発明実施例では固体微粒子の発生は低水準で安定化している こ とが分か る o  As is clear from FIG. 6, the number of the solid fine particles rapidly increased after the application time of about 25 hours in the comparative example, whereas the solid fine particles in the example of the present invention were increased. It is clear that outbreaks have stabilized at low levels.o
すなわち、 比較例では A 1 20 3 が C 4 F 8 ガス と反応して A 1 F 3 を生 成 し、 該 A 1 F 3 が固体微粒子と なってプラズマ雰囲気中を飛散 し、 こ れに よ り 固体微粒子が半導体ウェハ 3 上に付着している ものと推認され る。 That is, the A 1 F 3 reacts A 1 2 0 3 is a C 4 F 8 gas in the comparative example and generate, the A 1 F 3 scatters the plasma atmosphere becomes solid particulates, the Re this Thus, it is presumed that the solid fine particles adhere to the semiconductor wafer 3.
これに対して本発明実施例である Y 20 3 材では、 固体微粒子の発生は 生じる も のの低水準で安定化し、 印加時間が 1 0 0時間を経過 した時点 でも 固体微粒子は 4 0個程度しか発生 しないこ とから、 固体微粒子の発 生は少ないことが確認された。 Point in the Y 2 0 3 material is present invention embodiment In contrast, the occurrence of fine solid particles stabilized at low levels of anything occurs, the application time has exceeded the 1 0 0 hour However, since only about 40 solid particles were generated, it was confirmed that the generation of solid particles was small.
以下、 本発明の第 2 の実施の形態に対応する第 4 の実施例について説 明する。  Hereinafter, a fourth example corresponding to the second embodiment of the present invention will be described.
〔第 4 の実施例〕  [Fourth embodiment]
次に、 本発明者らは、 本実施例と して S i C、 Y 203、 S i 3N4、 比 較例と して A 1 203、 S i 02 の各材料について、 縦 2 O m m、 横 2 0 m m、 厚さ 2 m mの試験片を作製し、 第 2 図に示すよ う に、 各試験片の 外周部 3 0 をポリ イ ミ ドフ ィ ルム (デュポン社、 登録商標 「カ ブ ト ン」 ) でマス ク し、 中央部 3 1 に縦 1 0 m m、 横 1 0 m mの照射面を設け、 第 2 の実施例と同様の放電条件でも ってプラズマを 2 0時間照射し、 表面 粗度計で X軸方向及び Y軸方向の削れ量 (消耗量) を計測した。 Then, the present inventors, S i C as an embodiment, the Y 2 0 3, S i 3 N 4, and the ratio Comparative Examples A 1 2 0 3, the material of the S i 0 2 , 20 mm in length, 20 mm in width, and 2 mm in thickness were prepared. As shown in Fig. 2, the outer periphery 30 of each test piece was made of polyimide film (DuPont, Inc.). (Registered trademark “Kabton”)), and an irradiation surface of 10 mm in length and 10 mm in width is provided in the center 31, and plasma is applied under the same discharge conditions as in the second embodiment. Irradiation was performed for 0 hour, and the amount of wear (consumed amount) in the X-axis direction and the Y-axis direction was measured with a surface roughness meter.
第 7 図は測定結果を示す棒グラ フであ り 、 横軸は各セラ ミ ッ ク ス材料 を示し、 縦軸は 2 0時間後の削れ量 ( m) を示している。  FIG. 7 is a bar graph showing the measurement results. The horizontal axis shows each ceramic material, and the vertical axis shows the amount of shaving (m) after 20 hours.
この第 7 図から明らかなよ う に、 S i 3 N 4 材、 Y 203 材、 S i C材は S i 02 材に比べ削れ量が少な く 、 耐プラズマ性に優れている こ とが判 る。 The power sale by clear from the FIG. 7, S i 3 N 4 material, Y 2 0 3 material, this S i C material is superior rather small, the amount of abrasion compared to S i 0 2 material, the plasma resistance It turns out that.
尚、 A 1 203 材は S i 3 N 4 材ゃ S i C材に比しても耐プラズマ性に優 れているが、 第 2 の実施例の実験結果から明らかなよ う に、 A 1 203 が C 4F 8 ガス と反応して A 1 F 3 からなる固体微粒子が発生する ため、 プ ラズマ処理装置用の部品材料には適さ ない。 Incidentally, the A 1 2 0 3 material have been excellent in plasma resistance even as compared with the S i 3 N 4 material Ya S i C material, earthenware pots by apparent from the experimental results of the second embodiment, since the solid particles a 1 2 0 3 consists of a 1 F 3 reacts with C 4 F 8 gas is generated, not suitable for part materials for flops plasma processing apparatus.
以下、 本発明の第 2 の実施の形態に対応する第 5 の実施例について説 明する。  Hereinafter, a fifth example corresponding to the second embodiment of the present invention will be described.
〔第 5 の実施例〕  [Fifth embodiment]
次に、 本発明者らは、 本実施例と して S i 3N4 材を使用 し、 比較例と して S i 02 材を使用 して上記第 2 の実施例と同様、 イ ンシュ レー タ リ ング 4 0 を製造し、 上述の放電条件でェッチング速度を比較した。 Next, the present inventors used the Si 3 N 4 material as the present example, and used the SiO 2 material as a comparative example. Letter The etching rates were compared under the above-mentioned discharge conditions.
第 8図は S i 3 N 4 材の測定結果を示 し、 第 9図は S i 02 材の測定結 果を示している。 第 8図及び第 9図において、 横軸は半導体ウェハのゥ ェハ径 (mm) 、 縦軸はエッ チン グ速度 ( n m/min) である。 また、 測定は半導体ウェハの X Y平面上を X軸方向及び Y軸方向の双方で行つ た。 Figure 8 is shows the measurement results of the S i 3 N 4 material, Figure 9 shows the measurement results of the S i 0 2 material. 8 and 9, the horizontal axis represents the wafer diameter (mm) of the semiconductor wafer, and the vertical axis represents the etching speed (nm / min). The measurement was performed on the XY plane of the semiconductor wafer in both the X-axis direction and the Y-axis direction.
第 8図の S i 3N4材ではェッチング速度は 3 1 4 n m/min士 2. 1 %、 第 9 図の S i 02 材ではエッ チング速度は 3 0 2 n m / min士 1 · 9 % とな り 、 S i 3 N 4 材を耐プラズマ性部品 (チャ ンバ内部品) と して使用 した場合であって も、 s i 02 材と略同様のエッチング性能を確保する こ と ができ るこ とが確認された。 The etching speed of the Si 3 N 4 material shown in FIG. 8 is 3.1% at 3.4 nm / min, and the etching speed of the Si 0 2 material shown in FIG. 9 is 302 nm / min. % and Do Ri, even when used in the S i 3 N 4 material as plasma resistance component (Cha Nba in part), it is the this to secure substantially the same etching performance as si 0 2 material Was confirmed.
以下、 本発明の第 2の実施の形態に対応する第 6の実施例について説 明する。  Hereinafter, a sixth example corresponding to the second embodiment of the present invention will be described.
〔第 6の実施例〕  (Sixth embodiment)
次に、 本発明者らは、 本実施例と して S i 3 N 4 に焼結助剤 と してイ ツ ト リ ピウム及ぴイ ツ ト リ ウム をカ卩えた S i 3 N 4 純度が 8 0 %の S i 3N4 — A、 S i 3N4 に焼結助剤と してイ ツ ト リ ピウム及ぴイ ツ ト リ ゥム を加 えた S i 3 N 4 純度が 9 1 %の S i 3 N 4— B、 及び S i 3 N 4 に焼結助剤 と してイ ツ ト リ ウム を加えた S i 3 N 4 純度が 9 8 %の S i 3 N 4— C、 比較 例と して S i 3 N 4 に焼結助剤と してマグネシウム を加えた S i 3 N 4 純度 が 9 9. 5 %の S i 3 N 4— D、 及び Q u a r t z について、 縦 2 0 mm, 横 2 0 mm、 厚さ 2 mmの試験片を作製し、 第 2図に示すよ う に、 各試 験片の外周部 3 0 をポリ イ ミ ドフ ィ ルム (デュポン社、 登録商標 「力 プ ト ン」 ) でマス ク し、 中央部 3 1 に縦 1 0 m m、 横 1 0 m mの照射面を 設け、 以下の放電条件でも ってプラズマを 2 0時間照射し、 表面粗度計 で X軸方向及び Y軸方向の削れ量 (消耗量) を計測 した。 〔放電条件〕 Next, the present inventors set the purity of Si 3 N 4 obtained by adding yttrium and yttrium to Si 3 N 4 as a sintering aid in this example. There 80% of S i 3 N 4 - a, S i 3 i in the N 4 and a sintering aid tree Application Benefits Piumu及Pi Lee Tsu S i 3 N 4 purity Application Benefits © beam was pressurized Introduction 9 1% S i 3 N 4 - B, and S i 3 N 4 to S i 3 N 4 purity plus b tree Application Benefits um as a sintering aid is 9 8% S i 3 N 4 - C, and as Comparative example S i 3 N 4 to S i 3 N 4 purity plus magnesium as a sintering aid of 9 9. 5% S i 3 N 4 - D, and the Q uartz, A 20 mm long, 20 mm wide, and 2 mm thick test piece was prepared. As shown in Fig. 2, the outer periphery 30 of each test piece was made of polyimide film (DuPont, Inc.). (Registered trademark “Pyton”)), an irradiation surface of 10 mm in length and 10 mm in width is provided in the center 31, and the projection is performed under the following discharge conditions. Zuma were irradiated 2 0 hours, scraping amount of X-axis and Y-axis directions by the surface roughness meter (consumption) was measured. (Discharge conditions)
高周波電力 : 1 4 0 0 W  High frequency power: 140 W
電源周波.数 : 1 3. 5 6 MH z  Power frequency. Number: 1 3.5 6 MHz
処理室の圧力 : 5. 3 2 P a ( 4. 0 X 1 0—2Torr) - 反応ガス種 : : C F 4 / A r / 02 Pressure in the processing chamber: 5. 3 2 P a (4. 0 X 1 0- 2 Torr) - reactive gas species:: CF 4 / A r / 0 2
第 1 0図は測定結果を示す棒グラ フであ り 、 横軸は各セラ ミ ッ クス材 科を示し、 縦軸は Q u a r t zの 2 0時間後の削れ量を 1 0 0 と したと き の削れ量を示している。  Fig. 10 is a bar graph showing the measurement results.The horizontal axis shows each ceramic material, and the vertical axis shows the amount of shaving 20 hours after Quartz was 100. Shows the amount of scraping.
