JP2000252260A - Plasma process equipment member and manufacture thereof - Google Patents

Plasma process equipment member and manufacture thereof

Info

Publication number
JP2000252260A
JP2000252260A JP5026099A JP5026099A JP2000252260A JP 2000252260 A JP2000252260 A JP 2000252260A JP 5026099 A JP5026099 A JP 5026099A JP 5026099 A JP5026099 A JP 5026099A JP 2000252260 A JP2000252260 A JP 2000252260A
Authority
JP
Japan
Prior art keywords
plasma
sintered body
ppm
hydroxyl group
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5026099A
Other languages
Japanese (ja)
Other versions
JP3540955B2 (en
Inventor
Hitoshi Matsunosako
等 松之迫
Yumiko Ito
裕見子 伊東
Shoji Kosaka
祥二 高坂
Masahiro Nakahara
正博 中原
Toshiyuki Hamada
敏幸 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05026099A priority Critical patent/JP3540955B2/en
Publication of JP2000252260A publication Critical patent/JP2000252260A/en
Application granted granted Critical
Publication of JP3540955B2 publication Critical patent/JP3540955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve yield in manufacturing a semiconductor and to manufacture a semiconductor element of high quality by, in a high-density plasma wherein problem of occurrence of impurity contamination or particles exists and, preventing contamination or particles from occurring and providing a plasma- corrosion-resistance of longer period than a conventional material. SOLUTION: A high-purity SiO2 powder with purity 99.9% or above, content of hydroxyl group 5 ppm or below, and average particle size 5 μm or below is added with an organic binder to form a mold, which is oxidized in an oxidizing atmosphere at 600-900 deg.C, then sintered in vacuum or non-oxidizing atmosphere at 1300-1600 deg.C. Thus an SiO2 sintered body with content of hydroxyl group 5 ppm or below, 2.15 g/cm3 density or above, and 200 ppm carbon content or below is provided, which is used as a plasma process equipment member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置用
部材、特にプラズマプロセスにおけるフォーカスリン
グ、クランプリング、ベルジャー、ドーム等のプラズマ
処理装置用部材及びその製造方法に関するものである。
The present invention relates to a member for a semiconductor manufacturing apparatus, and more particularly to a member for a plasma processing apparatus such as a focus ring, a clamp ring, a bell jar, and a dome in a plasma process, and a method of manufacturing the same.

【0002】[0002]

【従来技術】半導体素子や液晶などの高集積回路形成に
使用されるドライプロセスやプラズマコーティング等プ
ラズマの利用は近年急速に進んでいる。半導体における
プラズマプロセスとしては、フッ素系等のハロゲン系腐
食ガスがその反応性の高さから、気相成長、エッチング
やクリーニングに利用されている。
2. Description of the Related Art In recent years, the use of plasma, such as a dry process and plasma coating, used for forming highly integrated circuits such as semiconductor elements and liquid crystals has been rapidly progressing. As a plasma process in a semiconductor, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning due to its high reactivity.

【0003】これら腐食性ガスに接触する部材は、高い
耐食性とともに非処理物を汚染したりパーティクルの原
因となる不純物を極力含有しないことが要求される。従
来から被処理物以外のこれらプラズマに接触する部材
は、一般にガラスや石英などのSiO2 を主成分とする
材料の他、ステンレス、モネル等の金属が多用されてい
る。
[0003] The members which come into contact with these corrosive gases are required to have high corrosion resistance and contain as little impurities as possible which contaminate non-processed materials or cause particles. In the past, members other than the object to be treated that come into contact with the plasma generally use metals such as stainless steel and Monel in addition to materials mainly containing SiO 2 such as glass and quartz.

【0004】また、半導体製造時において、ウェハを支
持固定するサセプタ材としてアルミナ焼結体、サファイ
ア、AlNの焼結体、又はこれらをCVD法等により表
面被覆したものが耐食性に優れるとして使用されてい
る。また、グラファイト、窒化硼素をコーティングした
ヒーター等も使用されている。
In the manufacture of semiconductors, as a susceptor material for supporting and fixing a wafer, a sintered body of alumina, sapphire, or a sintered body of AlN, or a surface-coated body thereof by a CVD method or the like has been used as having excellent corrosion resistance. I have. Further, a heater coated with graphite or boron nitride is also used.

【0005】一方で、半導体素子の集積度をあげるため
に高密度プラズマの利用が進み、特に絶縁膜の加工プロ
セスではこれら部材に対して更なる高純度化、ノンパー
ティクル化が求められている。
On the other hand, the use of high-density plasma has been advanced in order to increase the degree of integration of semiconductor elements. In particular, in the process of processing an insulating film, these members are required to have higher purity and non-particles.

【0006】[0006]

【発明が解決しようとする課題】アルミナ、AlNの焼
結体やコーティング材は、フッ素系ガスに対して耐食性
に優れるものの、高温でプラズマと接すると腐食が徐々
に進行して焼結体の表面から結晶粒子の脱粒が生じた
り、プラズマとの反応生成物が析出、剥離してパーティ
クル発生の原因になるという問題が起きている。
The sintered body and coating material of alumina and AlN have excellent corrosion resistance to fluorine-based gas, but when they come into contact with plasma at high temperature, the corrosion gradually progresses and the surface of the sintered body is coated. There is a problem that crystal grains are dislodged from the particles, and a reaction product with plasma precipitates and separates, causing particles to be generated.

【0007】このようなパーティクルの発生は、半導体
の高集積化、プロセスの更なるクリーン化に伴い、イオ
ン衝撃や気相で反応生成したごく微細なパーティクルに
よってメタル配線の断線、パターンの欠陥等により、素
子特性の劣化や歩留まりの低下等の不具合を発生する恐
れが生じている。
[0007] The generation of such particles is caused by ion bombardment or breakage of metal wiring due to extremely fine particles produced by reaction in the gas phase due to higher integration of semiconductors and further cleanliness of the process. In addition, there is a possibility that problems such as deterioration of element characteristics and yield may occur.

【0008】これら材料と比較して、従来から使用され
ている石英ガラスを初めとするシリコン化合物材料が、
プラズマ中の耐食性は不充分ながらコンタミやパーティ
クルを発生しにくいため半導体製造装置用の構造材料と
して注目されている。特に石英材料は不良発生原因とな
る不純物の低減が比較的容易であり、用途によって様々
な特性を持つ材料が広く利用されている。
In comparison with these materials, conventionally used silicon compound materials such as quartz glass are
Although corrosion resistance in plasma is insufficient, contamination and particles are hardly generated, so that it is attracting attention as a structural material for semiconductor manufacturing equipment. In particular, quartz materials are relatively easy to reduce impurities that cause defects, and materials having various characteristics are widely used depending on applications.

【0009】特に耐熱性構造材料としてのSiO2 系材
料は、耐熱性と高純度を兼ね備えた材料として古くから
幅広い用途で利用されてきた。特に炉心管、ベルジャー
として高温での変形を防止し機械的強度を高めるため以
下のような発明が提案されている。特許第167868
6号公報では、結晶質石英粉と非晶質石英粉の混合成形
体をガラス化せずに焼結し、結晶質石英焼結体を得るこ
とができ、特開平1−126238号公報では石英ガラ
ス部材の表面に核形成剤を塗布して熱処理し、表面をク
リストバライト結晶で被覆する方法が記載されている。
In particular, SiO 2 -based materials as heat-resistant structural materials have long been used in a wide range of applications as materials having both heat resistance and high purity. In particular, the following inventions have been proposed for the core tube and bell jar in order to prevent deformation at high temperature and increase mechanical strength. Patent No. 167868
In Japanese Patent Application Laid-Open No. 1-126238, a mixed molded product of crystalline quartz powder and amorphous quartz powder can be sintered without vitrification to obtain a crystalline quartz sintered body. A method is described in which a nucleating agent is applied to the surface of a glass member, heat-treated, and the surface is coated with cristobalite crystals.

【0010】しかし、上記従来の石英ガラス材料は、プ
ラズマに対する耐食性が低下するという問題があった。
また一方で、これらの石英ガラス材料中でクリストバラ
イト化が進行し、非晶質相の中に無秩序にクリストバラ
イトの結晶が生成し、非晶質との熱膨張差によりクラッ
クを発生させ、フッ素或いは塩素等のプラズマに接する
とこのクラックを起点としてエッチングが急激に進行す
るという問題が生じていた。
[0010] However, the above-mentioned conventional quartz glass material has a problem that corrosion resistance to plasma is reduced.
On the other hand, cristobalite formation progresses in these quartz glass materials, cristobalite crystals are randomly generated in the amorphous phase, and cracks are generated due to the difference in thermal expansion from the amorphous phase, resulting in fluorine or chlorine. And the like, there is a problem that the etching proceeds rapidly from this crack as a starting point.

【0011】[0011]

【課題を解決するための手段】本発明者らは、半導体の
プラズマプロセスに利用されるSiO2 系材料につい
て、フッ素系及び塩素系腐食ガス、プラズマ、酸素プラ
ズマに対する耐食性の向上について検討を行った。その
結果、水酸基の低減によりプラズマに対する耐食性が向
上すること、また材料中のカーボン量を低減することに
より無秩序なクリストバライト結晶の生成を抑制できる
ため、それに伴う微細なクラックの発生を防止すること
により耐食性が向上するという知見を得た。
Means for Solving the Problems The present inventors have studied the improvement of the corrosion resistance of a SiO 2 -based material used in a semiconductor plasma process to fluorine-based and chlorine-based corrosive gases, plasma and oxygen plasma. . As a result, the corrosion resistance to plasma is improved by reducing the number of hydroxyl groups, and the generation of disordered cristobalite crystals can be suppressed by reducing the amount of carbon in the material. Was found to be improved.

【0012】また、このような特性の材料は、水酸基の
少ない高純度微粒原料を成形後、空気中で600〜90
0℃酸化処理後、1300〜1600℃で真空或いは非
酸化雰囲気中で溶融させることなく焼成することによ
り、緻密でプラズマに対する耐食性に優れたSiO2
焼結体を、得られることを見出した。
A material having such characteristics can be obtained by molding a high-purity fine-particle raw material having a small number of hydroxyl groups, and then forming the raw material in air at 600 to 90%.
After oxidizing at 0 ° C. and firing at 1300 to 1600 ° C. in a vacuum or a non-oxidizing atmosphere without melting, a dense SiO 2 sintered body having excellent plasma corrosion resistance was found to be obtained.

【0013】即ち、本発明のプラズマ処理装置用部材
は、水酸基の含有率が5ppm以下である密度2.15
g/cm3 以上のSiO2 焼結体からなり、カーボン含
有量が200ppm以下のSiO2 焼結体からなること
を特徴とする。また、かかる焼結体は、実質的に非晶質
相のみからなることが望ましい。
That is, the member for a plasma processing apparatus of the present invention has a density of 2.15 having a hydroxyl group content of 5 ppm or less.
consists g / cm 3 or more SiO 2 sintered body, the carbon content is characterized by comprising the following SiO 2 sintered body 200 ppm. Further, such a sintered body is desirably substantially composed of only an amorphous phase.

【0014】また、上記部材の製造方法としては、純度
99.9%以上、水酸基の含有率が5ppm以下、平均
粒径5μm以下のSiO2 粉末に有機バインダーを添加
し成形した成形体を酸化性雰囲気中にて600〜900
℃で酸化処理した後、真空あるいは非酸化雰囲気中にて
1300〜1600℃で焼成することにより、かかるS
iO2 質焼結体を得ることを特徴とするものである。
Further, as a method for producing the above-mentioned member, a molded product obtained by adding an organic binder to SiO 2 powder having a purity of 99.9% or more, a hydroxyl group content of 5 ppm or less, and an average particle size of 5 μm or less is formed by oxidizing. 600-900 in atmosphere
After oxidizing at 1300C, firing at 1300 to 1600C in a vacuum or non-oxidizing atmosphere provides
An iO 2 -based sintered body is obtained.

【0015】[0015]

【発明の実施の形態】本発明のプラズマ処理装置用部材
は、半導体のプラズマプロセスで利用されるフッ素系及
び塩素系等のハロゲン系の腐食ガスまたはプラズマや、
2 、Arプラズマに曝される部材であり、フッ素系ガ
スとしては、SF6 、CF4 、CHF3 、ClF3 、H
F等が、また塩素系ガスとしては、Cl2 、BCl3
HCl等が挙げられ、これらのガスが導入された雰囲気
にマイクロ波や高周波等を導入するとこれらのガスがプ
ラズマ化される。
BEST MODE FOR CARRYING OUT THE INVENTION A member for a plasma processing apparatus according to the present invention includes a halogen-based corrosive gas or plasma such as a fluorine-based or chlorine-based gas used in a semiconductor plasma process.
The member is exposed to O 2 and Ar plasma, and the fluorine-based gas includes SF 6 , CF 4 , CHF 3 , ClF 3 , H
F, etc., and chlorine-based gases such as Cl 2 , BCl 3 ,
HCl and the like. When a microwave, a high frequency, or the like is introduced into an atmosphere in which these gases are introduced, these gases are turned into plasma.

【0016】本発明では、このようなハロゲン系の腐食
ガスあるいはそのプラズマや、O2、Arプラズマに少
なくとも表面が曝される部位をSiO2 焼結体によって
構成するものである。
In the present invention, at least a portion of the surface exposed to such a halogen-based corrosive gas or its plasma, O 2 , or Ar plasma is formed of a SiO 2 sintered body.

【0017】また、本発明によれば、焼結体中に含まれ
る水酸基含有率を5ppm以下、特に1ppm以下とす
ることでプラズマに対する耐食性を向上することが可能
となる。従って、水酸基含有率が5ppmを越えると、
プラズマに対する耐食性が急激に低下する。なお、1p
pmまでは、プラズマに対する耐食性は徐々に向上する
ものの、水酸基を1ppm未満に低減してもエッチング
率に有意差は見られない。
According to the present invention, the corrosion resistance to plasma can be improved by setting the content of the hydroxyl group contained in the sintered body to 5 ppm or less, particularly 1 ppm or less. Therefore, when the hydroxyl group content exceeds 5 ppm,
Corrosion resistance to plasma is sharply reduced. In addition, 1p
Up to pm, although the corrosion resistance to plasma gradually increases, no significant difference is seen in the etching rate even if the hydroxyl group is reduced to less than 1 ppm.

【0018】なお、水酸基の含有率(X)は、波長2.
60μmおよび2.73μmの赤外線の透過率を測定
し、Lambert−Beerの式に基づき、下記数1
によって算出することができる。
Incidentally, the content (X) of the hydroxyl group is calculated at a wavelength of 2.
The transmittance of infrared rays of 60 μm and 2.73 μm was measured, and based on the Lambert-Beer equation,
Can be calculated by

【0019】[0019]

【数1】 (Equation 1)

【0020】本発明でいう水酸基含有率とは、上記測定
より算出される固体内のOH基濃度であり、バルク全体
に分布するOH基の平均濃度を示す。
The hydroxyl group content referred to in the present invention is the OH group concentration in a solid calculated from the above measurement, and indicates the average concentration of OH groups distributed throughout the bulk.

【0021】また、本発明によれば、焼結体中に無秩序
に生成するクリストバライト結晶による微細なクラック
の発生を低減することが重要である。これは、通常の石
英ガラス部材では表面にプラズマ、特に腐食性の強いハ
ロゲン系プラズマが接触した場合、このような微細な欠
陥に反応性の高いラジカルが集中することによって、こ
れを起点とするエッチングが進行し、耐食性が劣化する
という問題が生じていた。
Further, according to the present invention, it is important to reduce the occurrence of fine cracks due to cristobalite crystals randomly generated in the sintered body. This is because, in the case of ordinary quartz glass members, when plasma, particularly highly corrosive halogen-based plasma comes into contact with the surface, radicals having high reactivity are concentrated on such fine defects, so that etching starting from this is started. And the corrosion resistance deteriorates.

【0022】本発明によれば、このような微細なクラッ
クの発生を焼結体中に含まれるカーボン量を200pp
m以下、特に100ppm以下、さらには80ppm以
下に制御することによって、クリストバライトへの結晶
化を抑制することができる。このカーボン量が200p
pmよりも多いとクリストバライト結晶の生成による微
細クラックの量が増大し、耐食性が低下する。
According to the present invention, the occurrence of such fine cracks is reduced by reducing the amount of carbon contained in the sintered body to 200 pp.
By controlling the concentration to not more than m, particularly not more than 100 ppm, and more preferably not more than 80 ppm, crystallization to cristobalite can be suppressed. This carbon amount is 200p
If it is more than pm, the amount of fine cracks due to the formation of cristobalite crystals increases, and the corrosion resistance decreases.

【0023】また、本発明によれば、SiO2 質焼結体
の密度が2.15g/cm3 以上、特に2.20g/c
3 以上であることも重要である。これは、密度が2.
15g/cm3 よりも低いと、緻密化不足のため存在す
るボイドを起点とした腐食により耐食性が低下するため
である。
Further, according to the present invention, the density of the SiO 2 sintered body is not less than 2.15 g / cm 3 , especially 2.20 g / c 3.
It is also important that it is at least m 3 . This means that the density is 2.
If it is lower than 15 g / cm 3, the corrosion resistance is reduced due to corrosion originating from the existing void due to insufficient densification.

【0024】上記SiO2 焼結体を製造する方法として
は、水酸基含有率5ppm以下、平均粒径5μm以下の
高純度でSiO2 粉末を使用する。このようなSiO2
粉末は、天然では得られず、ほとんど工業的に合成され
るものである。この原料中の水酸基は合成後の処理によ
って除去することが困難なため、水酸基含有率の低い焼
結体を得るためには原料中の水酸基量を極力無くする必
要がある。
As a method for producing the above-mentioned SiO 2 sintered body, high-purity SiO 2 powder having a hydroxyl group content of 5 ppm or less and an average particle size of 5 μm or less is used. Such SiO 2
Powders are not obtained naturally, but are almost industrially synthesized. Since it is difficult to remove the hydroxyl groups in the raw material by a post-synthesis treatment, it is necessary to minimize the amount of hydroxyl groups in the raw material in order to obtain a sintered body having a low hydroxyl group content.

【0025】この水酸基含有率を低減するには、例えば
酸化可能な珪素化合物をレーザー加熱により酸素ガスと
反応させる方法(特公昭53−2443号公報)、水素
雰囲気で加熱処理する方法(特開平5−254859号
公報)等を行えばよい。
In order to reduce the hydroxyl group content, for example, a method of reacting an oxidizable silicon compound with oxygen gas by laser heating (Japanese Patent Publication No. 53-2443) or a method of performing heat treatment in a hydrogen atmosphere (Japanese Patent Laid-Open No. No. 254859).

【0026】なお、SiO2 粉末の平均粒径が5μmよ
りも大きいと、緻密化するために必要な焼成温度を融点
近くまで上昇させる必要があり、その場合、粉末が溶融
して全体がガラス化するため、本発明の焼結体が得られ
ない。このSiO2 粉末は、平均粒径が1μm以下の原
料を使用すれば、融点よりも100℃以上低い温度にて
溶融することなく緻密な焼結体を作製することができ
る。
If the average particle size of the SiO 2 powder is larger than 5 μm, it is necessary to raise the firing temperature required for densification to near the melting point. In this case, the powder melts and the whole becomes vitrified. Therefore, the sintered body of the present invention cannot be obtained. If a raw material having an average particle size of 1 μm or less is used as the SiO 2 powder, a dense sintered body can be produced without melting at a temperature lower than the melting point by 100 ° C. or more.

【0027】SiO2 原料粉末の合成法としては、結果
として前述したような特性を有するSiO2 粉末を得ら
れるのであればどのような方法でも構わないが、水酸基
含有率の少ない微粉末を得るという点からすると、Si
Cl4 の高温加水分解法、酸素或いは酸素、Ar混合プ
ラズマ中で反応させるプラズマ法、高純度金属Si粉末
を酸化気流中で燃焼させる方法、珪酸アルコキシドを原
料とするゾルゲル法等が望ましい。
Examples of the synthesis of SiO 2 raw material powder, that although it may be any method as long as obtain a SiO 2 powder having a characteristic as described above as a result, a less fine powder having a hydroxyl group content From the point of view, Si
Desirable are a high-temperature hydrolysis method of Cl 4 , a plasma method in which oxygen or a mixture of oxygen and Ar is reacted in a plasma, a method of burning high-purity metal Si powder in an oxidizing gas stream, and a sol-gel method using silicate alkoxide as a raw material.

【0028】次に上記粉末を用いて、所定形状に成形す
る。成形法としては、目的とする部材の形状に合わせ適
当な成形方法を選択して構わない。また、必要に応じて
有機バインダーを加えても構わない。具体的には金型プ
レス成形、等方静水圧プレス成形等の乾式成形法、鋳込
み成形、押し出し成形、射出成形等の湿式成形法のいず
れも利用できる。なお、湿式にて解砕、粉砕等を行う場
合、溶媒は特に限定しないが、例えば水を利用しても焼
結体の水酸基含有率には何ら影響しない。
Next, the powder is molded into a predetermined shape. As the molding method, an appropriate molding method may be selected according to the shape of the target member. Further, an organic binder may be added as needed. Specifically, any of dry molding methods such as mold press molding and isotropic isostatic press molding, and wet molding methods such as cast molding, extrusion molding and injection molding can be used. In the case of performing crushing, pulverization, and the like in a wet manner, the solvent is not particularly limited, but, for example, the use of water does not affect the hydroxyl group content of the sintered body at all.

【0029】このようにして成形したSiO2 成形体
を、大気など酸化性雰囲気中において、600〜900
℃、好ましくは650〜850℃、より好ましくは70
0〜800℃の温度で有機バインダーの熱分解によって
生じた残留カーボンを200ppm以下のレベルまで酸
化分解除去する。この時の温度が600℃よりも低いと
残留カーボンの酸化除去が不十分となりカーボン量を2
00ppm以下に低減できない。また800℃を超える
と水酸基の含有量が5ppmを超えてしまう。
The SiO 2 compact thus formed is placed in an oxidizing atmosphere such as the air at 600 to 900
° C, preferably 650-850 ° C, more preferably 70 ° C.
At a temperature of 0 to 800 ° C., residual carbon generated by thermal decomposition of the organic binder is oxidatively removed to a level of 200 ppm or less. If the temperature at this time is lower than 600 ° C., the residual carbon is insufficiently oxidized and removed, and the amount of carbon is reduced to 2%.
It cannot be reduced to less than 00 ppm. On the other hand, when the temperature exceeds 800 ° C., the content of the hydroxyl group exceeds 5 ppm.

【0030】そして、上記のようにカーボン量を低減し
た成形体を真空あるいは非酸化雰囲気中にて1300〜
1600℃、より好ましくは1350〜1450℃の温
度で焼成することにより、密度2.15g/cm3
上、特に2.20g/cm3 以上の焼結体を作製するこ
とができる。
Then, the compact having the reduced amount of carbon as described above is placed in a vacuum or in a non-oxidizing atmosphere at 1300-1000.
1600 ° C., more preferably by firing at a temperature of 1350 to 1450 ° C., density 2.15 g / cm 3 or more, in particular to produce 2.20 g / cm 3 or more sintered body.

【0031】焼結体中の水酸基含有率を低減するには、
0.2torr以下の真空中で焼成することが効果的で
あるが、Ar、N2 、H2 とArの混合ガス等の非酸化
雰囲気中でも水酸基含有率5ppm以下は達成可能であ
る。
In order to reduce the hydroxyl group content in the sintered body,
It is effective to bake in a vacuum of 0.2 torr or less, but a hydroxyl group content of 5 ppm or less can be achieved even in a non-oxidizing atmosphere such as a mixed gas of Ar, N 2 , H 2 and Ar.

【0032】これに対し、焼成を空気中等の酸化雰囲気
中で行った場合、焼結体中の水酸基含有率が5ppmを
超えてしまい、目的のSiO2 質焼結体を作製すること
は不可能である。
On the other hand, when firing is performed in an oxidizing atmosphere such as air, the content of hydroxyl groups in the sintered body exceeds 5 ppm, and it is impossible to produce a target SiO 2 -based sintered body. It is.

【0033】なお、焼成温度が1300℃より低いと焼
結性が低下するため、目的とするSiO2 質焼結体が得
られない。また、1600℃より高いと溶融し全体がガ
ラス化して形状を保てなくなる。従って、焼成温度を1
300〜1600℃、温度範囲に限定することにより、
緻密なSiO2 焼結体を得ることができる。
If the sintering temperature is lower than 1300 ° C., the desired sinterability is deteriorated, and the desired SiO 2 sintered body cannot be obtained. On the other hand, if the temperature is higher than 1600 ° C., the material is melted and vitrified as a whole, and the shape cannot be maintained. Therefore, the firing temperature is set to 1
By limiting the temperature range to 300 to 1600 ° C,
A dense SiO 2 sintered body can be obtained.

【0034】[0034]

【実施例】以下に本発明の実施例について具体的に説明
する。水酸基含有率、平均粒径、純度の異なる合成Si
2 粉末原料を用いて焼結体を作製し、物性を評価し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. Synthetic Si with different hydroxyl content, average particle size and purity
A sintered body was prepared using the O 2 powder raw material, and the physical properties were evaluated.

【0035】焼結体の作製方法は、まず超純水を溶媒と
してボールミルにて原料を湿式解砕し、有機バインダー
としてパラフィンワックスを添加してスラリーを作製し
た。メディアとしては高純度SiO2 ボールを用いた。
このスラリーをスプレードライにて造粒した原料粉体を
0.8ton/cm2 の荷重で金型プレスにて成形し、
この成形体を表1に示す条件で5時間大気中で脱脂処理
した。
First, the raw material was wet-crushed with a ball mill using ultrapure water as a solvent, and paraffin wax was added as an organic binder to prepare a slurry. High-purity SiO 2 balls were used as media.
The raw material powder obtained by granulating this slurry by spray drying is molded with a mold press under a load of 0.8 ton / cm 2 ,
This molded body was degreased in the air for 5 hours under the conditions shown in Table 1.

【0036】このようにして作製した脱脂体を、真空度
0.1torr、1400〜1580℃の温度範囲で真
空焼成し、得られたSiO2 焼結体について各種特性を
測定した。さらに、これら脱脂体をH2 +Ar雰囲気注
又は大気中にて1400℃で焼成し、得られた焼結体に
ついても同様の測定を行った。
The degreased body thus produced was baked in a vacuum at a degree of vacuum of 0.1 torr and a temperature range of 1400 to 1580 ° C., and various characteristics of the obtained SiO 2 sintered body were measured. Further, these degreased bodies were baked at 1400 ° C. in an H 2 + Ar atmosphere or in the air, and the same measurement was performed on the obtained sintered bodies.

【0037】特性評価は、以下の項目について行った。
焼結体密度は、嵩密度をアルキメデス法にて測定した。
焼結体中の水酸基含有率は前記数1に従った。
The characteristics were evaluated for the following items.
The sintered body density was determined by measuring the bulk density by the Archimedes method.
The hydroxyl group content in the sintered body was in accordance with the above equation (1).

【0038】焼結体の結晶相は、X線回折にて測定し非
晶質相とクリストバライト結晶相の強度比にて判断し
た。焼結体最表面の結晶相については、焼き肌面に薄膜
X線回折法を適用し、焼結体内部については焼結体の中
心部を切り出して粉砕し、粉末X線法にて測定した。ま
た、焼結体の破断面を走査型電子顕微鏡によって観察
し、平均粒径を求めた。
The crystal phase of the sintered body was measured by X-ray diffraction and judged based on the intensity ratio between the amorphous phase and the cristobalite crystal phase. The crystal phase on the outermost surface of the sintered body was measured by a thin-film X-ray diffraction method applied to the surface of the sintered body, and the center of the sintered body was cut out and ground for the inside of the sintered body, and measured by a powder X-ray method. . Further, the fracture surface of the sintered body was observed with a scanning electron microscope to determine the average particle size.

【0039】焼結体の耐プラズマ性については、直径が
220mmの焼結体を作製して試料とし、CF4 +O2
のフッ素プラズマに室温で曝し、エッチング率とパーテ
ィクルの有無を調査した。エッチング条件は、圧力10
Pa、RF出力1kW、プラズマ照射時間を3時間とし
た。エッチング率はテスト前後の重量変化から算出し、
パーティクルについては、エッチング後、試料のプラズ
マ照射面に8インチのSiウェハを載せた後、ウェハの
接触面の凹凸をレーザー散乱によって検出し、パーティ
クルカウンタにて0.3μm以上のパーティクル個数を
計測した。結果を表1に示す。
Regarding the plasma resistance of the sintered body, a sintered body having a diameter of 220 mm was prepared and used as a sample, and CF 4 + O 2
At room temperature to examine the etching rate and the presence or absence of particles. Etching conditions are pressure 10
Pa, RF output was 1 kW, and plasma irradiation time was 3 hours. The etching rate is calculated from the weight change before and after the test,
For particles, after etching, an 8-inch Si wafer was placed on the plasma-irradiated surface of the sample, and the unevenness of the contact surface of the wafer was detected by laser scattering, and the number of particles of 0.3 μm or more was measured by a particle counter. . Table 1 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】表1の結果によれば、真空焼成にて作製し
た試料No.1〜16のうち、試料No.6は原料の水酸
基含有率が50ppmであり、焼結体中にも5ppmを
越える水酸基が存在する結果、プラズマに対する耐食性
が低下した。
According to the results shown in Table 1, of the samples Nos. 1 to 16 produced by vacuum firing, the sample No. In No. 6, the raw material had a hydroxyl group content of 50 ppm, and as a result of the presence of hydroxyl groups exceeding 5 ppm in the sintered body, the corrosion resistance to plasma was lowered.

【0042】試料No.7は、酸化処理温度が600℃
よりも低いため、残炭成分の酸化分解が不十分で焼成後
のC量は0.08重量%と多い。そのため、焼結中体に
はカーボンを核とする多くのクリストバライトの結晶が
生成し、非晶質相との熱膨張差によるマイクロクラック
が発生した。このため水酸基含有量は低いものの耐食性
は比較的に低い。
Sample No. 7 is an oxidation treatment temperature of 600 ° C.
Therefore, the oxidative decomposition of the residual carbon component is insufficient, and the C content after firing is as large as 0.08% by weight. Therefore, many cristobalite crystals having carbon as a nucleus were generated in the sintered body, and microcracks occurred due to a difference in thermal expansion from the amorphous phase. For this reason, although the hydroxyl group content is low, the corrosion resistance is relatively low.

【0043】試料No.12は、酸化処理温度が900
℃より高いため、焼結体中の水酸基含有率が20ppm
を超えたため耐食性が低下した。
Sample No. 12 is an oxidation treatment temperature of 900
℃, the hydroxyl content in the sintered body is 20ppm
, The corrosion resistance decreased.

【0044】試料No.17〜22は、H2 +Ar気流
中にて1400℃で焼成した。試料No.22は原料の
水酸基含有率が20ppmを越えており、焼結体中にも
5ppmを越える水酸基が存在する結果、プラズマに対
する耐食性が低下した。
Sample No. Nos. 17 to 22 were fired at 1400 ° C. in an H 2 + Ar gas stream. Sample No. Sample No. 22 had a raw material hydroxyl group content exceeding 20 ppm, and the presence of a hydroxyl group exceeding 5 ppm in the sintered body resulted in a decrease in corrosion resistance to plasma.

【0045】試料No.23、大気中にて1400℃の
温度で焼成した。この場合原料中の水酸基含有率が低い
にも関わらず焼結体中には200ppmを越える水酸基
が検出された。その結果エッチング率が増加した。
Sample No. 23. Baking at a temperature of 1400 ° C. in the atmosphere. In this case, although the hydroxyl group content in the raw material was low, hydroxyl groups exceeding 200 ppm were detected in the sintered body. As a result, the etching rate increased.

【0046】本発明による試料No.1〜5、8〜1
1、13〜15、17〜21は、いずれも密度2.15
g/cm3 以上の緻密なSiO2 焼結体であり、水酸基
含有率が5ppm以下、含有されるカーボン量が200
ppm以下であることから、焼結体中のカーボンを核と
する無秩序なクリストバライト化が抑制され、結果とし
て、微細クラックを伴なう組織を撲滅できる。その結
果、プラズマに対する耐食性が従来の石英ガラス材料と
比較して大幅に向上している。
The sample Nos. 1-5, 8-1
1, 13 to 15 and 17 to 21 each have a density of 2.15.
g / cm 3 or more, a dense SiO 2 sintered body having a hydroxyl group content of 5 ppm or less and a carbon content of 200 ppm or less.
Since the content is not more than ppm, disordered cristobalite formation with carbon as a nucleus in the sintered body is suppressed, and as a result, a structure accompanied by fine cracks can be eliminated. As a result, the corrosion resistance to plasma is greatly improved as compared with the conventional quartz glass material.

【0047】[0047]

【発明の効果】以上詳述したように、本発明によれば半
導体製造装置用部材、特にプラズマプロセスにおけるプ
ラズマ処理装置用部材として所定のSiO2 焼結体を使
用することにより、特に不純物のコンタミやパーティク
ルの発生が問題となる高密度プラズマ中で、コンタミネ
ーションやパーティクルを発生せず、従来材料よりも長
時間のプラズマ耐食性を有するため、半導体製造の歩留
まり向上とともに高品質の半導体素子を作製することが
できる。
As described above in detail, according to the present invention, by using a predetermined sintered body of SiO 2 as a member for a semiconductor manufacturing apparatus, particularly a member for a plasma processing apparatus in a plasma process, contamination of impurities is particularly achieved. It does not generate contamination or particles in high-density plasma where the generation of particles and particles is a problem, and has a longer plasma corrosion resistance than conventional materials, thus improving the yield of semiconductor manufacturing and producing high-quality semiconductor devices. be able to.

フロントページの続き (72)発明者 中原 正博 鹿児島県国分市山下町1番1号 京セラ株 式会社国分工場内 (72)発明者 濱田 敏幸 鹿児島県国分市山下町1番1号 京セラ株 式会社国分工場内 Fターム(参考) 5F004 AA00 BB11 BB23 BB29 BB30 BC08 DA00 DA01 DA16 DA18 DA20 DA23 DA26 5F045 AA08 AC02 AC05 AC11 AC16 AF01 AF02 AF03 BB14 BB15 EB03 EC05 EF11 EH08 EM09Continued on the front page (72) Inventor Masahiro Nakahara 1-1, Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kokubu Plant of Kyocera Corporation (72) Inventor Toshiyuki Hamada 1-1, Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Corporation Kokubu F-term (reference) 5F004 AA00 BB11 BB23 BB29 BB30 BC08 DA00 DA01 DA16 DA18 DA20 DA23 DA26 5F045 AA08 AC02 AC05 AC11 AC16 AF01 AF02 AF03 BB14 BB15 EB03 EC05 EF11 EH08 EM09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水酸基含有率が5ppm以下、密度2.1
5g/cm3 以上、カーボン量が200ppm以下のS
iO2 焼結体からなることを特徴とするプラズマ処理装
置用部材。
(1) a hydroxyl group content of 5 ppm or less and a density of 2.1
S of 5 g / cm 3 or more and carbon amount of 200 ppm or less
A member for a plasma processing apparatus comprising an iO 2 sintered body.
【請求項2】実質的に非晶質相のみからなる請求項1記
載のプラズマ処理装置用部材。
2. The member for a plasma processing apparatus according to claim 1, wherein the member is substantially composed of only an amorphous phase.
【請求項3】純度99.9%以上、水酸基の含有率が5
ppm以下、平均粒径5μm以下の高純度SiO2 粉末
に有機バインダを添加し成形した成形体を酸化性雰囲気
中にて600〜900℃で酸化処理した後、真空中ある
いは非酸化雰囲気中にて1300〜1600℃で焼成す
ることを特徴とするプラズマ処理装置用部材の製造方
法。
3. The purity is 99.9% or more, and the content of hydroxyl groups is 5%.
ppm or less, high-purity SiO 2 powder having an average particle diameter of 5 μm or less, and an organic binder added thereto. The molded body is oxidized at 600 to 900 ° C. in an oxidizing atmosphere, and then in a vacuum or in a non-oxidizing atmosphere. A method for producing a member for a plasma processing apparatus, wherein the member is fired at 1300 to 1600 ° C.
JP05026099A 1999-02-26 1999-02-26 Member for plasma processing apparatus and method for manufacturing the same Expired - Fee Related JP3540955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05026099A JP3540955B2 (en) 1999-02-26 1999-02-26 Member for plasma processing apparatus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05026099A JP3540955B2 (en) 1999-02-26 1999-02-26 Member for plasma processing apparatus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000252260A true JP2000252260A (en) 2000-09-14
JP3540955B2 JP3540955B2 (en) 2004-07-07

Family

ID=12854020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05026099A Expired - Fee Related JP3540955B2 (en) 1999-02-26 1999-02-26 Member for plasma processing apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3540955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097722A (en) * 2003-08-25 2005-04-14 Tosoh Corp Corrosion resistant member, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097722A (en) * 2003-08-25 2005-04-14 Tosoh Corp Corrosion resistant member, and method for manufacturing the same

Also Published As

Publication number Publication date
JP3540955B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
JP2000001362A (en) Corrosion resistant ceramic material
JP4683783B2 (en) Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus
JP3103646B2 (en) Alumina veljer
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP3093897B2 (en) High purity alumina ceramics and method for producing the same
JP3623054B2 (en) Components for plasma process equipment
JP3793553B2 (en) Black SiO2 corrosion-resistant member and method for producing the same
JP4197050B1 (en) Ceramic member and corrosion resistant member
JP3540955B2 (en) Member for plasma processing apparatus and method for manufacturing the same
JP4641609B2 (en) Corrosion resistant material
JP2001151559A (en) Corrosion-resistant member
JP3769416B2 (en) Components for plasma processing equipment
JP4126461B2 (en) Components for plasma process equipment
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2000100732A (en) Part member for plasma treatment equipment and manufacture therefor
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP3732966B2 (en) Corrosion resistant material
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JP3077877B2 (en) Method for producing alumina sintered body
JP2007217218A (en) Yttria ceramic for plasma process apparatus and method for manufacturing the same
JPH0665629B2 (en) Ceramic material for semiconductor manufacturing apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20040122

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees