JPH11157916A - Corrosion-resistant member - Google Patents

Corrosion-resistant member

Info

Publication number
JPH11157916A
JPH11157916A JP9328449A JP32844997A JPH11157916A JP H11157916 A JPH11157916 A JP H11157916A JP 9328449 A JP9328449 A JP 9328449A JP 32844997 A JP32844997 A JP 32844997A JP H11157916 A JPH11157916 A JP H11157916A
Authority
JP
Japan
Prior art keywords
plasma
chlorine
corrosion
corrosion resistance
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9328449A
Other languages
Japanese (ja)
Other versions
JP3488373B2 (en
Inventor
Yumiko Itou
裕見子 伊東
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32844997A priority Critical patent/JP3488373B2/en
Priority to US09/031,401 priority patent/US6447937B1/en
Publication of JPH11157916A publication Critical patent/JPH11157916A/en
Priority to US10/198,675 priority patent/US6916559B2/en
Application granted granted Critical
Publication of JP3488373B2 publication Critical patent/JP3488373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion-resistant member having high corrosion resistance, especially to a chlorine-based corrosive gas and a chlorine based plasma and used as an internal wall material, a jig, etc., in the interior of a plasma treating device or a plasma processing device for producing a semiconductor or for a liquid crystal or a discharge wall of a discharge tube, a lamp, etc., such as a metal halide lamp. SOLUTION: A site exposed to a chlorine-based corrosive gas such as BCl3 or Cl2 or its plasma is composed of a sintered product or the like of a group 3a metal of the periodic table such as Y, La, Ce, Nd or Dy and a compound oxide containing Al and/or Si, e.g. 3Y2 O3 .5Al2 O3 , 2Y2 O3 .Al2 O3 , Y2 O3 .Al2 O3 , a disilicate or a monosilicate and the total amount of impurity metals other than the metals forming the compound oxide in the site is controlled to <=0.1 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に塩素系腐食性
ガスおよび塩素系プラズマに対して高い耐食性を有す
る、プラズマ処理装置や半導体製造用又は液晶用プラズ
マプロセス装置の内の内壁材や治具等、放電管、メタル
ハライド等のランプ等の放電壁として使用される耐食性
部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner wall material and a jig in a plasma processing apparatus, a semiconductor manufacturing apparatus, or a plasma processing apparatus for a liquid crystal, which have high corrosion resistance especially to chlorine-based corrosive gas and chlorine-based plasma. The present invention relates to a corrosion-resistant member used as a discharge wall of a discharge tube, a lamp such as a metal halide lamp, and the like.

【0002】[0002]

【従来の技術】半導体製造のドライプロセスやプラズマ
コーティング、放電管、ランプなど、プラズマの利用は
近年急速に進んでいる。半導体におけるプラズマプロセ
スとしては、フッ素系・塩素系等のハロゲン系腐食ガス
がその反応性の高さから、気相成長、エッチングやクリ
ーニングに利用されている。
2. Description of the Related Art In recent years, the use of plasma in a dry process for manufacturing semiconductors, plasma coating, discharge tubes, lamps and the like has been rapidly advancing. As a plasma process in a semiconductor, a halogen-based corrosive gas such as a fluorine-based gas and a chlorine-based gas is used for vapor-phase growth, etching and cleaning due to its high reactivity.

【0003】これら腐食性ガスに接触する部材には高い
耐食性が要求され、従来より被処理物以外のこれらプラ
ズマに接触する部材は、一般にガラスや石英などのSi
2を主成分とする材料やステンレス、モネル等の耐食
性金属が多用されている。
[0003] The members that come into contact with these corrosive gases are required to have high corrosion resistance. Conventionally, the members that come into contact with these plasmas other than the object to be processed are generally made of Si such as glass or quartz.
Materials containing O 2 as a main component and corrosion-resistant metals such as stainless steel and Monel are often used.

【0004】また、半導体装置製造時において、ウェハ
を支持固定するサセプタ材としてアルミナ焼結体、サフ
ァイア、AlNの焼結体、又はこれらをCVD法等によ
り表面被覆したものが耐食性に優れるとして使用されて
いる。また、グラファイト、窒化硼素をコーティングし
たヒータ等も使用されている。
[0004] In the manufacture of semiconductor devices, as a susceptor material for supporting and fixing a wafer, a sintered body of alumina, sapphire, or a sintered body of AlN, or a surface-coated body thereof by a CVD method or the like is used because of its excellent corrosion resistance. ing. Further, a heater coated with graphite or boron nitride is also used.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特に塩素プラズマに接すると接触面
がエッチングされ、表面性状が変化したり、光透過性が
必要とされる部材では、表面が次第に白く曇って透光性
が低下する等の問題が生じていた。
However, conventionally used glass and quartz have insufficient corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with chlorine plasma, the contact surface is etched and the surface properties change. In the case of a member that requires light transmissivity, there have been problems such as that the surface gradually becomes cloudy and the light transmissivity decreases.

【0006】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によって、特に半導
体製造においては不良品発生の原因となっていた。アル
ミナ、AlNの焼結体は、上記の材料に比較して塩素系
ガスに対して耐食性に優れるものの、プラズマと接する
と腐食が徐々に進行して焼結体の表面から結晶粒子の脱
粒が生じ、パーティクル発生の原因になるという問題が
起きている。
[0006] Further, even members made of metal such as stainless steel have insufficient corrosion resistance, so that corrosion causes a defective product, particularly in semiconductor manufacturing. Alumina and AlN sintered bodies have better corrosion resistance to chlorine-based gases than the above materials, but when they come into contact with plasma, the corrosion gradually progresses and crystal grains fall off the surface of the sintered bodies. However, there is a problem that particles are generated.

【0007】[0007]

【課題を解決するための手段】本発明者らは、塩素系腐
食ガス及びプラズマに対する耐食性を高めるための方法
について検討を重ねた結果、まず、塩素系腐食ガス又は
プラズマとの反応が進行すると高融点の塩化物が生成さ
れること、特に周期律表第3a族元素とAlおよび/ま
たはSiとの複合酸化物は、安価に入手できるととも
に、その塩化物が表面に安定な塩化物層を形成し部材の
腐食性が抑制され、従来のアルミナやガラス、AlNな
どよりも優れた耐食性を実現できることを知見したもの
である。
Means for Solving the Problems The present inventors have repeatedly studied a method for improving the corrosion resistance to chlorine-based corrosive gas and plasma. The generation of chloride having a melting point, in particular, a complex oxide of Group 3a element of the periodic table and Al and / or Si can be obtained at low cost, and the chloride forms a stable chloride layer on the surface. It has been found that the corrosion resistance of the steel member is suppressed, and a better corrosion resistance than conventional alumina, glass, AlN or the like can be realized.

【0008】即ち、本発明の耐食性部材は、上記の知見
に基づき完成されたものであり、塩素系腐食ガス或いは
そのプラズマに曝される耐食性部材における少なくとも
前記腐食ガスやプラズマに直接接触する部位が、周期律
表第3a族元素と、Alおよび/またはSiを含む複合
酸化物によって構成することにより、高密度の塩素系腐
食雰囲気において長時間の耐性を有する比較的安価な部
材を提供できるものである。
That is, the corrosion-resistant member of the present invention has been completed based on the above findings, and at least a portion of the corrosion-resistant member exposed to a chlorine-based corrosive gas or its plasma has at least a portion directly in contact with the corrosive gas or the plasma. By using a complex oxide containing Group 3a element of the periodic table and Al and / or Si, it is possible to provide a relatively inexpensive member having long-time resistance in a high-density chlorine-based corrosive atmosphere. is there.

【0009】本発明によれば、塩素系ガス及びプラズマ
に曝される部材を周期律表第3a族元素と、Al及び/
又はSiを含む複合酸化物材料により形成することによ
り、材料表面が塩素との反応によって安定な塩化物層を
生成し、幅広い温度範囲で過酷な塩素系腐食雰囲気への
耐性向上が達成される。さらに、部位における複合酸化
物形成金属以外の不純物金属量が総量で0.1重量%以
下にすることで、それを原因としたパーティクル・脱粒
発生を防止し、更なる耐食性の向上と、半導体へのコン
タミネーションの発生を抑制することができる。
According to the present invention, the member exposed to the chlorine-based gas and the plasma is made of a group 3a element of the periodic table, Al and / or
Alternatively, by forming a composite oxide material containing Si, a stable chloride layer is generated on the surface of the material by the reaction with chlorine, and the resistance to a severe chlorine-based corrosive atmosphere can be improved over a wide temperature range. Further, by setting the total amount of impurity metals other than the complex oxide forming metal at the site to be 0.1% by weight or less, the occurrence of particles and particle shattering due to the total amount can be prevented, further improving corrosion resistance and improving the semiconductor. Can be prevented from occurring.

【0010】しかも、周期律表第3a族元素と、Al及
び/又はSiを含む複合酸化物は、周期律表第3a族元
素酸化物に比較して、PVD法、CVD法などの薄膜技
術によって形成するのに止まらず、緻密な焼結体として
作製することができるために、あらゆる形状品に適合す
ることが可能となる。
In addition, the composite oxide containing Group 3a element of the periodic table and Al and / or Si is compared with the group 3a element oxide of the periodic table by thin film techniques such as PVD and CVD. Since it can be manufactured as a dense sintered body without being limited to the formation, it can be adapted to any shape.

【0011】[0011]

【発明の実施の形態】本発明の耐食性部材は、塩素系の
腐食ガスまたは塩素系プラズマに曝される部材であり、
塩素系ガスとしては、Cl2 、SiCl4 、BCl3
HCl等が挙げられ、これらのガスが導入された雰囲気
にマイクロ波や高周波等を導入するとこれらのガスがプ
ラズマ化される。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention is a member exposed to a chlorine-based corrosive gas or a chlorine-based plasma,
As the chlorine-based gas, Cl 2 , SiCl 4 , BCl 3 ,
HCl and the like. When a microwave, a high frequency, or the like is introduced into an atmosphere in which these gases are introduced, these gases are turned into plasma.

【0012】本発明によれば、このような塩素系ガスあ
るいはそのプラズマに曝される部位を、少なくとも周期
律表第3a族元素と、Alおよび/またはSiとを含む
複合酸化物から構成するものである。ここで、複合酸化
物を構成する周期律表第3a族元素としては、Sc、
Y、La、Ce、Nd、Sm、Eu、Tb、Dy、H
o、Er、Tm、Yb、Luなどいずれでも使用される
が、特にY、La、Ce、Nd、Dyがコストの点で望
ましい。
According to the present invention, the portion exposed to such a chlorine-based gas or its plasma is composed of a composite oxide containing at least an element of Group 3a of the periodic table and Al and / or Si. It is. Here, Sc, as an element belonging to Group 3a of the periodic table constituting the composite oxide, is Sc,
Y, La, Ce, Nd, Sm, Eu, Tb, Dy, H
Any of o, Er, Tm, Yb, Lu and the like can be used, but Y, La, Ce, Nd, and Dy are particularly desirable in terms of cost.

【0013】この複合酸化物の耐食性は周期律表第3a
族元素量に大きく影響され、周期律表第3a族元素は、
複合酸化物中の全金属元素中、30原子%以上、特に4
0原子%以上存在することが望ましい。これは、周期律
表第3a族元素量が30原子%より少ないと、ハロゲン
化ガスやそのプラズマ中での初期の腐食が激しく次第に
表面に保護層が形成されるものの、長時間を要するため
に実用的ではない。
[0013] The corrosion resistance of this composite oxide is 3a of the periodic table.
Greatly influenced by the amount of group elements, group 3a elements of the periodic table
30 atomic% or more, especially 4%, of all metal elements in the composite oxide
Desirably, it is present at 0 atomic% or more. This is because if the amount of the element of Group 3a of the periodic table is less than 30 atomic%, the initial corrosion in the halogenated gas or its plasma is severe and a protective layer is gradually formed on the surface, but it takes a long time. Not practical.

【0014】また、曝される部位を形成する複合酸化物
としては、上記の少なくとも2種の金属元素を含む結晶
質であることが望ましく、特にYAG(3Y2 3 ・5
Al2 3 )などのガーネット型結晶、YAM(2Y2
3 ・Al2 3 )などの単斜晶型結晶、YAP(Y2
3 ・Al2 3 )などのペロブスカイト型結晶、モノ
シリケート(Y2 3 ・SiO2 )、ダイシリケート
(Y2 3 ・2SiO2)などのシリケート化合物を主
体とするものが優れた耐食性を有する点で望ましい。こ
れらの中でもガーネット型結晶、ダイシリケート型結晶
が焼結性と製造コストが安価である点で最も望ましい。
The composite oxide forming the exposed portion is preferably a crystalline material containing at least two kinds of metal elements described above, and in particular, YAG (3Y 2 O 3 .5
Garnet-type crystals such as Al 2 O 3 ), YAM (2Y 2
O 3 · Al 2 O 3) monoclinic type crystal such as, YAP (Y 2
Excellent corrosion resistance is obtained mainly from perovskite-type crystals such as O 3 · Al 2 O 3 ) and silicate compounds such as monosilicate (Y 2 O 3 · SiO 2 ) and disilicate (Y 2 O 3 · 2SiO 2 ). Is desirable. Among these, garnet-type crystals and disilicate-type crystals are most desirable in terms of sinterability and low production cost.

【0015】また、上記複合酸化物からなる部位は、複
合酸化物を形成する金属以外の不純物金属量が0.1重
量%以下であることが望ましい。これは、不純物金属量
が0.1重量%を越えるとプラズマ照射面においてこれ
らの不純物がプラズマと反応し、周囲と異なった生成物
を生じて蒸発したり、剥離する可能性が高くなる。結果
として、耐食性低下、表面性状の劣化、パーティクル発
生等の悪影響を材料に及ぼすためである。特に、この不
純物金属量が500ppm以下であれば、耐食性や表面
性状にも大きな変化を与えることはない。特に、重金属
(Fe、Cr、Niなど)やアルカリ金属系元素(L
i、Na、Kなど)はパーティクルを発生しやすく、コ
ンタミネーションの原因ともなるため、半導体製造用に
は、アルカリ金属系元素は100ppm以下、特に50
ppm以下であることが望ましい。
[0015] In addition, it is preferable that the content of the composite oxide be 0.1% by weight or less in the amount of impurity metals other than the metal forming the composite oxide. This is because when the amount of the impurity metal exceeds 0.1% by weight, these impurities react with the plasma on the plasma irradiation surface, and a product different from the surroundings is generated, so that there is a high possibility that the impurities evaporate or peel off. As a result, adverse effects such as deterioration of corrosion resistance, deterioration of surface properties, and generation of particles are exerted on the material. In particular, if the amount of the impurity metal is 500 ppm or less, there is no significant change in the corrosion resistance and surface properties. In particular, heavy metals (Fe, Cr, Ni, etc.) and alkali metal-based elements (L
i, Na, K, etc.) tend to generate particles and cause contamination. Therefore, for semiconductor production, the content of alkali metal elements is 100 ppm or less, especially 50 ppm.
It is desirably at most ppm.

【0016】前記複合酸化物を主体する焼結体は、例え
ば、周期律表第3a族元素酸化物とAl2 3 またはS
iO2 粉末との混合物を1100〜1900℃の酸化性
雰囲気中又は真空雰囲気中で焼成することにより作製す
ることができる。焼成方法としては、常圧焼成の他、ホ
ットプレス法などが採用される。
The sintered body mainly composed of the composite oxide is made of, for example, an oxide of an element belonging to Group 3a of the periodic table and Al 2 O 3 or S 2 O 3.
It can be produced by firing a mixture with iO 2 powder in an oxidizing atmosphere or a vacuum atmosphere at 1100 to 1900 ° C. As a firing method, a hot press method or the like is employed in addition to normal pressure firing.

【0017】また、本発明の耐食性部材としては、かか
る焼結体にとどまらず、PVD法、CVD法などの周知
の薄膜形成法によって、所定の基体表面に薄膜として形
成したものであってもよい。また、周知のゾルゲル法に
より液相を塗布し焼成した薄膜でもよい。これらの中で
は、粉末を成形し焼成した焼結体であることが、あらゆ
る部材への適用性に優れることから最も望ましいなお、
この複合酸化物は、塩素系腐食ガスまたはそのプラズマ
に曝される部位に形成されるものであるが、かかる金属
複合酸化物は、少なくともその厚みが10μm以上であ
ることが、優れた耐食性を付与する上で望ましい。つま
り、その厚みが10μmより薄いと優れた耐食効果が期
待できないためである。
The corrosion-resistant member of the present invention is not limited to such a sintered body, but may be a thin film formed on a predetermined substrate surface by a known thin film forming method such as a PVD method or a CVD method. . Further, a thin film obtained by applying and baking a liquid phase by a well-known sol-gel method may be used. Of these, a sintered body formed by molding and firing a powder is most desirable because of its excellent applicability to all members.
This composite oxide is formed at a site exposed to a chlorine-based corrosive gas or its plasma. Such a metal composite oxide has excellent corrosion resistance when its thickness is at least 10 μm or more. It is desirable in doing. That is, if the thickness is less than 10 μm, excellent corrosion resistance cannot be expected.

【0018】[0018]

【実施例】各種酸化物粉末を用いて、表1に記載の各種
の材料を作製した。表1中、試料No.1〜5は、周期律
表第3a族元素酸化物とSiO2 及び/またはAl2
3との混合物を2000℃で溶融した後、急冷してガラ
ス化したものである。試料No.6〜9はY2 3 または
Yb2 3 とSiO2 を所定の割合で混合した成形体を
1300〜1600℃で焼成したものである。試料No.
10〜15は、Y23 とAl2 3 との混合物からな
る成形体を1600〜1900℃の酸化性又は真空雰囲
気で焼成したものである。試料No.16〜18は周期律
表第3a族元素酸化物とAl2 3 との混合物からなる
成形体を1400〜1750℃で焼成したものである。
試料No.19、20は、Sc2 3 またはLa2 3
Al23 をターゲットとしてスパッタ法によって作製
したものである。表2の試料は、表1中の試料No.8、
10、12、14、17の材料について原料に純化処理
または不純物を添加して焼結体を作製した。なお、焼結
体はいずれも相対密度95%以上まで緻密化した。
EXAMPLES Various materials shown in Table 1 were prepared using various oxide powders. In Table 1, Samples Nos. 1 to 5 correspond to oxides of Group 3a elements of the periodic table and SiO 2 and / or Al 2 O.
3 was melted at 2000 ° C., then rapidly cooled and vitrified. Sample No.6~9 is obtained by firing a shaped body of a mixture of Y 2 O 3 or Yb 2 O 3 and SiO 2 in a predetermined ratio at 1300 to 1600 ° C.. Sample No.
10-15 is obtained by firing the molded bodies comprising a mixture of Y 2 O 3 and Al 2 O 3 in an oxidizing or vacuum atmosphere at 1600 to 1900 ° C.. Samples Nos. 16 to 18 were obtained by firing a molded body made of a mixture of an oxide of an element belonging to Group 3a of the periodic table and Al 2 O 3 at 1400 to 1750 ° C.
Sample Nos. 19 and 20 were prepared by sputtering using Sc 2 O 3 or La 2 O 3 and Al 2 O 3 as targets. The samples in Table 2 are the samples No. 8 in Table 1,
Sintered bodies were produced by purifying or adding impurities to the raw materials of the materials 10, 12, 14, and 17. In addition, all the sintered bodies were densified to a relative density of 95% or more.

【0019】そして、表1の種々の材料をRIEプラズ
マエッチング装置内に設置し、BCl3 ガス、ArとC
2 との混合ガス(Ar:Cl2 =2:3)のいずれか
を導入するとともに、13.56MHzの高周波を導入
してプラズマを発生させた。このプラズマ中で最高3時
間保持して、処理前後の材料の重量減少を測定し、その
値から1分あたりのエッチングされる厚み(エッチング
速度・Å/min)を算出した。また、試験後の試料の
表面状態を観察しその結果を表1に示した。
Then, various materials shown in Table 1 were set in an RIE plasma etching apparatus, and BCl 3 gas, Ar and C were used.
mixed gas of l 2 (Ar: Cl 2 = 2: 3) is introduced to one of, the plasma is generated by introducing a 13.56MHz high frequency. The material was kept in this plasma for a maximum of 3 hours, the weight loss of the material before and after the treatment was measured, and the thickness to be etched per minute (etching rate 速度 / min) was calculated from the value. The surface condition of the sample after the test was observed, and the results are shown in Table 1.

【0020】なお、比較例として、従来のBN焼結体、
石英ガラス、Al2 3 焼結体、AlN焼結体について
も同様に試験を行った。
As a comparative example, a conventional BN sintered body,
The same test was performed on quartz glass, Al 2 O 3 sintered body, and AlN sintered body.

【0021】表2には、不純物量の異なる材料につい
て、表1と同様エッチング速度と表面状態の変化を記載
した.
Table 2 shows the changes in the etching rate and the surface state of the materials having different amounts of impurities as in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1に示すように、従来の各種材料は、い
ずれもエッチング速度が200Å/minを越えるもの
であり、しかも表面状態も荒れがひどかった。Al2
3 やAlNの焼結体もエッチングによる窪みが多数観察
された。
As shown in Table 1, each of the conventional materials had an etching rate exceeding 200 ° / min, and the surface condition was extremely rough. Al 2 O
Many dents due to etching were also observed in sintered bodies of 3 and AlN.

【0025】これらの比較例に対して試料No.1〜20
の本発明の試料は、いずれも塩素系プラズマに対して高
い耐食性を示した。特に、試料形態がガラスからなるも
のは、その表面にわずかな曇りが確認されたが、焼結体
や薄膜からなるものは、いずれも表面状態も優れたもの
であった。規定外の試料については、表面性状が変化
し、窪みや突起が観察された。また、本発明のいずれの
試料にも試験後において周期律表第3a族元素に富む塩
化物層が表面に形成されていることを確認したまた、表
2に示すように各材料とも不純物量が増加するとエッチ
ング速度がわずかに増加する結果となった。表面状態を
観察すると不純物量が1000ppmを越える試料No.
31、35、39、43、47ではいずれもエッチング
速度は小さいものの、表面に目視で観察できる突起や窪
みが観察された。また不純物量が規定値以下で500p
pmを越える試料No.30、34、38、42、46に
はわずかだが曇りが認められた。不純物が500ppm
以下である他の試料については表面状態に変化は見られ
なかった。
Samples Nos. 1 to 20 were used for these comparative examples.
All of the samples of the present invention showed high corrosion resistance to chlorine-based plasma. In particular, when the sample was made of glass, slight fogging was confirmed on the surface, but when the sample was made of a sintered body or a thin film, the surface condition was excellent. For the non-specified samples, the surface properties changed, and dents and protrusions were observed. In addition, it was confirmed that a chloride layer rich in Group 3a element of the periodic table was formed on the surface of each of the samples of the present invention after the test. An increase resulted in a slight increase in etch rate. Observation of the surface condition shows that the sample No.
In all of 31, 35, 39, 43, and 47, although the etching rate was low, projections and depressions that could be visually observed were observed on the surface. 500p when the impurity amount is below the specified value
Samples Nos. 30, 34, 38, 42, and 46 exceeding pm showed slight haze. 500 ppm of impurities
No change was observed in the surface state of the following other samples.

【0026】試料表面の元素分析を行ったところ、不純
物量が規定値以上の試料表面に生じた突起部には不純物
元素が他より多く確認された。この突起が脱粒する事に
より、窪みが形成されると考えられる。
Elemental analysis of the sample surface showed that more impurity elements were found on the protrusions on the sample surface where the amount of impurities was greater than the specified value. It is considered that a dent is formed when the projections shed.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明によれば、塩
素系腐食性ガス及びそのプラズマに曝される部材として
周期律表第3a族元素と、Al及び/又はSiとの複合
酸化物により構成し、その総不純物量を0.1重量%以
下とすることで、少なくとも材料表面が安定な塩化物層
を生成し、過酷な塩素系腐食雰囲気で高い耐食性が達成
される。しかも焼結体を容易に作製できることから、あ
らゆる形状品に適用することができる。
As described in detail above, according to the present invention, as a member exposed to a chlorine-based corrosive gas and its plasma, a composite oxide of a Group 3a element of the periodic table, Al and / or Si is used. By setting the total impurity amount to 0.1% by weight or less, at least a material surface forms a stable chloride layer, and high corrosion resistance is achieved in a severe chlorine-based corrosive atmosphere. In addition, since a sintered body can be easily manufactured, the present invention can be applied to all shapes.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】塩素系腐食ガス或いはそのプラズマに曝さ
れる部位が、周期律表3a族金属と、Al及び/又はS
iを含む複合酸化物からなることを特徴とする耐食性部
材。
1. The method according to claim 1, wherein the part exposed to the chlorine-based corrosive gas or its plasma comprises a metal of Group 3a of the periodic table, Al and / or S
A corrosion-resistant member comprising a composite oxide containing i.
【請求項2】前記部位における前記複合酸化物形成金属
以外の不純物金属量が総量で0.1重量%以下である請
求項1記載の耐食性部材。
2. The corrosion-resistant member according to claim 1, wherein the total amount of impurity metals other than the complex oxide forming metal in the portion is 0.1% by weight or less.
JP32844997A 1997-02-26 1997-11-28 Corrosion resistant materials Expired - Fee Related JP3488373B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32844997A JP3488373B2 (en) 1997-11-28 1997-11-28 Corrosion resistant materials
US09/031,401 US6447937B1 (en) 1997-02-26 1998-02-26 Ceramic materials resistant to halogen plasma and components using the same
US10/198,675 US6916559B2 (en) 1997-02-26 2002-07-17 Ceramic material resistant to halogen plasma and member utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32844997A JP3488373B2 (en) 1997-11-28 1997-11-28 Corrosion resistant materials

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2002300450A Division JP2003119073A (en) 2002-10-15 2002-10-15 Discharge wall member for lamp
JP2002300448A Division JP2003137648A (en) 2002-10-15 2002-10-15 Member for plasma process system
JP2002300447A Division JP2003137647A (en) 2002-10-15 2002-10-15 Member for plasma process system
JP2002300449A Division JP2003176170A (en) 2002-10-15 2002-10-15 Discharge wall member for lamp

Publications (2)

Publication Number Publication Date
JPH11157916A true JPH11157916A (en) 1999-06-15
JP3488373B2 JP3488373B2 (en) 2004-01-19

Family

ID=18210404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32844997A Expired - Fee Related JP3488373B2 (en) 1997-02-26 1997-11-28 Corrosion resistant materials

Country Status (1)

Country Link
JP (1) JP3488373B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP2001179080A (en) * 1999-12-27 2001-07-03 Nihon Ceratec Co Ltd Member for treating substrate contaminated with metallic substance at low degree
JP2001206764A (en) * 2000-01-25 2001-07-31 Kyocera Corp Corrosion-resistant ceramics and its manufacturing method
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel
US7090932B2 (en) 2003-07-29 2006-08-15 Toshiba Ceramics Co., Ltd. Plasma resistant member
JP2007291528A (en) * 1999-12-10 2007-11-08 Tokyo Electron Ltd Treating apparatus
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
JP2008511179A (en) * 2004-08-24 2008-04-10 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Semiconductor processing components and semiconductor processing using the same
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
US10189745B2 (en) 2013-10-15 2019-01-29 Sumitomo Osaka Cement Co., Ltd. Corrosion-resistant member and electrostatic chuck device
US20210005480A1 (en) * 2019-07-01 2021-01-07 Ramesh Divakar Multi-zone silicon nitride wafer heater assembly having corrosion protective layer, and methods of making and using the same
WO2021229914A1 (en) * 2020-05-12 2021-11-18 日本イットリウム株式会社 Powder for film formation or sintering
WO2022163150A1 (en) * 2021-01-26 2022-08-04 日本イットリウム株式会社 Sintered body

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP4544700B2 (en) * 1999-07-29 2010-09-15 京セラ株式会社 Vacuum container and method for manufacturing the same
JP2007291528A (en) * 1999-12-10 2007-11-08 Tokyo Electron Ltd Treating apparatus
JP2012018928A (en) * 1999-12-10 2012-01-26 Tokyo Electron Ltd Processing unit, corrosion resistant member and method of manufacturing corrosion resistant member
JP2001179080A (en) * 1999-12-27 2001-07-03 Nihon Ceratec Co Ltd Member for treating substrate contaminated with metallic substance at low degree
JP2001206764A (en) * 2000-01-25 2001-07-31 Kyocera Corp Corrosion-resistant ceramics and its manufacturing method
JP4651145B2 (en) * 2000-01-25 2011-03-16 京セラ株式会社 Corrosion resistant ceramics
JP4663927B2 (en) * 2001-08-29 2011-04-06 信越化学工業株式会社 Rare earth-containing oxide member
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
US6794047B2 (en) 2001-08-29 2004-09-21 Shin-Etsu Chemical Co., Ltd. Rare earth-containing oxide member
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel
US7090932B2 (en) 2003-07-29 2006-08-15 Toshiba Ceramics Co., Ltd. Plasma resistant member
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
JP2008511179A (en) * 2004-08-24 2008-04-10 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Semiconductor processing components and semiconductor processing using the same
US10189745B2 (en) 2013-10-15 2019-01-29 Sumitomo Osaka Cement Co., Ltd. Corrosion-resistant member and electrostatic chuck device
US20210005480A1 (en) * 2019-07-01 2021-01-07 Ramesh Divakar Multi-zone silicon nitride wafer heater assembly having corrosion protective layer, and methods of making and using the same
WO2021229914A1 (en) * 2020-05-12 2021-11-18 日本イットリウム株式会社 Powder for film formation or sintering
JP7010445B1 (en) * 2020-05-12 2022-01-26 日本イットリウム株式会社 Powder for film formation or sintering
CN115443253A (en) * 2020-05-12 2022-12-06 日本钇股份有限公司 Powder for film formation or sintering
WO2022163150A1 (en) * 2021-01-26 2022-08-04 日本イットリウム株式会社 Sintered body
JPWO2022163150A1 (en) * 2021-01-26 2022-08-04
KR20230132767A (en) * 2021-01-26 2023-09-18 닛폰 이트륨 가부시키가이샤 sintered body

Also Published As

Publication number Publication date
JP3488373B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
JP3261044B2 (en) Components for plasma processing equipment
TWI695822B (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
JPH104083A (en) Anticorrosive material for semiconductor fabrication
JPH11157916A (en) Corrosion-resistant member
WO2015116455A1 (en) Chamber coatings
JPH1045461A (en) Corrosion resistant member
KR20070043670A (en) Corrosion resistant member
WO2008018956A2 (en) Coating composition, article, and associated method
JP3559426B2 (en) Corrosion resistant materials
JP3623054B2 (en) Components for plasma process equipment
JP2002226274A (en) Corrosion resistant ceramic material, method for manufacturing the same and product for manufacturing semiconductor
JP3706488B2 (en) Corrosion-resistant ceramic material
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
US6749930B2 (en) Corrosion-resistive members
JP2001151559A (en) Corrosion-resistant member
JP4012714B2 (en) Corrosion resistant material
EP1580294A1 (en) Corrosion-resistant member and process of producing the same
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2001148370A (en) Anti-corrosion and anti-plasma ceramic member
JP2003137648A (en) Member for plasma process system
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2005022971A (en) Member for plasma processing device
JP2003176170A (en) Discharge wall member for lamp
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2003119073A (en) Discharge wall member for lamp

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees