JPH0940434A - High purity quartz glass and production thereof - Google Patents

High purity quartz glass and production thereof

Info

Publication number
JPH0940434A
JPH0940434A JP7193141A JP19314195A JPH0940434A JP H0940434 A JPH0940434 A JP H0940434A JP 7193141 A JP7193141 A JP 7193141A JP 19314195 A JP19314195 A JP 19314195A JP H0940434 A JPH0940434 A JP H0940434A
Authority
JP
Japan
Prior art keywords
quartz glass
silica powder
temperature
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7193141A
Other languages
Japanese (ja)
Inventor
Toshihiko Okamura
敏彦 岡村
Hironari Osada
裕也 長田
Kenji Kamo
賢治 加茂
Koji Tsukuma
孝次 津久間
Masayuki Kudo
正行 工藤
Hajime Sudo
一 須藤
Giichi Kikuchi
義一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Tosoh Corp
Original Assignee
NIPPON SEKIEI GLASS KK
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK, Tosoh Corp filed Critical NIPPON SEKIEI GLASS KK
Priority to JP7193141A priority Critical patent/JPH0940434A/en
Publication of JPH0940434A publication Critical patent/JPH0940434A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high purity quartz glass suppressible in impurities such as alkali metals and halogen elements and the concentration of contained OH groups at a low concentration. SOLUTION: This quartz glass is obtained by compacting noncrystalline silica powder and sintering it, and the content of each impurity of Na, K, Fe, Ti, Al, Ca, Li and halogen elements such as F and Cl is <=1ppm and also the concentration of the contained OH groups is <=5ppm. In this production method of the quartz glass produced by forming noncrystalline silica powder and sintering it, the powder having average particle diameter of 0.5-10μm and the content of each impurity of Na, K, Fe, Ti, Al, Ca and Li and halogen elements such as F and Cl of <=1ppm is used as the silica powder. The powder is compacted into an objective shape and in the process where the compact is sintered, the compact is subjected to dehydration process at the temp. range of 1100-1600 deg.C in such a state that the compact has opened pores, and then is melted and is vitrified to produce the objective quartz glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石英ガラスに関し、特
に焼結後、溶融して得る高純度石英ガラス及びその製造
方法に関し、より詳しくは、アルカリ等の不純物がそれ
ぞれ1ppm以下の高純度で、かつ含有OH基濃度が5
ppm以下であり、半導体製造分野やガラス基板等で有
用な高純度石英ガラス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to quartz glass, and more particularly to high-purity quartz glass obtained by melting after sintering and a method for producing the same, and more specifically, it has a high purity of impurities such as alkali of 1 ppm or less. And the concentration of contained OH groups is 5
TECHNICAL FIELD The present invention relates to high-purity quartz glass which is less than or equal to ppm and is useful in the field of semiconductor manufacturing, glass substrates, and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の石英ガラスの製造方法としては、
水晶粉末やケイ砂等の天然原料を電気炉で溶融する方法
や酸水素炎によって溶融する方法が知られている。ま
た、不透明石英ガラスは上記天然原料に炭酸カルシウム
等の発砲剤を加えて溶融する方法によって製造されてい
る。しかし、原料として天然品が使用されているため、
含有OH基濃度は低いもののアルカリ等の不純物を含有
しているので半導体製造分野等に用いる場合には問題が
ある。上記の天然水晶粉末の高純度化処理も行われてい
るが、この方法では高純度化に影響するすべての不純物
を1ppm以下に押さえる事は現在まで達成されてな
い。
2. Description of the Related Art As a conventional method for producing quartz glass,
A method of melting a natural raw material such as crystal powder or silica sand in an electric furnace or a method of melting with an oxyhydrogen flame is known. Opaque quartz glass is manufactured by a method in which a foaming agent such as calcium carbonate is added to the above natural raw material and melted. However, since natural products are used as raw materials,
Although the concentration of contained OH groups is low, it contains impurities such as alkali, and therefore, there is a problem when used in the field of semiconductor manufacturing. Although the above-mentioned purification treatment of the natural quartz powder has been carried out, it has not been achieved by this method until now that all impurities that affect the purification are suppressed to 1 ppm or less.

【0003】この対策として、合成非晶質シリカ粉末の
堆積体を焼結するVAD法、あるいは、珪酸アルコキシ
ドの加水分解により得られる非晶質シリカ粉末を焼結す
るゾルゲル法による石英ガラスなどが検討されている。
しかし、合成非晶質シリカ粉末を用いた場合には高純度
化は可能であるが、含有OH基濃度が高く、耐熱性は天
然水晶原料を用いた石英ガラスに比べて劣ってしまうと
いう問題が解決されてない。また、Cl、F等の脱水剤
で脱水処理する方法も考えられているが、ハロゲン元素
が不純物として残ってしまうという問題がある。
As a countermeasure for this, quartz glass by a VAD method for sintering a deposit of synthetic amorphous silica powder or a sol-gel method for sintering an amorphous silica powder obtained by hydrolysis of silicic acid alkoxide has been studied. Has been done.
However, when synthetic amorphous silica powder is used, high purification is possible, but the problem is that the content of OH groups is high and the heat resistance is inferior to that of quartz glass using natural quartz material. Not resolved. Further, a method of dehydrating with a dehydrating agent such as Cl or F has been considered, but there is a problem that the halogen element remains as an impurity.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記課題を
解決するためになされたものであって、上記した合成シ
リカを原料として用いた場合と同等の高純度、すなわち
アルカリ金属やハロゲン元素等の不純物をそれぞれ1p
pm以下に抑えることができ、しかも脱水剤等で脱水処
理しなくても含有OH基濃度が5ppm以下である高純
度石英ガラスを提供することを目的としてなされたもの
である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has the same high purity as when the above-mentioned synthetic silica is used as a raw material, that is, an alkali metal, a halogen element, or the like. 1p each of the impurities
The purpose of the present invention is to provide a high-purity quartz glass which can be suppressed to pm or less and has an OH group concentration of 5 ppm or less without dehydration treatment with a dehydrating agent or the like.

【0005】[0005]

【課題を解決するための手段】このような問題を解決す
るために、本発明者は鋭意検討した結果、本発明を完成
するに至った。
In order to solve such a problem, the inventor of the present invention has made extensive studies, and as a result, completed the present invention.

【0006】すなわち、本発明は、非晶質シリカ粉末を
成形し、焼結して石英ガラスを製造する方法において、
シリカ粉末として平均粒径0.5〜10μmの範囲内に
あり、Na、K、Fe、Ti、Al、Ca、LiやF、
Clなどのハロゲン元素の各不純物含有量が1ppm以
下である粉末を使用し、それを目的の形状に成形した
後、成形体を焼結する過程で成形体が開気孔を有した状
態である1100〜1600℃の温度範囲内の昇温速度
を100℃/h以下にして脱水処理を施した後、溶融し
てガラス化することを特徴とする高純度石英ガラスの製
造方法に関する。また、このようにして得られた石英ガ
ラスは、Na、K、Fe、Ti、Al、Ca、Liや
F、Clなどのハロゲン元素の各不純物含有量が1pp
m以下で、かつ含有OH基濃度が5ppm以下のものと
なる。
That is, the present invention provides a method for producing quartz glass by molding and sintering amorphous silica powder,
The silica powder has an average particle size of 0.5 to 10 μm, and contains Na, K, Fe, Ti, Al, Ca, Li and F,
A powder having an impurity content of halogen element such as Cl of 1 ppm or less is used, the powder is molded into a desired shape, and the molded body has open pores in the process of sintering 1100. The present invention relates to a method for producing high-purity quartz glass, which comprises performing dehydration treatment at a temperature rising rate within a temperature range of ˜1600 ° C. at 100 ° C./h or less, and then melting and vitrifying. Further, the quartz glass obtained in this manner has an impurity content of 1 pp of halogen elements such as Na, K, Fe, Ti, Al, Ca, Li, F, and Cl.
m or less and the content of OH group concentration is 5 ppm or less.

【0007】さらに、本発明を詳しく説明する。Further, the present invention will be described in detail.

【0008】本発明に用いる非晶質シリカ粉末として
は、Na、K、Fe、Ti、Al、Ca、LiやF、C
lなどのハロゲン元素の各不純物含有量が1ppm以下
であれば、粉末の製造法には特に規定はない。例えば、
ケイ酸ソ−ダからNa分を除去したケイ酸を用いる方
法、四塩化ケイ素を熱加水分解する方法、シリコンアル
コキシドを塩酸あるいはアンモニア触媒下で加水分解し
て得たシリカを焼成して製造する方法及びアルカリ金属
ケイ酸水溶液と酸とを反応させて得たシリカを精製し、
焼成する方法等により非晶質シリカ粉末が製造される。
このような原料を用いることにより、不純物除去のため
の処理を不要とできる。また、シリカ粉末の平均粒径
は、0.5〜10μmの範囲内にあることが必須であ
る。ここで平均粒径を規定する理由は、粉末成形が可能
かどうかという観点からであり、この範囲外の平均粒径
では粉末成形が不可能であるからである。なお、ここで
言う平均粒径とは、一次粒子の大きさの平均値であり、
自然凝集あるいは造粒操作によってできる二次粒子を対
象としたものではない。測定方法としては、例えば粉末
を溶媒に超音波などで分散させて光散乱から粒子径を測
定する方法がある。
The amorphous silica powder used in the present invention includes Na, K, Fe, Ti, Al, Ca, Li, F, and C.
If the content of each impurity of halogen element such as 1 is 1 ppm or less, the method for producing the powder is not particularly limited. For example,
Method using silicic acid from which sodium is removed from sodium silicate, method of thermally hydrolyzing silicon tetrachloride, method of firing silica obtained by hydrolyzing silicon alkoxide under hydrochloric acid or ammonia catalyst And purifying silica obtained by reacting an aqueous solution of an alkali metal silicic acid with an acid,
Amorphous silica powder is produced by a method such as firing.
By using such a raw material, the treatment for removing impurities can be omitted. Further, it is essential that the average particle diameter of the silica powder is within the range of 0.5 to 10 μm. The reason for defining the average particle size here is from the viewpoint of whether powder molding is possible, and powder molding is impossible with an average particle size outside this range. Incidentally, the average particle size referred to here is an average value of the size of the primary particles,
It is not intended for secondary particles produced by natural agglomeration or granulation operations. As a measuring method, for example, there is a method of dispersing the powder in a solvent by ultrasonic waves or the like and measuring the particle size from light scattering.

【0009】成形方法は、とくに限定されないが、成形
工程で不純物の混入の無いものを選ぶ必要がある。例え
ば、成形方法の一つとして鋳込み成形法を利用すること
ができるが、型の材質として樹脂を用いることが好まし
い。型の材質として石膏を用いると不純物としてカルシ
ュウムを混入してしまう。また、成形をしやすくするた
めに、バインダ−等の助剤の添加も可能であるが上記に
あげた不純物含有量がそれぞれ1ppm以下のものを選
択する必要がある。
The molding method is not particularly limited, but it is necessary to select a method in which impurities are not mixed in the molding process. For example, a casting method can be used as one of the molding methods, but it is preferable to use a resin as the material of the mold. If plaster is used as the material of the mold, calcium will be mixed as an impurity. Further, in order to facilitate the molding, it is possible to add an auxiliary agent such as a binder, but it is necessary to select one having an impurity content of 1 ppm or less.

【0010】焼結において、成形体が開気孔を持つ11
00〜1600℃の温度範囲内の昇温速度を150℃/
h以下にして焼結することが必須である。OH基は、成
形体の気孔が開気孔の時、1100℃以上の温度で加熱
することによって脱離する。ここで、1100℃より低
いと温度が低すぎてOH基の脱離はほとんど起こらな
い。1600℃より高いと閉気孔になりOH基の脱離は
起こらなくなる。昇温速度が150℃/hより早いとき
も同様にOH基が脱離する前に閉気孔になってしまい脱
離が起こらなくなる。ただし、1600℃になる前にO
H基の脱離が終わった場合には、その温度以後、昇温速
度が150℃/hよりも速くても構わない。また、11
00〜1600℃の温度範囲内で保持することも可能で
あり、成形体によっては1300〜1450℃の温度辺
りで数時間保持することによって、ほとんどのOH基が
脱離してしまうこともある。この様な場合には、その温
度以後、昇温速度が150℃/hよりも速くても構わな
い。
In sintering, the compact has open pores 11
The temperature rising rate within the temperature range of 00 to 1600 ° C is 150 ° C /
It is essential to sinter at h or less. The OH groups are desorbed by heating at a temperature of 1100 ° C. or higher when the pores of the molded body are open pores. Here, if the temperature is lower than 1100 ° C., the temperature is too low and the elimination of OH groups hardly occurs. When the temperature is higher than 1600 ° C, closed pores are formed and OH group elimination does not occur. Similarly, when the temperature rising rate is higher than 150 ° C./h, the closed pores are formed before the OH group is eliminated, and the elimination does not occur. However, before reaching 1600 ° C, O
When the elimination of the H group is completed, the temperature rising rate after that temperature may be higher than 150 ° C./h. Also, 11
It is also possible to maintain the temperature within the temperature range of 00 to 1600 ° C., and depending on the molded product, most of the OH groups may be eliminated by maintaining the temperature around 1300 to 1450 ° C. for several hours. In such a case, the temperature rising rate after that temperature may be higher than 150 ° C./h.

【0011】ここで、成形体が開気孔の状態の時は真空
雰囲気で、閉気孔の状態になって、ガスを導入すると透
明ガラスになる。また、成形体が開気孔の状態の時に雰
囲気を窒素ガスあるいはアルゴンガス雰囲気にすると不
透明ガラスになる。閉気孔の状態になる温度は、粒径、
成形体密度、昇温速度等に関係しており、例えば粒径が
小さかったり、成形体密度が高いと低い温度で閉気孔の
状態となる。
Here, when the molded product has open pores, it is in a vacuum atmosphere, and when it has closed pores, it becomes transparent glass when gas is introduced. Further, when the atmosphere of the molded product is in the state of open pores and the atmosphere is nitrogen gas or argon gas atmosphere, it becomes opaque glass. The temperature at which the closed pores are formed depends on the particle size,
It is related to the density of the molded body, the heating rate, etc. For example, if the particle size is small or the density of the molded body is high, closed pores are formed at a low temperature.

【0012】ガラスを溶融する前段階で、非晶質のもの
が結晶化して結晶体になることもあるが、これは、非晶
質のままでも結晶体にしてもどちらでもガラスには影響
を与えない。
Before the glass is melted, an amorphous substance may be crystallized into a crystalline substance. This has an effect on the glass whether it is an amorphous substance or a crystalline substance. Do not give.

【0013】これらの非晶質体あるいは結晶体を175
0℃以上の温度、好ましくは1770〜1850℃の温
度でガラス化を行う。完全に溶融させるためには前記温
度で所定時間保持することが好ましいが、その保持温度
は温度や成形体の形状によっても異なり、瞬時に溶融す
る温度であれば特にその温度で保持する必要はない。
175 of these amorphous or crystalline materials
Vitrification is performed at a temperature of 0 ° C. or higher, preferably 1770 to 1850 ° C. For complete melting, it is preferable to hold at the above temperature for a predetermined time, but the holding temperature differs depending on the temperature and the shape of the molded body, and if it is a temperature that melts instantly, it is not necessary to hold at that temperature. .

【0014】[0014]

【実施例】本発明を以下の実施例によりさらに詳細に説
明するが、本発明はこれらに限定されるものではない。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0015】実施例1 表1に示す純度を有し、平均粒径1μmの非晶質シリカ
粉末500gを純水500gに分散させスラリ−とし
た。このスラリ−を十分脱泡した後、泡を巻き込まない
ようにφ150mm×10mmの空間を有するエポキシ
系樹脂製の多孔質鋳込み型内に流し込む。ここで、脱泡
が不十分であるとガラス中に大きな気泡ができてしま
う。できた成形体は、十分乾燥させた後、電気炉内で1
100〜1600℃の温度範囲内を60℃/hの昇温速
度で昇温させた。本実施例のガラスは透明ガラスにする
ため1600℃までは真空雰囲気(2×10-3tor
r)中で焼結させ、その後1.2kg/cm2 の圧力ま
で窒素ガスを導入し1800℃で15分間加熱し溶融さ
せた。ここで、1100℃まで及び1600℃以上の温
度範囲では300℃/hで昇温した。焼成用セッタとし
てはカ−ボンを用いた。
Example 1 500 g of amorphous silica powder having the purity shown in Table 1 and having an average particle size of 1 μm was dispersed in 500 g of pure water to obtain a slurry. After sufficiently defoaming this slurry, the slurry is poured into a porous casting mold made of epoxy resin having a space of φ150 mm × 10 mm so as not to entrap bubbles. Here, if defoaming is insufficient, large bubbles will be formed in the glass. The formed body is thoroughly dried and then placed in an electric furnace for 1 hour.
The temperature was raised in the temperature range of 100 to 1600 ° C. at a heating rate of 60 ° C./h. In order to make the glass of the present example transparent glass, a vacuum atmosphere (2 × 10 −3 torr) was used up to 1600 ° C.
Then, the mixture was sintered in r), and then nitrogen gas was introduced to a pressure of 1.2 kg / cm 2 and heated at 1800 ° C. for 15 minutes to melt. Here, the temperature was raised up to 1100 ° C. and 300 ° C./h in the temperature range of 1600 ° C. or higher. Carbon was used as the firing setter.

【0016】[0016]

【表1】 [Table 1]

【0017】得られたガラスは、表2に示す純度を有
し、含有OH基濃度は2ppmであった。また、ガラス
中には50μm以上の気泡は存在せず、50μmよりも
小さい気泡も非常に少なく透明度の高いガラスを得るこ
とができた。
The obtained glass had the purities shown in Table 2 and the concentration of contained OH groups was 2 ppm. Further, there were no bubbles of 50 μm or more in the glass, and there were very few bubbles smaller than 50 μm, and it was possible to obtain a glass having high transparency.

【0018】[0018]

【表2】 [Table 2]

【0019】なお、不純物分析はICP発光分光分析お
よびICP重量分析にて行った。含有OH基濃度はFT
−IR装置を使用し、サンプルのIR透過光の波長37
00カイザ−のOH基吸収スペクトルにより定量した。
The impurities were analyzed by ICP emission spectroscopy and ICP gravimetric analysis. Contained OH group concentration is FT
-Using an IR device, the wavelength of the IR transmitted light of the sample is 37
It was quantified by the OH group absorption spectrum of 00 Kaiser.

【0020】実施例2 表1に示す純度を有し、平均粒径5μmの非晶質シリカ
粉末をφ70mm金属製のプレス型を使用し、500k
g/cm2 の圧力で成形した。得られた成形体は、電気
炉内で1100〜1600℃の温度範囲内を100℃/
hの昇温速度で昇温させた。本実施例のガラスは不透明
ガラスにするため窒素雰囲気中で焼結させ、1800℃
で15分間加熱し溶融させた。ここで、1100℃ま
で、1600℃以上は300℃/hで昇温した。焼成用
セッタとしてはカ−ボンを用いた。得られたガラスは、
表2に示す純度を有し、含有OH基濃度は3ppmであ
った。また、ガラスは、平均径20〜40μmの独立気
泡をもつ不透明ガラスであった。
Example 2 Amorphous silica powder having a purity shown in Table 1 and having an average particle size of 5 μm was used at a pressure of 500 k using a φ70 mm metal press die.
It was molded at a pressure of g / cm 2 . The obtained molded body has a temperature range of 1100-1600 ° C. in the electric furnace of 100 ° C. /
The temperature was raised at a heating rate of h. The glass of this example was sintered in a nitrogen atmosphere to make it opaque, and the temperature was 1800 ° C.
It was heated for 15 minutes to melt. Here, the temperature was raised to 1100 ° C. at 300 ° C./h above 1600 ° C. Carbon was used as the firing setter. The obtained glass is
It had the purity shown in Table 2 and contained OH group concentration of 3 ppm. Further, the glass was opaque glass having closed cells with an average diameter of 20 to 40 μm.

【0021】比較例1 実施例1と同様な出発原料を用い、同様な方法で成形体
を作成した。作成した成形体を電気炉内で1100〜1
600℃の温度範囲内を600℃/hの昇温速度で昇温
させた。それ以外は同様な雰囲気、溶融条件でガラスの
作成を行った。得られたガラスは実施例1と同等の純
度、透明度を有していたが、含有OH基濃度が68pp
mであった。
Comparative Example 1 Using the same starting materials as in Example 1, a molded body was prepared in the same manner. The formed body is 1100-1 in the electric furnace.
Within the temperature range of 600 ° C., the temperature was raised at a heating rate of 600 ° C./h. Other than that, glass was prepared under the same atmosphere and melting conditions. The obtained glass had the same purity and transparency as those of Example 1, but had a contained OH group concentration of 68 pp.
m.

【0022】比較例2 実施例1と同様な出発原料を用い、同様な方法で成形体
を作成した。作成した成形体を電気炉内、真空雰囲気内
で1000℃まで300℃/hで昇温し、その温度で3
時間保持した後、1650℃まで300℃/hで昇温し
その温度でさらに3時間保持した。その後、1.2kg
/cm2 の圧力まで窒素ガスを導入し1800℃で15
分間加熱し溶融させた。
Comparative Example 2 Using the same starting materials as in Example 1, a molded body was prepared in the same manner. The formed body was heated in an electric furnace in a vacuum atmosphere up to 1000 ° C at 300 ° C / h, and the temperature was raised to 3 ° C.
After holding for 1 hour, the temperature was raised to 1650 ° C. at 300 ° C./h and kept at that temperature for another 3 hours. After that, 1.2 kg
Nitrogen gas is introduced up to a pressure of / cm 2 and the temperature is 15 ° C. at 1800 ° C.
It was heated and melted for a minute.

【0023】得られたガラスは実施例1と同等の純度、
透明度を有していたが、含有OH基濃度が20ppmで
あった。
The obtained glass had the same purity as in Example 1,
Although it had transparency, the contained OH group concentration was 20 ppm.

【0024】[0024]

【発明の効果】以上詳述したように、本発明の製造方法
で作成すれば、脱水剤等で脱水処理しなくても、含有O
H基濃度が5ppm以下である高純度石英ガラスをコン
スタントに作成することができ、生産的にも安価であ
る。また、本発明の方法で得られた石英ガラスは、高純
度で高温粘性特性に優れた石英ガラスであり、透明ガラ
スにおいては、50μm以上の気泡は存在せず、50μ
mよりも小さい気泡も非常に少ないものであり、不透明
ガラスにおいては、平均径20〜40μmの独立気泡が
均一に分布しているガラスである。
As described in detail above, if the production method of the present invention is used, the content of O is eliminated even if the dehydration treatment is not performed with a dehydrating agent or the like.
High-purity quartz glass having an H group concentration of 5 ppm or less can be constantly produced, and the production is inexpensive. Further, the quartz glass obtained by the method of the present invention is a quartz glass having high purity and excellent high temperature viscous properties, and in the transparent glass, there are no bubbles of 50 μm or more,
The number of bubbles smaller than m is also very small, and the opaque glass is a glass in which closed cells having an average diameter of 20 to 40 μm are uniformly distributed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津久間 孝次 茨城県土浦市富士崎1−18−7 (72)発明者 工藤 正行 茨城県稲敷郡江戸崎町月出里447−22 (72)発明者 須藤 一 山形県山形市十日町2丁目4−7 (72)発明者 菊地 義一 山形県寒河江市大字寒河江字鶴田43−7 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Tsukuma 1-18-7 Fujisaki, Tsuchiura City, Ibaraki Prefecture (72) Inventor Masayuki Kudo 447-22 Tsukisato, Edozaki-cho, Inashiki-gun, Ibaraki Prefecture (72) Inventor Sudo 2-7 Tokamachi, Yamagata City, Yamagata Prefecture 4-7 (72) Inventor Yoshikazu Kikuchi 43-7 Tsuruta, Sagae City, Sagae City, Yamagata Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非晶質シリカ粉末を成形し、焼結して得ら
れた石英ガラスであって、Na、K、Fe、Ti、A
l、Ca、LiやF、Clなどのハロゲン元素の各不純
物含有量が1ppm以下で、かつ含有OH基濃度が5p
pm以下である高純度石英ガラス。
1. A quartz glass obtained by molding and sintering amorphous silica powder, which comprises Na, K, Fe, Ti and A.
The content of each impurity of halogen elements such as 1, Ca, Li, F, and Cl is 1 ppm or less, and the concentration of contained OH group is 5 p.
High-purity quartz glass of pm or less.
【請求項2】非晶質シリカ粉末を成形し、焼結して石英
ガラスを製造する方法において、シリカ粉末として平均
粒径0.5〜10μmの範囲内にあり、Na、K、F
e、Ti、Al、Ca、LiやF、Clなどのハロゲン
元素の各不純物含有量が1ppm以下である粉末を使用
し、それを目的の形状に成形した後、成形体を焼結する
過程で成形体が開気孔を有した状態である1100〜1
600℃の温度範囲内で脱水処理を施した後、溶融して
ガラス化することを特徴とする請求項1に記載の高純度
石英ガラスを製造する方法。
2. A method for producing a quartz glass by molding an amorphous silica powder and sintering the silica powder, wherein the silica powder has an average particle size of 0.5 to 10 μm, and Na, K, F.
e, Ti, Al, Ca, Li, F, Cl, etc., each of which has a content of impurities of 1 ppm or less of a halogen element is used, and the powder is molded into a desired shape, and then the molded body is sintered. 1100-1 which is a state in which the molded body has open pores
The method for producing high-purity quartz glass according to claim 1, which comprises performing dehydration treatment within a temperature range of 600 ° C. and then melting and vitrifying.
【請求項3】請求項2に記載の1100〜1600℃の
温度範囲内で脱水処理において、昇温速度が150℃/
h以下にすることを特徴とする請求項2に記載の高純度
石英ガラスを製造する方法。
3. In the dehydration treatment within the temperature range of 1100 to 1600 ° C. according to claim 2, the heating rate is 150 ° C. /
The method for producing the high-purity quartz glass according to claim 2, wherein the h is equal to or less than h.
JP7193141A 1995-07-28 1995-07-28 High purity quartz glass and production thereof Pending JPH0940434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193141A JPH0940434A (en) 1995-07-28 1995-07-28 High purity quartz glass and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193141A JPH0940434A (en) 1995-07-28 1995-07-28 High purity quartz glass and production thereof

Publications (1)

Publication Number Publication Date
JPH0940434A true JPH0940434A (en) 1997-02-10

Family

ID=16302973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193141A Pending JPH0940434A (en) 1995-07-28 1995-07-28 High purity quartz glass and production thereof

Country Status (1)

Country Link
JP (1) JPH0940434A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281430A (en) * 1999-03-31 2000-10-10 Kyocera Corp Black silicon dioxide-based corrosion resistant member and its production
JP2001180964A (en) * 1999-12-27 2001-07-03 Kyocera Corp Black type sintered quartz
WO2002067312A1 (en) * 2001-02-21 2002-08-29 Tokyo Electron Limited Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment
JP2005213118A (en) * 2004-01-30 2005-08-11 Tosoh Corp Amorphous silica shaped body and its manufacturing method
JP2006315910A (en) * 2005-05-12 2006-11-24 Shinetsu Quartz Prod Co Ltd Method for manufacturing silica glass article and silica glass article obtained by the method
EP2070883A1 (en) * 2006-09-11 2009-06-17 Tosoh Corporation Fused quartz glass and process for producing the same
WO2017103120A1 (en) * 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Production of a synthetic quartz glass granulate
WO2017103121A3 (en) * 2015-12-18 2017-10-05 Heraeus Quarzglas Gmbh & Co. Kg Production of an opaque silica glass article
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035329A (en) * 1989-06-01 1991-01-11 Shin Etsu Chem Co Ltd Production of synthetic quartz glass
JPH04238824A (en) * 1990-12-28 1992-08-26 Shin Etsu Chem Co Ltd Production of synthetic optical quartz glass having high viscosity
JPH08119664A (en) * 1994-10-14 1996-05-14 Nitto Chem Ind Co Ltd High purity transparent quartz glass and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035329A (en) * 1989-06-01 1991-01-11 Shin Etsu Chem Co Ltd Production of synthetic quartz glass
JPH04238824A (en) * 1990-12-28 1992-08-26 Shin Etsu Chem Co Ltd Production of synthetic optical quartz glass having high viscosity
JPH08119664A (en) * 1994-10-14 1996-05-14 Nitto Chem Ind Co Ltd High purity transparent quartz glass and its production

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281430A (en) * 1999-03-31 2000-10-10 Kyocera Corp Black silicon dioxide-based corrosion resistant member and its production
JP2001180964A (en) * 1999-12-27 2001-07-03 Kyocera Corp Black type sintered quartz
WO2002067312A1 (en) * 2001-02-21 2002-08-29 Tokyo Electron Limited Parts of apparatus for plasma treatment and method for manufacture thereof, and apparatus for plasma treatment
JPWO2002067312A1 (en) * 2001-02-21 2004-06-24 東京エレクトロン株式会社 Parts for plasma processing apparatus, method for manufacturing the same, and plasma processing apparatus
JP2005213118A (en) * 2004-01-30 2005-08-11 Tosoh Corp Amorphous silica shaped body and its manufacturing method
JP4504036B2 (en) * 2004-01-30 2010-07-14 東ソー株式会社 Amorphous silica molded body and method for producing the same
JP2006315910A (en) * 2005-05-12 2006-11-24 Shinetsu Quartz Prod Co Ltd Method for manufacturing silica glass article and silica glass article obtained by the method
EP2070883A1 (en) * 2006-09-11 2009-06-17 Tosoh Corporation Fused quartz glass and process for producing the same
EP2070883A4 (en) * 2006-09-11 2012-09-12 Tosoh Corp Fused quartz glass and process for producing the same
JP2019502642A (en) * 2015-12-18 2019-01-31 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of synthetic quartz glass grains
TWI733723B (en) * 2015-12-18 2021-07-21 德商何瑞斯廓格拉斯公司 Preparation of an opaque quartz glass body
CN109153593A (en) * 2015-12-18 2019-01-04 贺利氏石英玻璃有限两合公司 The preparation of synthetic quartz glass powder
WO2017103120A1 (en) * 2015-12-18 2017-06-22 Heraeus Quarzglas Gmbh & Co. Kg Production of a synthetic quartz glass granulate
JP2019503966A (en) * 2015-12-18 2019-02-14 ヘレウス クワルツグラス ゲーエムベーハー ウント コンパニー カーゲー Preparation of opaque quartz glass body
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
WO2017103121A3 (en) * 2015-12-18 2017-10-05 Heraeus Quarzglas Gmbh & Co. Kg Production of an opaque silica glass article
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Similar Documents

Publication Publication Date Title
JP3751326B2 (en) Manufacturing method of high purity transparent quartz glass
JPH0940434A (en) High purity quartz glass and production thereof
US4801318A (en) Silica glass formation process
CN1012641B (en) Method for fabricating articles which include high silica glass bodies and articles formed thereby
JPH02500972A (en) Improvements in and related to vitreous silica
JPH072513A (en) Production of synthetic quartz glass powder
JP2003252634A (en) Dispersion liquid containing silicon - titanium mixed oxide powder, its manufacturing method, molded form manufactured from it, its manufacturing method, glass molded form, its manufacturing method and its use
JP3092675B2 (en) Oxynitride glass and method for producing the same
JPH0912322A (en) High-purity transparent quartz glass and its production
JP2839725B2 (en) Method for producing high-purity crystalline silica
JPH0280329A (en) Production of synthetic quartz glass
JPS62212235A (en) Production of glass
JPH10203839A (en) Opaque silica glass containing fine bubble and its production
JPH03275527A (en) Porous silica glass powder
JPS63166730A (en) Production of quartz glass
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPS6230633A (en) Production of glass
JPH04154613A (en) Synthetic silica powder having high purity
JP2780799B2 (en) Manufacturing method of quartz glass
JPH0264027A (en) Production of silica glass
JPH0764574B2 (en) Method for manufacturing rod-shaped quartz glass preform
JPH038708A (en) Production of silica feedstock
JPH0776101B2 (en) Method for manufacturing glass molded body
JP2000344535A (en) Method for recycling quartz glass molding
JPH0563416B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307