JPH11278919A - Plasma-resistant member - Google Patents

Plasma-resistant member

Info

Publication number
JPH11278919A
JPH11278919A JP10086300A JP8630098A JPH11278919A JP H11278919 A JPH11278919 A JP H11278919A JP 10086300 A JP10086300 A JP 10086300A JP 8630098 A JP8630098 A JP 8630098A JP H11278919 A JPH11278919 A JP H11278919A
Authority
JP
Japan
Prior art keywords
alumina
plasma
sintered body
less
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10086300A
Other languages
Japanese (ja)
Inventor
Yuzo Iwami
祐三 岩見
Koji Kusaka
浩次 日下
Yasuhiro Nakahori
安浩 中堀
Fumio Matsunaga
文夫 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10086300A priority Critical patent/JPH11278919A/en
Publication of JPH11278919A publication Critical patent/JPH11278919A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma-resistant member scarcely wearing out even by exposure to a plasma in a halogen-based corrosive gas. SOLUTION: At least the surface exposed to a plasma in a halogen-based corrosive gas is formed of an alumina sintered compact having >=99.9% alumina content and containing Mg and Si as components other than the alumina in a weight ratio of the Mg to Si of >=1 MgO/SiO2 expressed in term of oxides and having <=10 μm average crystal grain diameter of the alumina in the sintered compact in an inner wall material of a reactional treating chamber, a wafer holding member 1 such as a susceptor or an electrostatic chuck and a plasma-resistant member such as a clamp member. The porosity of open pares present on the surface is <=0.3%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成膜装置やエッチ
ング装置において、ハロゲン系腐食性ガス下でプラズマ
に曝される反応処理室の内壁材、半導体ウエハなどの被
処理物を支持するサセプタや静電チャックなどのウエハ
保持部材、あるいは上記被処理物をウエハ保持部材上に
固定するクランプ部材等の耐プラズマ部材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a susceptor for supporting an object to be processed such as a semiconductor wafer or an inner wall material of a reaction processing chamber exposed to plasma under a halogen-based corrosive gas in a film forming apparatus or an etching apparatus. The present invention relates to a wafer holding member such as an electrostatic chuck or a plasma-resistant member such as a clamp member for fixing the object to be processed on the wafer holding member.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において
は、反応ガスをプラズマ化して半導体ウエハに薄膜を形
成するCVD装置やPVD装置などの成膜装置や微細加
工を施すエッチング装置が用いられており、反応ガスの
プラズマ化は高温を要せず比較的低温で処理ができると
いう利点を有している。
2. Description of the Related Art Conventionally, in a process of manufacturing a semiconductor device, a film forming device such as a CVD device or a PVD device for forming a thin film on a semiconductor wafer by converting a reaction gas into plasma, and an etching device for performing fine processing have been used. In addition, the reaction gas has the advantage that it can be processed at a relatively low temperature without requiring a high temperature.

【0003】例えば、図5にエッチング装置の概略図を
示すように、釣鐘状をした反応処理室27内には、被処
理物11である半導体ウエハを支持する円盤状のウエハ
保持部材21が設置され、該ウエハ保持部材21を挟ん
で反応処理室27内の上下にはプラズマを発生させるた
めの上部電極板9と下部電極板10が配置されている。
また、上記ウエハ保持部材21上にはリング状をしたク
ランプ部材24が昇降可能に設置され、上記ウエハ保持
部材21上に半導体ウエハが載置されると上記クランプ
部材24を降下させ、半導体ウエハの周縁を押さえなが
ら固定するようになっている。
[0005] For example, as shown in a schematic view of an etching apparatus in FIG. 5, a disk-shaped wafer holding member 21 for supporting a semiconductor wafer as a processing object 11 is installed in a bell-shaped reaction processing chamber 27. An upper electrode plate 9 and a lower electrode plate 10 for generating plasma are disposed above and below the reaction processing chamber 27 with the wafer holding member 21 interposed therebetween.
A ring-shaped clamp member 24 is installed on the wafer holding member 21 so as to be able to move up and down. When a semiconductor wafer is placed on the wafer holding member 21, the clamp member 24 is lowered, and It is designed to be fixed while holding down the periphery.

【0004】そして、上記反応処理室27の頂部に一体
的に形成されたガス導入管28よりHB、HCl、Cl
2 、SF6 等のハロゲン系腐食性ガスを反応ガスとして
反応処理室27内に導入するとともに、上部電極板9と
下部電極板10間に高周波電力を印加してプラズマを発
生させることにより、反応ガスをプラズマ化し、ハロゲ
ンイオンを半導体ウエハに衝突させることによりエッチ
ングを施すようになっている。
Then, HB, HCl, and Cl are supplied through a gas introduction pipe 28 integrally formed at the top of the reaction processing chamber 27.
2. A halogen-based corrosive gas such as SF 6 is introduced into the reaction chamber 27 as a reaction gas, and plasma is generated by applying high-frequency power between the upper electrode plate 9 and the lower electrode plate 10 to generate plasma. The etching is performed by turning gas into plasma and colliding halogen ions against the semiconductor wafer.

【0005】そして、上記反応処理室27、ウエハ保持
部材21、クランプ部材24等の耐プラズマ部材も半導
体ウエハ同様、ハロゲン系腐食性ガス下でプラズマに曝
されることから、フッ素系や塩素系のハロゲン系腐食性
ガス下でプラズマに強いアルミナ含有量が99.5%程
度のアルミナ焼結体により形成し、耐久性を高めること
が提案されている。
Since the plasma-resistant members such as the reaction processing chamber 27, the wafer holding member 21, and the clamp member 24 are also exposed to plasma under a halogen-based corrosive gas similarly to a semiconductor wafer, they are made of fluorine-based or chlorine-based. It has been proposed to improve the durability by forming an alumina sintered body having a plasma-resistant alumina content of about 99.5%, which is strong against plasma under a halogen-based corrosive gas.

【0006】[0006]

【発明が解決しようとする課題】ところが、アルミナ含
有量が99.5%程度であるアルミナ焼結体中には焼結
助剤等が多量に含まれており、特にSiO2 はフッ素系
のハロゲン系腐食性ガスと非常に反応しやすく、また、
その反応生成物は昇華しやすいことから十分に摩耗を抑
えることができなかった。しかも、アルミナ以外の成分
が多く含まれているとプラズマにより摩耗しやすかっ
た。そして、これらの摩耗粉等が半導体ウエハに付着す
ると、ウエハを汚染したり配線不良を引き起こすことに
なるため、高品質の半導体装置を提供することができ
ず、また、歩留りが悪いといった課題があった。
[SUMMARY OF THE INVENTION However, the alumina sintered body in which alumina content of about 99.5% is included in the large amount of sintering aid and the like, halogen, in particular SiO 2 is fluorine Very easily reacts with system corrosive gas.
Since the reaction product was easily sublimated, abrasion could not be sufficiently suppressed. In addition, when a large amount of components other than alumina was contained, the components were easily worn by plasma. If these abrasion powders and the like adhere to the semiconductor wafer, they contaminate the wafer and cause wiring defects. Therefore, it is impossible to provide a high-quality semiconductor device, and the yield is poor. Was.

【0007】そこで、上記耐プラズマ部材として、アル
ミナ含有量を99.9%まで高めた高純度のアルミナ焼
結体を用いることが提案されている(特開平5−217
946号公報参照)。
Therefore, it has been proposed to use a high-purity alumina sintered body whose alumina content has been increased to 99.9% as the plasma-resistant member (Japanese Patent Laid-Open No. 5-217).
946).

【0008】しかしながら、高純度のアルミナ焼結体を
用いたとしても十分ではなく、さらに摩耗を抑えること
が要求されていた。
However, even if a high-purity alumina sintered body is used, it is not sufficient, and it has been required to further suppress abrasion.

【0009】[0009]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、反応処理室の内壁材、サセプタや静電チャッ
クなどのウエハ保持部材、クランプ部材等の耐プラズマ
部材のうち、少なくともハロゲン系腐食性ガス下でプラ
ズマに曝される表面を、アルミナ含有量が99.9重量
%以上で、上記アルミナ以外の成分としてMgとSiを
含んでなり、上記MgとSiの重量比が酸化物換算でM
gO/SiO2 ≧1であるとともに、焼結体中における
アルミナの平均結晶粒子径が10μm以下であるアルミ
ナ焼結体により形成するとともに、上記表面に存在する
開気孔率を0.3%以下としたことを特徴とするもので
ある。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides at least a halogen-based material among inner wall materials of a reaction processing chamber, a wafer holding member such as a susceptor and an electrostatic chuck, and a plasma-resistant member such as a clamp member. The surface exposed to the plasma under the corrosive gas has an alumina content of 99.9% by weight or more and contains Mg and Si as components other than the alumina, and the weight ratio of the Mg and Si is calculated as oxide. In M
It is formed of an alumina sintered body having gO / SiO 2 ≧ 1 and having an average crystal grain size of alumina of 10 μm or less in the sintered body, and has an open porosity existing on the surface of 0.3% or less. It is characterized by having done.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は本発明の耐プラズマ部材をウエハ保持
部材1に用いた例を示す斜視図で、被処理物とほぼ同径
の円盤状体2であって、アルミナ含有量が99.9重量
%以上で、上記アルミナ以外の成分としてMgとSiを
含んでなり、上記MgとSiの重量比が酸化物換算でM
gO/SiO2 ≧1であるとともに、焼結体中における
アルミナの平均結晶粒子径が10μm以下であるアルミ
ナ焼結体により形成してある。また、図1において円盤
状体2の上面を被処理物の載置面3としてあり、該載置
面3は中心線平均粗さ(Ra)で1μm以下とするとと
もに、載置面3に存在する開気孔率を0.3%以下とし
てある。
Embodiments of the present invention will be described below. FIG. 1 is a perspective view showing an example in which the plasma-resistant member of the present invention is used for a wafer holding member 1. The disk-shaped member 2 has substantially the same diameter as an object to be processed, and has an alumina content of 99.9% by weight or more. And Mg and Si as components other than the above-mentioned alumina, and the weight ratio of the above-mentioned Mg and Si is M
It is formed of an alumina sintered body having gO / SiO 2 ≧ 1 and having an average crystal particle diameter of alumina of 10 μm or less in the sintered body. In FIG. 1, the upper surface of the disc-shaped body 2 is a mounting surface 3 for the object to be processed, and the mounting surface 3 has a center line average roughness (Ra) of 1 μm or less, and is located on the mounting surface 3. The open porosity is 0.3% or less.

【0011】また、図示していないが、上記円盤状体2
中に内部電極を埋設することもでき、例えば、内部電極
として抵抗発熱体を埋設すれば、載置面上の被処理物を
直接加熱することができるため、被処理物の均熱性を高
めることができ、また、内部電極として静電吸着用電極
を埋設すれば、被処理物を静電気力によって載置面上に
精度良く吸着保持することができ、さらに内部電極とし
てプラズマ発生用電極を埋設すれば、プラズマを発生さ
せるための下部電極板が不要になるため、装置の構造を
簡略化すことができる。なお、上記円盤状体中には、抵
抗発熱体、静電吸着用電極、プラズマ発生用電極のうち
2つ以上の内部電極を選択的に埋設することもでき、さ
らに3つの内部電極を埋設しても良い。
Although not shown, the disk-shaped body 2
An internal electrode can be buried inside.For example, if a resistance heating element is buried as an internal electrode, the object to be processed on the mounting surface can be directly heated, so that the heat uniformity of the object to be processed can be improved. If an electrode for electrostatic adsorption is buried as an internal electrode, an object to be processed can be accurately attracted and held on a mounting surface by electrostatic force, and an electrode for plasma generation can be embedded as an internal electrode. This eliminates the need for a lower electrode plate for generating plasma, so that the structure of the device can be simplified. In addition, two or more internal electrodes of the resistance heating element, the electrode for electrostatic attraction, and the electrode for plasma generation can be selectively embedded in the disc-shaped body, and three internal electrodes can be embedded therein. May be.

【0012】次に、図2は本発明の耐プラズマ部材をク
ランプ部材4に用いた一例を示す斜視図で、アルミナ含
有量が99.9重量%以上で、上記アルミナ以外の成分
としてMgとSiを含んでなり、上記MgとSiの重量
比が酸化物換算でMgO/SiO2 ≧1であるととも
に、焼結体中におけるアルミナの平均結晶粒子径が10
μm以下であるアルミナ焼結体からなるリング状体5で
あって、該リング状体5の一主面側には被処理物より若
干大きな径を有する段差部6を設けたものである。ま
た、プラズマに曝される外表面は中心線平均粗さ(R
a)で1μm以下とし、被処理物と接する内表面は中心
線平均粗さ(Ra)で0.8μm以下とするとともに、
上記内外の表面に存在する開気孔率を0.3%以下とし
てある。
Next, FIG. 2 is a perspective view showing an example in which the plasma-resistant member of the present invention is used for the clamp member 4 and has an alumina content of 99.9% by weight or more, and Mg and Si as components other than the above-mentioned alumina. And the weight ratio of Mg to Si is MgO / SiO 2 ≧ 1 in terms of oxide, and the average crystal particle diameter of alumina in the sintered body is 10%.
A ring-shaped body 5 made of an alumina sintered body having a diameter of not more than μm, and a step portion 6 having a diameter slightly larger than that of an object to be processed is provided on one main surface side of the ring-shaped body 5. The outer surface exposed to the plasma has a center line average roughness (R
a) is 1 μm or less, and the inner surface in contact with the object is 0.8 μm or less in center line average roughness (Ra).
The open porosity existing on the inner and outer surfaces is set to 0.3% or less.

【0013】さらに、図3は本発明の耐プラズマ部材を
反応処理室7に用いた一例を示す斜視図で、釣鐘状をし
たアルミナ含有量が99.9重量%以上で、上記アルミ
ナ以外の成分としてMgとSiを含んでなり、上記Mg
とSiの重量比が酸化物換算でMgO/SiO2 ≧1で
あるとともに、焼結体中におけるアルミナの平均結晶粒
子径が10μm以下であるアルミナ焼結体からなり、内
壁面を中心線平均粗さ(Ra)で1μm以下とするとと
もに、内壁面に存在する開気孔率を0.3%以下として
ある。なお、反応処理室7の頂部には反応ガスを導入す
るためのガス導入管8を一体的に形成してある。
FIG. 3 is a perspective view showing an example in which the plasma-resistant member of the present invention is used in the reaction processing chamber 7. The bell-shaped alumina content is 99.9% by weight or more, and components other than the above-mentioned alumina are used. Containing Mg and Si as
And the weight ratio of Si and Si is MgO / SiO 2 ≧ 1 in terms of oxide, and the sintered body has an average crystal grain size of alumina of 10 μm or less. The thickness (Ra) is 1 μm or less, and the open porosity present on the inner wall surface is 0.3% or less. Note that a gas introduction pipe 8 for introducing a reaction gas is integrally formed at the top of the reaction processing chamber 7.

【0014】次に、上記ウエハ保持部材1、クランプ部
材4、及び反応処理室7等の耐プラズマ部材を用いたエ
ッチング装置を図4に示す。
Next, FIG. 4 shows an etching apparatus using a plasma-resistant member such as the wafer holding member 1, the clamp member 4, and the reaction processing chamber 7.

【0015】図4に示すエッチング装置は、図3の釣鐘
状をした反応処理室7内に、被処理物11を支持する図
1の円盤状をしたウエハ保持部材1を設置するととも
に、該ウエハ保持部材1を挟んで反応処理室内の上下に
はプラズマを発生させるための上部電極板9と下部電極
板10を配置してある。また、上記ウエハ支持部材1の
載置面3上には図2のリング状をしたクランプ部材4を
昇降可能に設置してあり、上記ウエハ保持部材1上に被
処理物11を載置したあと上記クランプ部材4を降下さ
せ、被処理物11の周縁を抑えながら固定するようにな
っている。
In the etching apparatus shown in FIG. 4, a disk-shaped wafer holding member 1 shown in FIG. 1 for supporting an object to be processed 11 is installed in a bell-shaped reaction processing chamber 7 shown in FIG. An upper electrode plate 9 and a lower electrode plate 10 for generating plasma are arranged above and below the reaction processing chamber with the holding member 1 interposed therebetween. Further, a ring-shaped clamp member 4 shown in FIG. 2 is installed on the mounting surface 3 of the wafer support member 1 so as to be able to move up and down, and after the workpiece 11 is mounted on the wafer holding member 1. The clamp member 4 is lowered and fixed while suppressing the peripheral edge of the processing target 11.

【0016】そして、上記反応処理室7の頂部に一体的
に形成されたガス導入管8よりHB、HCl、Cl2
SF6 等のハロゲン系腐食性ガスを反応ガスとして反応
処理室7内に導入するとともに、上部電極板9と下部電
極板10間に高周波電力を印加してプラズマを発生させ
ることにより、反応ガスをプラズマ化し、ハロゲンイオ
ンを被処理物11に衝突させることによりエッチングを
施すようになっている。
[0016] Then, HB from the gas introduction pipe 8 which is integrally formed on top of the reaction chamber 7, HCl, Cl 2,
The reaction gas is introduced by introducing a halogen-based corrosive gas such as SF 6 into the reaction processing chamber 7 as a reaction gas, and applying high frequency power between the upper electrode plate 9 and the lower electrode plate 10 to generate plasma. Plasma is generated, and etching is performed by colliding halogen ions with the workpiece 11.

【0017】そして、このエッチング装置では、ハロゲ
ン系腐食性ガス下でプラズマに曝されるウエハ保持部材
1、クランプ部材4、及び反応処理室7等の耐プラズマ
部材の表面が、アルミナ含有量が99.9重量%以上
で、上記アルミナ以外の成分としてSiとMgを含み、
上記MgとSiの重量比が酸化物換算でMgO/SiO
2 ≧1である高純度のアルミナ焼結体からなるため、ハ
ロゲン系食性ガスと反応しやすい成分、特にフッ素系ガ
スとの反応が激しいSiO2 が殆どなく、また、アルミ
ナと反応してハロゲン系腐食性ガスに対する耐食性に優
れたMgスピネルを形成するMgを多く含有させてある
ことから腐食摩耗を抑えることができる。
In this etching apparatus, the surfaces of the plasma-resistant members such as the wafer holding member 1, the clamp member 4, and the reaction processing chamber 7, which are exposed to the plasma under the halogen-based corrosive gas, have an alumina content of 99%. 0.9 wt% or more, containing Si and Mg as components other than the alumina,
The weight ratio of Mg to Si is MgO / SiO in terms of oxide.
2 Since it is made of a high-purity alumina sintered body with ≧ 1, there is almost no SiO 2 which reacts easily with the halogen-based edible gas, especially SiO 2 which strongly reacts with the fluorine-based gas. Since a large amount of Mg for forming an Mg spinel having excellent corrosion resistance to corrosive gas is contained, corrosive wear can be suppressed.

【0018】また、アルミナ焼結体中におけるアルミナ
の平均結晶粒子径を10μm以下としてあることから焼
結体をより緻密化してプラズマの影響を受けやすい気孔
を少なくすることができる。
Further, since the average crystal grain diameter of alumina in the alumina sintered body is set to 10 μm or less, the sintered body can be further densified and the number of pores easily affected by plasma can be reduced.

【0019】そして、ハロゲン系腐食性ガス下でプラズ
マに曝される表面に存在する開気孔率が0.3%より大
きくなると、プラズマエネルギーが気孔のエッジに集中
して摩耗しやすくなることから、開気孔率は0.3%以
下とすることが良い。
When the open porosity existing on the surface exposed to the plasma under the halogen-based corrosive gas is larger than 0.3%, the plasma energy is concentrated on the edges of the pores, and the pores are easily worn. The open porosity is preferably 0.3% or less.

【0020】ところで、このようなアルミナ焼結体を得
るには、純度99.9%以上、平均粒径が0.8μ以下
のアルミナ粉末に対して、必要に応じて助剤成分として
MgOとSiO2 を添加混合するとともに、溶媒とバイ
ンダーを添加する。なお、上記MgOとSiO2 は焼結
後、酸化物換算でMgO/SiO2 ≧1となるように調
合することが必要である。
Incidentally, in order to obtain such an alumina sintered body, MgO and SiO 2 as auxiliary components are added to alumina powder having a purity of 99.9% or more and an average particle diameter of 0.8 μ or less as necessary. While adding and mixing 2 , a solvent and a binder are added. After sintering, it is necessary to mix MgO and SiO 2 so that MgO / SiO 2 ≧ 1 in terms of oxide.

【0021】そして、これらの原料を混練して泥漿を作
製し、鋳込成型法、ドクターブレード法等のテープ成型
法にて所定の形状に成型するか、あるいは上記泥漿を乾
燥させて造粒体とし、該造粒体を型内に充填して一軸加
圧成型法や等加圧成型法等により所定の形状に成型す
る。なお、成型時に形成できない部分は成型後、切削加
工を施せば良い。
[0021] These materials are kneaded to produce a slurry, which is molded into a predetermined shape by a tape molding method such as a casting method or a doctor blade method, or by drying the above-mentioned slurry to form a granulated material. The granules are filled in a mold and molded into a predetermined shape by a uniaxial pressure molding method, an equal pressure molding method, or the like. In addition, the part which cannot be formed at the time of molding may be subjected to cutting after molding.

【0022】そして、得られた成型体を大気中や酸化雰
囲気中、あるいは真空雰囲気中で焼成したあと、緻密化
するために熱間静水圧プレス処理(HIP処理)を施す
のであるが、上記焼成温度は1500〜1650℃とす
ることが重要である。即ち、高純度のアルミナは焼結し
難いために緻密化させる場合、通常、1670〜175
0℃の温度範囲にて焼成するのであるが、1650℃よ
り高い温度にて焼成したものをHIP処理にてさらに緻
密化しようとしても緻密化が進まないために、アルミナ
焼結体の表面に存在する開気孔率を0.3%以下とでき
ず、1500℃未満の温度にて焼成すると、焼結性が悪
く、得られたアルミナ焼結体にHIP処理を施しても緻
密化できないからである。
Then, after the obtained molded body is fired in the air, an oxidizing atmosphere, or a vacuum atmosphere, a hot isostatic pressing (HIP) is performed for densification. It is important that the temperature be 1500-1650 ° C. That is, since high-purity alumina is difficult to be sintered, it is usually 1670 to 175 when it is densified.
It is fired in a temperature range of 0 ° C. However, even if the material fired at a temperature higher than 1650 ° C. is further densified by HIP treatment, the densification does not proceed, so that it is present on the surface of the alumina sintered body. The porosity of the resulting alumina sintered body cannot be reduced to 0.3% or less, and if fired at a temperature of less than 1500 ° C., the sinterability is poor, and the alumina sintered body obtained cannot be densified even when subjected to HIP treatment. .

【0023】かくして得られたアルミナ焼結体は、アル
ミナ含有量が99.9重量%以上でかつアルミナ以外の
成分としてMgとSiを含み、上記MgとSiの重量比
が酸化物換算でMgO/SiO2 ≧1であるとともに、
焼結体中におけるアルミナの平均結晶粒子径が10μm
以下であり、かつ表面に存在する開気孔率が0.3%以
下のアルミナ焼結体とすることができる。
The alumina sintered body thus obtained has an alumina content of 99.9% by weight or more and contains Mg and Si as components other than alumina, and the weight ratio of Mg to Si is MgO / oxide in terms of oxide. SiO 2 ≧ 1 and
The average crystal grain size of alumina in the sintered body is 10 μm
Or less, and an alumina sintered body having an open porosity present on the surface of 0.3% or less can be obtained.

【0024】(実施例)アルミナ含有量、焼結体中にお
けるアルミナの平均結晶粒子径、表面に存在する開気孔
率をそれぞれ異ならせたアルミナ焼結体により耐プラズ
マ部材として図2に示すクランプ部材4を製作し、フッ
素系ガス下でプラズマに曝した時の摩耗具合について測
定する実験を行った。
(Embodiment) A clamp member shown in FIG. 2 as a plasma-resistant member made of an alumina sintered body in which the alumina content, the average crystal grain diameter of alumina in the sintered body, and the open porosity present on the surface are different from each other. 4 was manufactured, and an experiment was performed to measure the degree of wear when exposed to plasma under a fluorine-based gas.

【0025】エッチング条件は、反応処理室内の真空度
を1torrとした状態で、反応ガスとしてCF4 ガス
を導入し、上部電極板と下部電極板間に100Wの高周
波電力を印加することによりプラズマを発生させてクラ
ンプ部材をエッチングした。
The etching conditions are as follows. With the degree of vacuum in the reaction processing chamber set to 1 torr, CF 4 gas is introduced as a reaction gas, and high-frequency power of 100 W is applied between the upper electrode plate and the lower electrode plate to generate plasma. The generated clamp member was etched.

【0026】なお、クランプ部材4の内外の表面はいず
れも中心線平均粗さ(Ra)で1μmとした。
The inner and outer surfaces of the clamp member 4 each have a center line average roughness (Ra) of 1 μm.

【0027】また、摩耗量は基準試料としてアルミナ含
有量が99.5%、焼結体中におけるアルミナの平均結
晶粒子径が38μm、表面に存在する開気孔率が3.5
%であるアルミナ焼結体からなるクランプ部材の摩耗量
を100とし、この基準試料に対する相対値として算出
した。
The amount of wear was determined as follows: the reference sample had an alumina content of 99.5%, the average crystal grain size of alumina in the sintered body was 38 μm, and the open porosity existing on the surface was 3.5.
%, The wear amount of the clamp member made of the alumina sintered body was set to 100, and the value was calculated as a relative value to the reference sample.

【0028】それぞれの結果は表1に示す通りである。The respective results are as shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】この結果、まず、アルミナ含有量が高く、
アルミナの平均結晶粒子径が小さく、かつ開気孔率が小
さいほど、摩耗量を少なくできることが判る。そして、
アルミナ含有量を99.9%、アルミナの平均結晶粒子
径を10μm以下、かつ開気孔率を0.3%以下とすれ
ば、摩耗量を30以下にまで低減できることが判る。
As a result, first, the alumina content is high,
It can be seen that the smaller the average crystal particle diameter of alumina and the smaller the open porosity, the smaller the amount of wear. And
It can be seen that when the alumina content is 99.9%, the average crystal particle diameter of alumina is 10 μm or less, and the open porosity is 0.3% or less, the wear amount can be reduced to 30 or less.

【0031】(実施例2)そこで、表1の試料No.9
におけるアルミナ焼結体中のMgとSiの量を異ならせ
た時の摩耗量を実施例1と同様の条件にて測定する実験
を行った。
(Example 2) Therefore, the sample No. 9
An experiment was carried out to measure the amount of wear when the amounts of Mg and Si in the alumina sintered body were changed under the same conditions as in Example 1.

【0032】それぞれの結果は表2に示す通りである。The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】この結果、酸化物換算でMgO/SiO2
≧1であれば、摩耗量を25以下とさらに低減できるこ
とが判る。特に、MgO/SiO2 >1とすれば、摩耗
量を20未満とすることができ、優れた耐プラズマ性を
有していた。
As a result, MgO / SiO 2 in terms of oxide
If ≧ 1, it can be seen that the wear amount can be further reduced to 25 or less. In particular, when MgO / SiO 2 > 1, the abrasion amount could be reduced to less than 20, and the plasma resistance was excellent.

【0035】[0035]

【発明の効果】以上のように、本発明によれば、反応処
理室の内壁材、サセプタや静電チャックなどのウエハ保
持部材、クランプ部材等の耐プラズマ部材のうち、少な
くともハロゲン系腐食性ガス下でプラズマに曝される表
面を、アルミナ含有量が99.9%以上で、上記アルミ
ナ以外の成分としてMgとSiを含んでなり、上記Mg
とSiの重量比が酸化物換算でMgO/SiO2 ≧1で
あるとともに、焼結体中におけるアルミナの平均結晶粒
子径が10μm以下であるアルミナ焼結体により形成す
るとともに、上記表面に存在する開気孔率を0.3%以
下としたことから、ハロゲン系腐食性ガスに対して優れ
た耐蝕性を有するとともに、プラズマによって摩耗し難
いことから、長期間にわたって使用することができる。
しかも、摩耗が少ないことから被処理物が半導体ウエハ
である場合、ウエハを汚染したり配線不良を起こし難い
ため、高品質の半導体装置を提供できるとともに、歩留
りを高めることができる。
As described above, according to the present invention, at least the halogen-based corrosive gas among the inner wall material of the reaction processing chamber, the wafer holding member such as a susceptor and an electrostatic chuck, and the plasma-resistant member such as a clamp member. The surface exposed to the plasma underneath has an alumina content of 99.9% or more and contains Mg and Si as components other than the alumina,
Is formed of an alumina sintered body having a weight ratio of MgO / SiO 2 ≧ 1 in terms of oxide in terms of oxide, and having an average crystal particle diameter of alumina of 10 μm or less in the sintered body, and is present on the surface. Since the open porosity is 0.3% or less, it has excellent corrosion resistance to a halogen-based corrosive gas, and is hardly worn by plasma, so that it can be used for a long time.
In addition, when the object to be processed is a semiconductor wafer due to low abrasion, it is unlikely to contaminate the wafer or cause a wiring failure, so that a high-quality semiconductor device can be provided and the yield can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐プラズマ部材をウエハ保持部材とし
て用いた一例を示す斜視図である。
FIG. 1 is a perspective view showing an example in which a plasma-resistant member of the present invention is used as a wafer holding member.

【図2】(a)は本発明の耐プラズマ部材をクランプ部
材として用いた一例を示す斜視図で、(b)は(a)の
X−X線断面図である。
FIG. 2A is a perspective view showing an example in which the plasma-resistant member of the present invention is used as a clamp member, and FIG. 2B is a cross-sectional view taken along line XX of FIG.

【図3】本発明の耐プラズマ部材を反応処理室として用
いた一例を示す斜視図である。
FIG. 3 is a perspective view showing an example in which the plasma-resistant member of the present invention is used as a reaction processing chamber.

【図4】図1乃至図3に示す耐プラズマ部材を用いたエ
ッチング装置を示す概略図である。
FIG. 4 is a schematic view showing an etching apparatus using the plasma-resistant member shown in FIGS. 1 to 3;

【図5】従来におけるエッチング装置の一例を示す概略
図である。
FIG. 5 is a schematic view showing an example of a conventional etching apparatus.

【符号の説明】[Explanation of symbols]

1・・・ウエハ保持部材 2・・・円盤状体 3・・・
載置面 4・・・クランプ部材 5・・・リング状体 6・・・
段差部 7・・・反応処理室 8・・・ガス導入管 9・・・上
部電極板 10・・・下部電極膜 11・・・被処理物
DESCRIPTION OF SYMBOLS 1 ... Wafer holding member 2 ... Disc-shaped body 3 ...
Mounting surface 4 ・ ・ ・ Clamp member 5 ・ ・ ・ Ring-shaped body 6 ・ ・ ・
Step portion 7: Reaction processing chamber 8: Gas introduction tube 9: Upper electrode plate 10: Lower electrode film 11: Workpiece

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 文夫 鹿児島県国分市山下町1番1号 京セラ株 式会社鹿児島国分工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Fumio Matsunaga 1-1, Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Corporation Kagoshima Kokubu Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくともハロゲン系腐食性ガス下でプラ
ズマに曝される表面が、アルミナ含有量99.9重量%
以上で、上記アルミナ以外の成分としてMgとSiを含
んでなり、上記MgとSiの重量比が酸化物換算でMg
O/SiO2 ≧1であるとともに、焼結体中におけるア
ルミナの平均結晶粒子径が10μm以下であるアルミナ
焼結体からなり、上記表面に存在する開気孔率が0.3
%以下である耐プラズマ部材。
A surface exposed to plasma at least under a halogen-based corrosive gas has an alumina content of 99.9% by weight.
As described above, Mg and Si are contained as components other than the above-mentioned alumina, and the weight ratio of the above-mentioned Mg and Si is Mg in terms of oxide.
It is made of an alumina sintered body in which O / SiO 2 ≧ 1 and the average crystal grain diameter of alumina in the sintered body is 10 μm or less, and the open porosity present on the surface is 0.3
% Or less.
JP10086300A 1998-03-31 1998-03-31 Plasma-resistant member Pending JPH11278919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086300A JPH11278919A (en) 1998-03-31 1998-03-31 Plasma-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086300A JPH11278919A (en) 1998-03-31 1998-03-31 Plasma-resistant member

Publications (1)

Publication Number Publication Date
JPH11278919A true JPH11278919A (en) 1999-10-12

Family

ID=13882995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086300A Pending JPH11278919A (en) 1998-03-31 1998-03-31 Plasma-resistant member

Country Status (1)

Country Link
JP (1) JPH11278919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114805A1 (en) * 1998-08-26 2001-07-11 Toshiba Ceramics Co., Ltd. Plasma-resistant member and plasma treatment apparatus using the same
KR101087404B1 (en) * 2004-05-25 2011-11-25 어플라이드 머티어리얼스, 인코포레이티드 Erosion resistant process chamber components
KR20220045670A (en) * 2020-10-06 2022-04-13 주식회사 나인테크 A focus-ring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114805A1 (en) * 1998-08-26 2001-07-11 Toshiba Ceramics Co., Ltd. Plasma-resistant member and plasma treatment apparatus using the same
EP1114805A4 (en) * 1998-08-26 2004-05-12 Toshiba Ceramics Co Plasma-resistant member and plasma treatment apparatus using the same
KR101087404B1 (en) * 2004-05-25 2011-11-25 어플라이드 머티어리얼스, 인코포레이티드 Erosion resistant process chamber components
KR20220045670A (en) * 2020-10-06 2022-04-13 주식회사 나인테크 A focus-ring

Similar Documents

Publication Publication Date Title
JP4744855B2 (en) Electrostatic chuck
EP1602635B1 (en) Manufacturing method for sintered body with buried metallic member
KR102422725B1 (en) Y2O3-ZrO2 EROSION RESISTANT MATERIAL FOR CHAMBER COMPONENTS IN PLASMA ENVIRONMENTS
JP4417197B2 (en) Susceptor device
US8264813B2 (en) Electrostatic chuck device
JPH10236871A (en) Plasma resistant member
JP2010141341A (en) Method and apparatus for processing substrate, and ceramic composition for them
JPH09134951A (en) Electrostatic chuck
JP2007317772A (en) Electrostatic chuck device
JP2004349612A (en) Electrostatic chuck
JP2007207840A (en) Susceptor arrangement
US20070161494A1 (en) Non-oxide ceramic having oxide layer on the surface thereof, method for production thereof and use thereof
JP4031419B2 (en) Electrostatic chuck and manufacturing method thereof
KR20080091072A (en) Wafer holder, method for producing the same and semiconductor production apparatus
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2001261457A (en) Boron carbide joined body, method for producing the same and plasma-resistant member
JPH11278919A (en) Plasma-resistant member
JP2001308011A (en) Chamber member for semiconductor manufacturing apparatus
JP2004288887A (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus carrying the same
JP2002348175A (en) Resistor, its manufacturing method and support system
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP4346899B2 (en) Manufacturing method of electrostatic chuck
JPH1160356A (en) Aluminum nitride composite base, aluminum nitride composite heat generating body using the same, aluminum nitride composite electrostatic chuck, and same chuck with heater
JPH09232409A (en) Wafer holding apparatus
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530