この第 1 0 図から明らかなよ う に、 S i 3 N 4 に焼結助剤と してイ ツ ト リ ビゥム及びィ ッ ト リ ウム を加えた S i 3 N 4— A及び S i 3 N 4— Bの削 れ量は、 Q u a r t zの削れ量の約 1 / 3 であ り 、 S i 3 N 4 に焼結助剤 と してマグネシウム を加えた S i 3 N 4— Dの削れ量よ り少ない。 The power sale by clear from the first 0 Figure, S i 3 N 4 as a sintering aid Lee Tsu Application Benefits Biumu and I Tsu preparative S i 3 N 4 was added Li Umm - A and S i 3 N 4 - cutting is the amount of B is Ri about 1/3 der the scraping amount of Q uartz, S i 3 N 4 was added magnesium as a sintering aid to the S i 3 N 4 - scraping of the D Less than quantity.
ま た、 S i 3 N 4 に焼結助剤 と してイ ッ ト リ ウム を加えた S i 3 N 4— C の削れ量は、 Q u a r t zの削れ量の約 6割であ り 、 S i 3N 4 に焼結助 剤と してマグネシウムを加えた S i 3 N 4— Dの削れ量よ り少ない。 Also, S i 3 N 4 was added Lee Tsu Application Benefits um as a sintering aid to the S i 3 N 4 - scraping amount of C is Ri about 6 Waridea the scraping amount of Q uartz, S i 3 N 4 S i 3 N 4 was added magnesium as a sintering agent - small Ri by abrasion amount of D.
以上の結果によ り 、 削れ量は S i 3N4 純度に依存せず、 S i 3N4 に乾 燥助剤を加える こ と によって、 削れ量が小さ く な り 、 また、 乾燥助剤と して、 イ ツ ト リ ピウム及ぴイ ツ ト リ ウムのう ちの少な く と も いずれか一 方を用いる こ とが適している こ とが判る。 産業上の利用性 Ri by the above results, the scraping amount does not depend on S i 3 N 4 purity by the this adding dry燥助agent S i 3 N 4, scraping amount Ri is Do rather small, also drying aid Thus, it is found that it is appropriate to use at least one of yttrium and yttrium. Industrial applicability
以上、 第 1 の実施の形態で詳述したよ う に、 本発明に係る プラズマ処 理装置用部品は、 乾燥処理されたポリ べンゾイ ミ ダゾール ( P B I ) で 形成されているので、 石英、 P I .樹脂、 P A I樹脂で形成された従来品 に比べ耐プラズマ性が向上し、 したがってチヤ ンバ内部品の耐久性向上 を図る こ と'ができ、も ってメ ンテナンスサイ クルを延長する こ とができ、 部品交換の頻度も少な く なる。 As described above in detail in the first embodiment, since the components for the plasma processing apparatus according to the present invention are formed of dried polybenzoimidazole (PBI), quartz and PI The plasma resistance is improved compared to conventional products made of resin and PAI resin, and therefore the durability of the components inside the chamber can be improved, thereby extending the maintenance cycle. Can, The frequency of parts replacement is also reduced.
しかも、 本発明に係るプラズマ処理装置用部品は、 乾燥処理されたポ リベンゾィ ミ ダブールで形成されているので、 半導体デバイス等の製品 に水分が付着する こ と もな く 、 したがって余計なダミ一運転を行う 必要 も な く なる。  In addition, since the components for the plasma processing apparatus according to the present invention are formed of dried polybenzoimidabour, moisture does not adhere to products such as semiconductor devices, and therefore, unnecessary waste operation There is no need to do this.
また、 本発明に係る プラズマ処理装置用部品の製造方法は、 ポリ ベン ゾィ ミ ダゾールの粉末に真空乾燥処理を施 した後、 真空乾燥処理された 粉末に成形処理を施して所定形状の成形品を製造するので、 耐プラズマ 性に優れ、 且つ、 吸水性を除去したプラズマ処理装置用部品を容易に製 造する こ とができ、 も って、 エッ チング溝の B T M (ボ ト ム) 部分の寸 法におけるばらつき及び経時変化を抑制する こ とができ る。  In addition, the method for manufacturing a part for a plasma processing apparatus according to the present invention is characterized in that after performing a vacuum drying process on a polybenzomidazole powder, a molding process is performed on the vacuum-dried powder to form a molded product having a predetermined shape. Because of this, it is possible to easily manufacture parts for plasma processing equipment that excel in plasma resistance and remove water absorption. Therefore, the BTM (bottom) portion of the etching groove can be manufactured. Variations in dimensions and changes over time can be suppressed.
さ ら に、 真空乾燥処理で設定される第 1 の乾燥処理温度よ り も高い第 2 の乾燥処理温度で成形品を再度真空乾燥処理する こ と によ り 、 成形品 に割れが生じるのを回避するこ とができ る。  Furthermore, by subjecting the molded article to vacuum drying again at a second drying processing temperature higher than the first drying processing temperature set in the vacuum drying processing, cracks in the molded article can be prevented. Can be avoided.
また、 本発明に係る プラズマ処理装置においては、 装置本体の内部に 配設されてプラズマ雰囲気に晒される部品類が、 乾燥処理されたポ リべ ンゾィ ミ ダゾ一ルで形成されているので、 部品類の耐プラズマ性が向上 し、 したがってこれら部品類の耐久性も向上する。 このため、 部品交換 の頻度も減少するため、 半導体デバイ ス等の製品の生産性向上を図る こ とができ る。  In addition, in the plasma processing apparatus according to the present invention, since the components disposed inside the apparatus main body and exposed to the plasma atmosphere are formed of a dry-processed polybenzimidazole, the components are The plasma resistance of these components is improved, and therefore the durability of these components is also improved. As a result, the frequency of component replacement is reduced, and the productivity of products such as semiconductor devices can be improved.
また、 第 2 の実施の形態で詳述したよ う に、 本発明に係る プラズマ処 理装置は、 装置本体の内壁及ぴ該処理室の内部に配設されている プラズ マ雰囲気に晒される部品類が、 アルミ ニゥ ム成分を含有していない焼結 セ ラ ミ ッ ク ス材料で形成されている ので、 半導体製品の表面に A 1 F 3 等の不純物が固着して A 1 汚染が生じるのを回避する こ とができ、 製品 歩留ま り の向上を図るこ とができ る。 また、 焼結セラ ミ ッ ク材料は、 窒化ケィ素、 酸化イ ッ ト リ ウム、 又は 炭化ケィ 素を主成分と した材料の中から 1種又は 2種以上を選択して構 成される こ との中から選択された 1種又は 2種以上からなるので、 所謂 ダミ ー運転を短縮化する こ とができ、生産性を向上させる こ とができ る。 しかも 、 これら焼結セ ラ ミ ッ ク材料は石英 ( S i 0 2 ) に比べて耐プ ラズマ性において も優れているため耐久性向上も 図る こ とができ、 した がって部品交換の頻度も減少し、 メ ンテナンス性が向上する。 In addition, as described in detail in the second embodiment, the plasma processing apparatus according to the present invention includes an inner wall of the apparatus main body and components exposed to a plasma atmosphere provided inside the processing chamber. Are made of sintered ceramic materials that do not contain aluminum components, so that impurities such as A1F3 adhere to the surface of semiconductor products and cause A1 contamination. Can be avoided, and the product yield can be improved. In addition, the sintered ceramic material may be composed of one or more materials selected from materials containing silicon nitride, yttrium oxide, or silicon carbide as a main component. Since it is composed of one or more selected from the above, so-called dummy operation can be shortened and productivity can be improved. Moreover, the frequency of these sintered Yuise La Mi click material also enabling high- also improve durability because of its excellent in耐Pu plasma resistance as compared with quartz (S i 0 2), and wanted to replace parts And maintainability is improved.
また、 これら焼結セラ ミ ッ ク材料には焼結助剤と してイ ツ ト リ ビゥム 及びィ ッ ト リ ゥ ムのう ちの少な く と も いずれか一方が添加されているの で、 耐プラズマ性をさ ら に向上させる こ とができ、 も って耐久性の向上 をさ ら に図る こ とができ る。  Since these sintered ceramic materials contain at least one of yttrium beam and yttrium as a sintering aid, they are resistant to sintering. The plasma properties can be further improved, and the durability can be further improved.
さ ら に、 第 3 の実施の形態で詳述したよ う に、 本発明に係る プラズマ 処理装置用部品は、 ブラズマ処理装置の装置本体内部に配設される絶縁 性部品に使用される ブラズマ処理装置用部品であつて、 ケィ素酸化物が 主成分と して含有される と共に、 ケィ素酸化物以外の所定の異種材料が 添加されている ので、 所定の異種材料と して耐プラズマ性に優れた材料 を選択する こ と によ り 、 耐プラズマ性に優れたプラズマ処理装置用部品 を製造する こ とができ、 も って当該部品の耐久性向上を図る こ とができ る と共に、 半導体製造の生産性向上を図る こ とができ る。  Further, as described in detail in the third embodiment, the plasma processing device component according to the present invention is a plasma processing device used for an insulating component disposed inside a device main body of a plasma processing device. Since it is a component for equipment that contains silicon oxide as a main component and is added with a predetermined dissimilar material other than the silicon oxide, it has plasma resistance as a predetermined dissimilar material. By selecting an excellent material, it is possible to manufacture a component for a plasma processing apparatus having an excellent plasma resistance, thereby improving the durability of the component and improving the semiconductor performance. Production productivity can be improved.
また、 本発明に係る プラズマ処理装置用部品の製造方法は、 プラズマ 処理装置の装置本体内部に配設される絶縁性部品に使用するブラズマ処 理装置用部品の製造方法であって、 ケィ素酸化物にケィ素酸化物以外の 所定の異種材料を添加 し、 酸水素炎下でケィ素酸化物及び前記異種材料 を溶融し、その後冷却してプラズマ処理装置用部品を製造しているので、 ケィ素酸化物と異種材料と を確実に均一に混合させる こ とができ、 所望 の優れた耐プラズマ性を有するプラズマ処理装置用部品を得る こ とがで き る。 Further, the method for manufacturing a component for a plasma processing apparatus according to the present invention is a method for manufacturing a component for a plasma processing apparatus used for an insulating component disposed inside an apparatus body of the plasma processing apparatus, comprising: Since a predetermined heterogeneous material other than silicon oxide is added to the material, the silicon oxide and the heterogeneous material are melted in an oxyhydrogen flame, and then cooled to manufacture parts for a plasma processing apparatus. The elemental oxide and the dissimilar material can be surely and uniformly mixed, and a desired component for a plasma processing apparatus having excellent plasma resistance can be obtained. Wear.
また、 上記異種材料と しては、 希土類化合物、 前記ケィ素酸化物以外 のケィ素化合物、 及びアルミ ニウ ム化合物の中から選択された 1種又は 2種以上を含む物質を選択しているので、 上述した耐プラズマ性の向上 を容易に図る こ とができ る。  In addition, since the different materials are selected from rare earth compounds, silicon compounds other than the above silicon oxides, and substances containing one or more selected from aluminum compounds, In addition, the plasma resistance described above can be easily improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . プラズマ処理装置の装置本体内部に配設される プラズマ処理装置用 部品であって、 乾燥処理されたポリ ベンゾイ ミ ダゾールで形成されてい る こ と を特徴とする プラズマ処理装置用部品。 1. A component for a plasma processing apparatus, which is provided inside the apparatus main body of the plasma processing apparatus and is formed of dried polybenzimidazole.
2. ポリ べンゾイ ミ ダゾールの粉末に真空乾燥処理を施した後、 該真空 乾燥処理された前記粉末に成形処理を施して所定形状の成形品を製造す る こ と を特徴とする プラズマ処理装置用部品の製造方法。  2. A plasma processing apparatus, comprising: subjecting a powder of polybenzoimidazole to a vacuum drying treatment, and then applying a molding treatment to the powder subjected to the vacuum drying treatment to produce a molded article having a predetermined shape. Manufacturing method for parts.
3. 前記真空乾燥処理で設定される第 1 の乾燥処理温度よ り も高い第 2 の乾燥処理温度で前記成形品を再度真空乾燥処理する こ と を特徴とする 請求の範囲第 2項記載のプラズマ処理装置用部品の製造方法。  3. The molded article is subjected to vacuum drying processing again at a second drying processing temperature higher than a first drying processing temperature set in the vacuum drying processing, wherein the molded article is subjected to vacuum drying processing. A method for manufacturing a part for a plasma processing apparatus.
4. 前記真空乾燥処理は、 温度 1 4 0 °C〜 1 8 0 °Cで 5 〜 7 時間行う こ と を特徴とする請求の範囲第 2項又は第 3 項記載のプラズマ処理装置用 部品の製造.方法。  4. The component for a plasma processing apparatus according to claim 2 or 3, wherein the vacuum drying treatment is performed at a temperature of 140 ° C to 180 ° C for 5 to 7 hours. Production method.
5. 前記成形処理後の機械加工時に、 2 8 0 °C〜 3 0 0 °Cの温度で 2 〜 4時間行う 第 1 のァニール処理と 3 4 0 t:〜 3 6 0 °Cの温度で 2 〜 4 時 間行う 第 2 のァニール処理と を施すこ と を特徴とする請求の範囲第 2項 乃至第 4項のいずれか 1 項に記載のプラズマ処理装置用部品の製造方法。5. At the time of machining after the above-mentioned forming process, 2 to 4 hours at a temperature of 280 ° C. to 300 ° C. First annealing and 340 t: at a temperature of up to 360 ° C. The method for producing a component for a plasma processing apparatus according to any one of claims 2 to 4, wherein a second annealing process is performed for 2 to 4 hours.
6. 前記第 1 のァ二 -ル処理を 2 回行った後、 前記第 2 のァ二 -ル処理を 1 回行う こ と を特徴とする請求の範囲第 5項記載のプラズマ処理装置用 部品の製造方法。 6. The component for a plasma processing apparatus according to claim 5, wherein after performing the first file processing twice, the second file processing is performed once. Manufacturing method.
7. 前記機械加工後に洗诤処理を行った後、 温度 2 0 0 t:〜 2 5 0 °Cで 2 〜 4時間行う 真空乾燥処理を施すこ と を特徴とする請求の範囲第 4項 乃至第 6項のいずれか 1 項に記載のプラズマ処理装置用部品の製造方法。  7. A vacuum drying process, which is performed at a temperature of 200 t: to 250 ° C. for 2 to 4 hours after performing a washing process after the machining process. 7. The method for producing a part for a plasma processing apparatus according to any one of paragraphs 6.
8. 装置本体の内部にプラズマを励起して被処理物の表面を微細加工す るプラズマ処理装置において、 前記装置本体の内部に配設されてプラズ マ雰囲気に晒される部品類が、 乾燥処理されたポリ べンゾィ ミ ダゾ一ル で形成され.ている こ と を特徴とするプラズマ処理装置。 8. In a plasma processing apparatus that excites plasma inside the apparatus main body to finely process the surface of an object to be processed, the plasma processing apparatus is disposed inside the apparatus main body, A plasma processing apparatus, characterized in that the parts exposed to the atmosphere are made of a dried polyvinylbenzene.
9. 前記乾燥処理されたポリ べンゾィ ミ ダブールの含有水分量が 3 7 0 p p m以下である こ と を特徴とする請求の範囲第 8項記載のプラズマ処 理装置。  9. The plasma processing apparatus according to claim 8, wherein the moisture content of the dried polybenzomidabour is not more than 370 ppm.
10. プラズマ処理装置の装置本体内部に配設される プラズマ処理装置 用部品に用いられ、 含有水分量が 3 7 0 p p m以下に乾燥処理されたこ と を特徴とするポリ べンゾィ ミ ダゾ一ル。  10. Polyvinyl midazole, which is used as a component of a plasma processing apparatus installed inside the main body of the plasma processing apparatus and has been dried to a moisture content of less than 370 ppm.
1 1 . 装置本体の内部にプラズマを励起して被処理物の表面を微細加工 する プラズマ処理装置において、 装置本体の内壁及ぴ該装置本体の内部 に配設されているプラズマ雰囲気に晒される部品類が、 アルミ 二ゥム成 分を含有していない焼結セラ ミ ッ クス材料で形成されている こ と を特徴 とするブラズマ処理装置。  1 1. In a plasma processing apparatus that excites plasma inside the apparatus main body to finely process the surface of an object to be processed, the inner wall of the apparatus main body and components exposed to the plasma atmosphere provided inside the apparatus main body. A plasma processing apparatus characterized in that the components are formed of a sintered ceramic material that does not contain aluminum components.
12. 前記焼結セラ ミ ッ ク材料は、 窒化ケィ素、 酸化イ ツ ト リ ウ ム、 又 は炭化ケィ素を主成分と した材料の中から 1 種又は 2種以上を選択して 構成されている こ と を特徴とする請求の範囲第 1 1 項記載のプラズマ処 理装置。  12. The sintered ceramic material is constituted by selecting one or more materials from a material having silicon nitride, yttrium oxide or silicon carbide as a main component. The plasma processing apparatus according to claim 11, wherein:
1 3. 前記焼結セラ ミ ッ ク材料に焼結助剤が添加されている こ と を特徴 とする請求の範囲第 1 1 項又は第 1 2項記載のプラズマ処理装置。  13. The plasma processing apparatus according to claim 11 or 12, wherein a sintering aid is added to the sintered ceramic material.
14. 前記焼結助剤は、 イ ツ ト リ ビゥム及びイ ッ ト リ ウムのう ちの少な く と もいずれか一方である こ と を特徴とする請求の範囲第 1 3 項記載の プラズマ処理装置。 14. The plasma processing apparatus according to claim 13, wherein the sintering aid is at least one of yttrium and yttrium. .
1 5. ブラズマ処理装置の装置本体内部に配設される ブラズマ処理装置 用部品であって、 アル ミ ニウム成分を含有していない焼結セラ ミ ッ クス 材料で形成'されている こ と を特徴とするプラズマ処理装置用部品。  1 5. A part for the plasma processing device disposed inside the device body of the plasma processing device, characterized by being formed of a sintered ceramic material containing no aluminum component. For plasma processing equipment.
1 6. 前記焼結セラ ミ ッ ク材料は、 窒化ケィ素、 酸化ィ ッ ト リ ゥム、 又は 炭化ケィ素を主成分と した材料の中から 1 種又は 2種以上を選択して構 成されている こ と を特徴とする請求の範囲第 1 5項記載のプラズマ処理 装置用部品。 1 6. The sintered ceramic material may be silicon nitride, titanium oxide, or 16. The component for a plasma processing apparatus according to claim 15, wherein one or more types are selected from a material mainly containing silicon carbide.
17. 前記焼結セラ ミ ッ ク材料に焼結助剤が添加されている こ と を特徴 とする請求の範囲第 1 5項又は第 1 6項記載のブラズマ処理装置用部品。 17. The component for a plasma processing apparatus according to claim 15 or 16, wherein a sintering aid is added to said sintered ceramic material.
1 8. 前記焼結助剤は、 イ ツ ト リ ビゥ ム及びイ ッ ト リ ウ ムのう ちの少な く と も いずれか一方である こ と を特徴とする請求の範囲第 1 7項記載の ブラズマ処理装置用部品。 18. The sintering aid according to claim 17, wherein the sintering aid is at least one of yttrium or yttrium. Parts for plasma processing equipment.
19. プラズマ処理装置の装置本体内部に配設さ れる プラズマ処理装置 用部品の製.造方法であって、 アルミ ニ ウム成分を含有していない焼結セ ラ ミ ッ クス材料でブラズマ処理装置用部品を形成する こ とを特徴とする プラズマ処理装置用部品の製造方法。  19. Manufacturing method of plasma processing equipment parts installed inside the plasma processing equipment main body, which is a sintered ceramics material that does not contain aluminum component for plasma processing equipment. A method for producing a part for a plasma processing apparatus, comprising forming a part.
20. 前記焼結セ ラ ミ ッ ク材料は、 窒化ケィ素、 酸化ィ ッ ト リ ウ ム、 又は 炭化ケィ素を主成分と した材料の中から 1 種又は 2種以上を選択して構 成されている こ と を特徴とする請求の範囲第 1 9項記載のプラズマ処理 装置用部品の製造方法。  20. The sintered ceramic material is constituted by selecting one or more materials from a material mainly composed of silicon nitride, yttrium oxide, or silicon carbide. 10. The method for manufacturing a part for a plasma processing apparatus according to claim 19, wherein the method is performed.
21 . 前記焼結セ ラ ミ ッ ク材料に焼結助剤を添加する こ と を特徴とする 請求の範囲第 1 9項又は第 2 0項記載のプラズマ処理装置用部品の製造 方法。  21. The method for manufacturing a component for a plasma processing apparatus according to claim 19, wherein a sintering aid is added to the sintered ceramic material.
22. 前記焼結助剤は、 イ ツ ト リ ビゥム及びイ ッ ト リ ウ ムのう .ちの少な く と も いずれか一方である こ と を特徴とする請求の範囲第 2 1 項記載の プラズマ処理装置用部品の製造方法。 22. The plasma according to claim 21, wherein said sintering aid is at least one of it and lithium. Manufacturing method of parts for processing equipment.
23. プラズマ処理装置の装置本体内部に配設される絶緣性部品に使用 される プラズマ処理装置用部品であって、 ケィ素酸化物が主成分と して 含有される と共に、 前記ケィ素酸化物以外の所定の異種材料が添加され ている こ と を特徴とする プラズマ処理装置用部品。 23. A part for a plasma processing apparatus used for an insulating part disposed inside the apparatus body of the plasma processing apparatus, wherein the silicon oxide is contained as a main component and the silicon oxide is used. A part for a plasma processing apparatus, wherein a predetermined different material other than the above is added.
24. 前記 )f定の異種材料は、 希土類化合物、 前記ケィ 素酸化物以外の ケィ素化合物、 及び 7ル ミ ニゥム化合物の中から選択された 1種又は 2 種以上を含むこ と を特徴とする請求の範囲第 2 3 項記載のブラズマ処理 装置用部品。 24. The different material described in (f) above includes one or more selected from a rare earth compound, a silicon compound other than the silicon oxide, and a 7-luminium compound. The part for a plasma processing apparatus according to claim 23, wherein
25. プラズマ処理装置の装置本体内部に配設される絶縁性部品に使用 されるプラズマ処理装置用部品の製造方法であつて、 ケィ素酸化物に前 記ケィ素酸化物以外の所定の異種材料を添加し、 酸水素炎下で前記ケィ 素酸化物及び前記異種材料を溶融し、 その後冷却 して部品材料を製造す る こ と を特徴とするプラズマ処理装置用部品の製造方法。 25. A method of manufacturing a part for a plasma processing apparatus used for an insulating part disposed inside a main body of a plasma processing apparatus, wherein the silicon oxide includes a predetermined heterogeneous material other than the silicon oxide. A method of manufacturing a component for a plasma processing apparatus, comprising: melting the silicon oxide and the dissimilar material in an oxyhydrogen flame, and then cooling the material to produce a component material.
26. 前記所定の異種材料は、 希土類化合物、 前記ケィ 素酸化物以外の ケィ素化合物、 及びアルミ ニ ゥム化合物の中から選択された 1 種又は 2 種以上を含むこ と を特徴とする請求の範囲第 2 5 項記載のプラズマ処理 装置用部品の製造方法。 26. The predetermined heterogeneous material includes one or more selected from a rare earth compound, a silicon compound other than the silicon oxide, and an aluminum compound. 26. The method for producing a part for a plasma processing apparatus according to item 25.
27. 装置本体の内部にプラズマを励起して被処理物の表面を微細加工 する プラズマ処理装置において、 前記装置本体の内部に配設される絶縁 性部品に使用される ブラズマ処理装置用部品類が、 ケィ素酸化物が主成 分と して含有される と共に、 前記ケィ素酸化物以外の所定の異種材料が 添加されているこ と を特徴とする プラズマ処理装置。  27. In a plasma processing apparatus that excites plasma inside the apparatus main body to finely process the surface of an object to be processed, components for a plasma processing apparatus used for insulating parts disposed inside the apparatus main body are used. A plasma processing apparatus comprising: a silicon oxide as a main component; and a predetermined different material other than the silicon oxide.
28. 前記所定の異種材料は、 希土類化合物、 前記ケィ 素酸化物以外の ケィ 素化合物、 及びアル ミ ニウム化合物の中から選択された 1 種又は 2 種以上を含むこ と を特徴とする請求の範囲第 2 7 項記載のプラズマ処理 装置。  28. The method according to claim 28, wherein the predetermined heterogeneous material includes one or more selected from a rare earth compound, a silicon compound other than the silicon oxide, and an aluminum compound. Item 28. The plasma processing apparatus according to Item 27.
PCT/JP2002/001527 2001-02-21 2002-02-21 Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment WO2002067312A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002566540A JP4021325B2 (en) 2001-02-21 2002-02-21 Manufacturing method of parts for plasma processing apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-44741 2001-02-21
JP2001044741 2001-02-21
JP2001062100 2001-03-06
JP2001-62100 2001-03-06
JP2001-80977 2001-03-21
JP2001080977 2001-03-21

Publications (1)

Publication Number Publication Date
WO2002067312A1 true WO2002067312A1 (en) 2002-08-29

Family

ID=27346051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001527 WO2002067312A1 (en) 2001-02-21 2002-02-21 Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment

Country Status (2)

Country Link
JP (1) JP4021325B2 (en)
WO (1) WO2002067312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091695A1 (en) * 2019-11-05 2021-05-14 Lam Research Corporation Single crystal metal oxide plasma chamber component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220220B4 (en) * 2014-10-07 2018-05-30 Carl Zeiss Smt Gmbh Vacuum linear feedthrough and vacuum system with it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814530A (en) * 1987-09-03 1989-03-21 Hoechst Celanese Corporation Sintered polybenzimidazole article
JPH0611346U (en) * 1992-07-20 1994-02-10 ヘキストジャパン株式会社 Articles made of polybenzimidazole for dry etching equipment
JPH0940434A (en) * 1995-07-28 1997-02-10 Tosoh Corp High purity quartz glass and production thereof
JPH11228172A (en) * 1998-02-17 1999-08-24 Kobe Steel Ltd Plasma corrosion resistant glass and device using the same
JP2001019549A (en) * 1999-06-29 2001-01-23 Kyocera Corp Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same
JP2001261364A (en) * 2000-03-21 2001-09-26 Sumitomo Metal Ind Ltd Glass, plasma-resistant member, electromagnetic wave transmission window member, and plasma processing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814530A (en) * 1987-09-03 1989-03-21 Hoechst Celanese Corporation Sintered polybenzimidazole article
JPH0611346U (en) * 1992-07-20 1994-02-10 ヘキストジャパン株式会社 Articles made of polybenzimidazole for dry etching equipment
JPH0940434A (en) * 1995-07-28 1997-02-10 Tosoh Corp High purity quartz glass and production thereof
JPH11228172A (en) * 1998-02-17 1999-08-24 Kobe Steel Ltd Plasma corrosion resistant glass and device using the same
JP2001019549A (en) * 1999-06-29 2001-01-23 Kyocera Corp Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same
JP2001261364A (en) * 2000-03-21 2001-09-26 Sumitomo Metal Ind Ltd Glass, plasma-resistant member, electromagnetic wave transmission window member, and plasma processing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091695A1 (en) * 2019-11-05 2021-05-14 Lam Research Corporation Single crystal metal oxide plasma chamber component

Also Published As

Publication number Publication date
JPWO2002067312A1 (en) 2004-06-24
JP4021325B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US11667577B2 (en) Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
KR102142040B1 (en) Coated semiconductor processing member with chlorine and fluorine plasma corrosion resistance and composite oxide coating thereof
KR100632643B1 (en) Plasma resistant member and plasma processing apparatus using the same
US6645585B2 (en) Container for treating with corrosive-gas and plasma and method for manufacturing the same
TWI328411B (en) Productivity enhancing thermal sprayed yttria-containing coating for plasma reactor
KR100983952B1 (en) Composite structure
JP2008133528A (en) Thermal spray powder, method for forming thermal spray coating and plasma resistant member
WO2010053687A2 (en) Thermal spray coatings for semiconductor applications
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
CN114059000A (en) Yttrium-based particle powder for thermal spraying, yttrium-based particles, and methods for producing these
CN114044674A (en) Yttrium-based particle powder for thermal spraying, method for producing same, and thermal spraying film
WO2002067312A1 (en) Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment
JP2010261069A (en) Spray deposit film and method for manufacturing the same
TW202037737A (en) Plasma processing device, internal member for plasma processing device, and method for manufacturing said internal member
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
TW202302495A (en) Yttria-zirconia sintered ceramics for plasma resistant materials
JP2002293630A (en) Plasma resistant member and method of producing the same
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP3746586B2 (en) Method for manufacturing gas passage tube for plasma generation
JP4544934B2 (en) Plasma processing equipment
KR102395660B1 (en) Powder for thermal spray and thermal spray coating using the same
JPH11278919A (en) Plasma-resistant member
JP2001019549A (en) Anticorrosive member and constructional member for semiconductor/liquid crystal production apparatus using the same
JPH06345527A (en) Microwave introducing window material
KR20220151610A (en) Novel tungsten-based thermal spray coating and thermal spraying material for obtaining the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002566540

Country of ref document: JP

122 Ep: pct application non-entry in european phase