JP2002356345A - Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass - Google Patents

Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass

Info

Publication number
JP2002356345A
JP2002356345A JP2001166314A JP2001166314A JP2002356345A JP 2002356345 A JP2002356345 A JP 2002356345A JP 2001166314 A JP2001166314 A JP 2001166314A JP 2001166314 A JP2001166314 A JP 2001166314A JP 2002356345 A JP2002356345 A JP 2002356345A
Authority
JP
Japan
Prior art keywords
quartz glass
quarts glass
powder
yttrium
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001166314A
Other languages
Japanese (ja)
Inventor
Shinkichi Hashimoto
眞吉 橋本
Shuzo Mizutani
修三 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Tosoh Corp
Tohos SGM KK
Original Assignee
Tosoh Quartz Corp
Tosoh Corp
Tohos SGM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp, Tosoh Corp, Tohos SGM KK filed Critical Tosoh Quartz Corp
Priority to JP2001166314A priority Critical patent/JP2002356345A/en
Publication of JP2002356345A publication Critical patent/JP2002356345A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3411Yttrium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/36Doped silica-based glasses containing metals containing rare earth metals containing rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide quarts glass having both plasma corrosion resistance and good dispersibility of added elements while solving problems of conventional technology, a method for easily producing it, a quarts glass member utilizable for a semiconductor container, jig tools, a bell jar of a plasma etcher or the like, and apparatuses for producing semiconductor and liquid crystal provided with the member. SOLUTION: This method for producing anticorrosive quarts glass comprises the steps of mixing a solution of compounds containing aluminum and/or yttrium with silica powder, and after stirring, holding the mixed solution at 60 to 130 deg.C to gradually evaporate the solvent, raising temperature to 300 to 500 deg.C under oxidative atmosphere to convert the compounds containing aluminum and/or yttrium into oxides, then cooling it to obtain calcined powder, and electrically fusing the obtained powder at a temperature of 1700 deg.C or above under reduced pressure to obtain the quarts glass. The member and the apparatus use the quarts glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ耐食性の
高い石英ガラスの製造方法に関する。更に詳しくは、プ
ラズマ耐食性のあるアルミニウムやイットリウムを石英
ガラスマトリックスの中に均一に分散することができる
ため、必要十分な添加量で効率よく耐プラズマ性を向上
させることができる。従って、半導体容器、治工具やこ
れを用いた半導体製造装置、液晶製造装置として利用で
きる。
The present invention relates to a method for producing quartz glass having high plasma corrosion resistance. More specifically, since aluminum or yttrium having plasma corrosion resistance can be uniformly dispersed in a quartz glass matrix, plasma resistance can be efficiently improved with a necessary and sufficient amount of addition. Therefore, it can be used as a semiconductor container, a jig, a semiconductor manufacturing apparatus and a liquid crystal manufacturing apparatus using the same.

【0002】[0002]

【従来の技術】従来、半導体製造装置、液晶製造装置な
どにはプラズマ反応装置が用いられている.これらの装
置のプラズマ発生部分には主として透明石英ガラスから
なるベルジャー、フォーカスリング等が使用される。こ
こで、フッ素系プラズマ例えば、CF4/O2プラズマに
対する耐性は十分とは言えない。これはフッ素ラジカル
によってシリカSiO2中のSiがSiF4の形で蒸発
し、消耗してしまうからである。
2. Description of the Related Art Conventionally, a plasma reactor has been used in a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus and the like. A bell jar, a focus ring, and the like mainly made of transparent quartz glass are used for a plasma generating portion of these apparatuses. Here, the resistance to fluorine-based plasma, for example, CF 4 / O 2 plasma is not sufficient. This is because Si in silica SiO 2 evaporates in the form of SiF 4 and is consumed by fluorine radicals.

【0003】そこで、耐プラズマ性を有する元素の酸化
物等を、シリカ粉末と乾式混合した後、融点以上の温度
で溶融することが考えられる(第1の方法)。また、石
英ガラス部材の表面にゾル・ゲル法等で表面修飾膜を形
成する方法が考えられる(第2の方法)。
Therefore, it is conceivable that an oxide of an element having plasma resistance is dry-mixed with silica powder and then melted at a temperature equal to or higher than the melting point (first method). Further, a method of forming a surface modification film on the surface of a quartz glass member by a sol-gel method or the like can be considered (second method).

【0004】[0004]

【発明が解決しようとする課題】前述の第1の方法は添
加元素の偏析が大きい。粉末同士の混合は静電気の発生
を伴うため、ミクロンオーダーで十分に混じることは期
待できない。また、混合に使う容器と粉末との長時間の
摩擦から原料中にコンタミが混じる虞れがある。このよ
うな、乾式混合処理した原料を焼成すると、生成した石
英ガラス中に空洞(ボイド)が発生しやすくなる。従っ
て、これを用いた耐プラズマテストは石英ガラスそのも
のの性能とほぼ同等ないしは若干劣る。これは、添加元
素の偏析が大きくなると、Siの原子価(4価)と添加
元素の原子価との食い違いからどの原子とも結合しない
酸素Oが生成される確率が大きくなることに起因すると
推定される。
The first method described above has a large segregation of added elements. Since mixing of powders involves generation of static electricity, it is not expected that they are sufficiently mixed in the order of microns. In addition, there is a possibility that contaminants may be mixed in the raw material due to a long-term friction between the container used for mixing and the powder. When the raw material subjected to such dry mixing treatment is fired, cavities (voids) are easily generated in the generated quartz glass. Therefore, the plasma resistance test using this is almost or slightly inferior to the performance of quartz glass itself. This is presumed to be due to the fact that when the segregation of the additional element increases, the probability of generation of oxygen O that is not bonded to any atom increases due to the discrepancy between the valence (tetravalence) of Si and the valence of the additional element. You.

【0005】他方、前述の第2のゾル・ゲル法による膜
形成は収縮率が50%程度で非常に大きくクラックが発
生しやすい。膜厚は1μm形成するのも容易なことでは
ない。更に、石英ガラスと表面修飾膜との線膨張係数が
約10倍異なるため界面にひずみがかかり、表面修飾膜
にクラックがはいりやすい。また、表面修飾膜は石英ガ
ラス無垢の場合に比較して約10倍の耐プラズマ性を有
するが、膜厚が薄いため長時間の使用には無理があると
いった問題があった。
On the other hand, in the film formation by the above-mentioned second sol-gel method, the shrinkage is about 50%, which is very large, and cracks are easily generated. It is not easy to form a film having a thickness of 1 μm. Furthermore, since the linear expansion coefficients of the quartz glass and the surface modification film are different from each other by about 10 times, a strain is applied to the interface, and the surface modification film is easily cracked. In addition, the surface modification film has about 10 times the plasma resistance as compared with the case of pure quartz glass, but has a problem that it is impossible to use for a long time because of its small thickness.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記課題に
鑑み、鋭意研究した結果、目的とする添加元素の良好な
分散性と耐プラズマ性を併せ持つ透明石英ガラスを得
て、本発明を完成するに至った。
Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies, and as a result, obtained a transparent quartz glass having both good dispersibility of the target additive element and plasma resistance, and developed the present invention. It was completed.

【0007】すなわち、石英ガラスマトリクス中への添
加元素としてアルミニウム(Al)及び/又はイットリ
ウム(Y)が有効であることを突き止めた。これらの添
加元素をシリカ粉末中に均一に介在させるのが望ましい
が、大別して湿式、乾式2通りの方法を検討した。石英
ガラスマトリックス中に目的とする添加物質を均一に分
散させるにはまず、乾式法で添加元素単体あるいはその
化合物、塩を充分に時間をかけて混合しても良い。すな
わち、シリカ粉末と添加物質を混合する際その添加物質
を含む乾燥した固体状物質とシリカ粉末を容器中に入れ
て密閉し、ポットミル回転台上で十分に混合すれば良
い。しかし、乾式法では静電気の影響や粉末の粒度分布
の影響があり、シリカ粉末と添加元素含有固体粉末は混
合状態に限度がある。
That is, it has been found that aluminum (Al) and / or yttrium (Y) are effective as an additive element in the quartz glass matrix. It is desirable that these additional elements be uniformly interposed in the silica powder, but roughly divided into wet and dry methods. In order to uniformly disperse the target additive substance in the quartz glass matrix, first, the additive element alone or the compound or salt thereof may be mixed by a sufficient time by a dry method. That is, when mixing the silica powder and the additive substance, the dried solid substance containing the additive substance and the silica powder may be put in a container, sealed, and sufficiently mixed on a pot mill rotating table. However, the dry method is affected by static electricity and the particle size distribution of the powder, and the mixing state of the silica powder and the solid powder containing the additive element is limited.

【0008】そこで、分散性を更に向上させる手段とし
て湿式法が有効であることが見出された。すなわち、シ
リカ粉末と添加物質を混合する際その添加物質を含む溶
液を調製し、この溶液をシリカ粉末に加えて浸漬後かく
拌し、シリカ粒子の周囲に添加物質をほぼ均一に行き渡
らせた後、この溶液をその沸点近くの温度で保持し、溶
媒をほぼ全量蒸発させた後、添加物質が酸化物になる温
度まで仮焼して、原料粉末を得る方法を本発明者は開発
した。ここで、添加物質を含む溶液としては添加物質の
リン酸塩、フッ化物塩、蓚酸塩、次亜塩素酸塩、塩化
物、硝酸塩または硫酸塩等の「塩」で良く、水溶性であ
ることが望ましい。この際、添加元素を溶液化するには
焼成後にその構成塩が残存しない硝酸塩、塩化物あるい
は硫酸塩が適合する。これらの塩は溶解熱が小さく安全
な取扱いが可能である。
Accordingly, it has been found that a wet method is effective as a means for further improving the dispersibility. That is, when mixing the silica powder and the additive substance, a solution containing the additive substance is prepared, and the solution is added to the silica powder, stirred after immersion, and after the additive substance is substantially uniformly distributed around the silica particles. The inventor has developed a method in which the solution is maintained at a temperature near its boiling point, the solvent is evaporated almost completely, and then calcined to a temperature at which the added substance becomes an oxide to obtain a raw material powder. Here, the solution containing the additive substance may be a “salt” such as a phosphate, a fluoride salt, an oxalate, a hypochlorite, a chloride, a nitrate or a sulfate of the additive substance, and be water-soluble. Is desirable. At this time, nitrates, chlorides or sulfates, whose constituent salts do not remain after firing, are suitable for forming a solution of the added element. These salts have low heat of dissolution and can be safely handled.

【0009】溶媒を蒸発させる温度としては60〜13
0℃の範囲が適用できるが、80〜90℃程度の温度で
長時間保持し、穏やかに(突沸が起こらないように)溶
媒を追い出すことが肝要である。「塩」の状態から酸化
物とするために酸化雰囲気中500〜1000℃で仮焼
すればよい。大気中で仮焼すれば充分であるが、酸素雰
囲気中で焼成すれば仮焼時間を短縮できる。
The temperature for evaporating the solvent is 60 to 13
Although the range of 0 ° C. can be applied, it is important to keep the temperature at about 80 to 90 ° C. for a long time and gently drive off the solvent (to prevent bumping). In order to convert the “salt” state into an oxide, calcination may be performed at 500 to 1000 ° C. in an oxidizing atmosphere. Calcination in the atmosphere is sufficient, but calcination in an oxygen atmosphere can shorten the calcination time.

【0010】このようにして、シリカ粒子の周囲を酸化
物が均一に取り囲んだ酸化物仮焼体ができる。
In this manner, an oxide calcined body in which the oxide uniformly surrounds the periphery of the silica particles is obtained.

【0011】これを真空引き・加圧可能な電気炉に装着
し、減圧下クリストバライトの融点以上で本焼する。こ
のようにして添加元素の分散状態の良好な石英ガラスが
得られる。ここで、添加物質の分散状態を確認するため
には、EPMA(X線マイクロアナライザー)等を利用
できる。
This is set in an electric furnace which can be evacuated and pressurized, and is fired under reduced pressure at a temperature equal to or higher than the melting point of cristobalite. In this way, a quartz glass having a good dispersion state of the additive element can be obtained. Here, EPMA (X-ray microanalyzer) or the like can be used to check the dispersion state of the additive substance.

【0012】シリカガラスマトリックスを形成する原料
としては、天然水晶粉末、合成シリカ粉末、ヒュームド
シリカ、あるいはスート等を用いることができる。天然
水晶粉末や合成シリカ粉末を用いる場合、その粒度は複
合石英ガラス中の添加元素の分散性に影響するが、粒度
範囲40〜430μm,最瀕値(mode)220μm
程度が一般的である。これは、充填性がよく、粉末が舞
いにくいからである。また、吸湿性も極少ない。ただ
し、分級して300μmアンダーかつ200μmアップ
(最瀕値260μm)あるいは、200μmアンダー
(最瀕値180μm)の粉末を用いればさらに添加元素
の分散性を制御できる。また、上記シリカ粉末を用いる
場合はポアのサイズや粉末の粒度分布が石英ガラス中の
添加元素の分散性に影響する。すなわち、均一でポア径
の小さなシリカ粉末、平均粒径の小さなシリカ粉末が有
利である。
As a raw material for forming the silica glass matrix, natural quartz powder, synthetic silica powder, fumed silica, soot or the like can be used. When natural quartz powder or synthetic silica powder is used, its particle size affects the dispersibility of the added element in the composite quartz glass, but the particle size range is 40 to 430 μm, and the mode (mode) is 220 μm.
The degree is common. This is because the filling property is good and the powder is hard to fly. Further, it has very little hygroscopicity. However, by using a powder having a size of 300 μm under and a 200 μm increase (most-needed value of 260 μm) or a 200 μm-under (most-needed value of 180 μm), the dispersibility of the additional element can be further controlled. When the above silica powder is used, the pore size and the particle size distribution of the powder affect the dispersibility of the added element in the quartz glass. That is, a silica powder having a uniform and small pore diameter and a silica powder having a small average particle diameter are advantageous.

【0013】このようにして得られる本発明の石英ガラ
スは製造時に公知の方法により目的の形状にあった石英
ガラス部材とすることもできる。
The quartz glass of the present invention thus obtained can be formed into a quartz glass member having a desired shape by a known method at the time of manufacture.

【0014】本発明のプラズマ耐食性石英ガラス部材は
プラズマ耐性に優れており、ハロゲン化合物及びそのプ
ラズマを利用した、半導体製造用装置や液晶製造装置の
容器、治工具、プラズマエッチャーのベルジャーに好適
に用いることができ、この部材を窓材等として備えた半
導体製造用装置や液晶製造装置は、プラズマ照射等によ
っても劣化することが少なく、長期間取り替えることな
く有効に用いることができる。
The plasma corrosion-resistant quartz glass member of the present invention has excellent plasma resistance, and is suitably used for containers for semiconductor manufacturing equipment and liquid crystal manufacturing equipment, jigs, and bell jars for plasma etchers using halogen compounds and their plasmas. A device for manufacturing semiconductors and a device for manufacturing liquid crystal having such a member as a window material or the like are hardly deteriorated by plasma irradiation or the like, and can be used effectively without replacement for a long period of time.

【0015】[0015]

【実施例】以下、実施例によって、本発明をさらに詳細
に説明するが、本発明はこれに限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0016】実施例1 原料として、表1の純度を有する石英(水晶)粉末(粒
度範囲40〜430μm、最瀕値=219μm)を使用
し(ふっ酸にて精製処理したもの)、これを223g秤
量した。
EXAMPLE 1 Quartz (quartz) powder having a purity shown in Table 1 (particle size range: 40 to 430 μm, most likely value = 219 μm) was used as a raw material (purified with hydrofluoric acid), and 223 g of this was used. Weighed.

【0017】[0017]

【表1】 [Table 1]

【0018】一方、硝酸アルミニウム九水和物(純度9
8.0%)を1.79g秤量した。また、硝酸イットリ
ウム六水和物(純度99.99%)を4.94g秤量し
た。これらの物質を150mlの超純水(比抵抗17M
Ω・cm)に溶解し、石英粉末と混合し、約1時間静置
した。この混合物を石英ボートに移し、大気中90℃で
8時間、続いて500℃で1時間仮焼した。この仮焼体
をXRD(X線回折)にかけたところ硝酸アルミニウム
九水和物は酸化アルミニウムAl23に、硝酸イットリ
ウム六水和物は酸化イットリウムY23に転化してい
た。仕込み原料中のアルミニウムの濃度は550ppm
(0.04原子%)、イットリウムの濃度は5000p
pmとした。この仮焼体はさらさらしていて粉砕の必要
はなかった。
On the other hand, aluminum nitrate nonahydrate (purity 9
(8.0%) was weighed 1.79 g. In addition, 4.94 g of yttrium nitrate hexahydrate (purity 99.99%) was weighed. These substances were mixed with 150 ml of ultrapure water (resistivity 17M).
Ω · cm), mixed with quartz powder, and allowed to stand for about 1 hour. This mixture was transferred to a quartz boat and calcined in the atmosphere at 90 ° C. for 8 hours, followed by 500 ° C. for 1 hour. The calcined body XRD aluminum nitrate nonahydrate was subjected to (X-ray diffraction) aluminum oxide Al 2 O 3, yttrium nitrate hexahydrate was converted to yttrium oxide Y 2 O 3. The concentration of aluminum in the raw material is 550ppm
(0.04 atomic%), the concentration of yttrium is 5000p
pm. The calcined body was smooth and did not need to be ground.

【0019】これを、高純度処理されたカーボンモール
ド内に充填した。仕込形状は直径φ90mm、高さ25
mmとした。これを、真空排気しつつ減圧下で電気溶融
した。常温〜1850℃まで5℃/分で昇温し、185
0℃を5分保持した後、窒素雰囲気下で炉冷した。生成
した複合石英ガラスについてEPMAでアルミニウムの
濃度,イットリウム濃度を定量したところ、変動係数は
10〜60であった。
This was filled in a carbon mold that had been subjected to a high-purity treatment. The preparation shape is diameter 90mm, height 25
mm. This was electromelted under reduced pressure while evacuating. The temperature is raised from room temperature to 1850 ° C. at a rate of 5 ° C./min.
After maintaining the temperature at 0 ° C. for 5 minutes, the furnace was cooled in a nitrogen atmosphere. When the aluminum concentration and the yttrium concentration of the produced composite quartz glass were quantified by EPMA, the coefficient of variation was 10 to 60.

【0020】この複合石英ガラスを切断してCF4/O2
系プラズマおよびBCl3/Cl2系プラズマに対するエ
ッチング耐性を確認したところ、無垢の石英ガラスより
良好であった。
The composite quartz glass is cut to obtain CF 4 / O 2
When the etching resistance to system plasma and BCl 3 / Cl 2 system plasma was confirmed, it was better than solid quartz glass.

【0021】比較例1 原料として、表1の純度を有する水晶粉末(粒度範囲4
0〜430μm、最瀕値=219μm)を使用した。こ
れを223g秤量した。
Comparative Example 1 Quartz powder having a purity shown in Table 1 (particle size range 4
0-430 [mu] m, most likely value = 219 [mu] m). 223 g of this was weighed.

【0022】一方、酸化アルミニウム(純度99.9
%)粉末を0.23g秤量した。また、酸化イットリウ
ム(純度99.9%)粉末を1.43g秤量した。仕込
み原料中のアルミニウムの濃度は550ppm(0.0
4原子%)、イットリウムの濃度は5000ppmとし
た。
On the other hand, aluminum oxide (purity 99.9)
%) 0.23 g of powder was weighed. In addition, 1.43 g of yttrium oxide (99.9% purity) powder was weighed. The concentration of aluminum in the charged raw material was 550 ppm (0.0
4 atomic%), and the concentration of yttrium was 5000 ppm.

【0023】これらの粉末をポリプロピレン製ポットに
入れ、ポットミル回転台上で4日間混合した。これを、
高純度処理されたカーボンモールド内に充填した。仕込
形状は直径φ90mm、高さ25mmとした。これを、
真空排気しつつ減圧下で電気溶融した。常温〜1850
℃まで5℃/分で昇温し、1850℃を5分保持した
後、窒素雰囲気下で炉冷した。生成した複合石英ガラス
についてEPMAでアルミニウムの濃度,イットリウム
濃度を定量したところ、変動係数は110〜150であ
った。
These powders were placed in a polypropylene pot and mixed on a pot mill rotary table for 4 days. this,
It was filled into a highly purified carbon mold. The charging shape was φ90 mm in diameter and 25 mm in height. this,
It was electromelted under reduced pressure while evacuating. Room temperature to 1850
The temperature was raised at a rate of 5 ° C./min to 1 ° C., the temperature was maintained at 1850 ° C. for 5 minutes, and the furnace was cooled in a nitrogen atmosphere. When the aluminum concentration and the yttrium concentration of the produced composite quartz glass were quantified by EPMA, the coefficient of variation was 110 to 150.

【0024】この複合石英ガラスを切断してCF4/O2
系プラズマおよびBCl3/Cl2系プラズマに対するエ
ッチング耐性を確認したところ、無垢の石英ガラスより
良好であった。
The composite quartz glass is cut to obtain CF 4 / O 2
When the etching resistance to system plasma and BCl 3 / Cl 2 system plasma was confirmed, it was better than solid quartz glass.

【0025】比較例2 原料として、表1の純度を有する水晶粉末(粒度範囲4
0〜430μm、最瀕値=219μm)を使用した。こ
れを223g秤量した。一方、酸化アルミニウム(純度
99.9%)を0.23g秤量した。また、酸化イット
リウム(純度99.9%)を1.43g秤量した。
Comparative Example 2 Quartz powder having a purity shown in Table 1 (particle size range 4
0-430 [mu] m, most likely value = 219 [mu] m). 223 g of this was weighed. On the other hand, 0.23 g of aluminum oxide (purity 99.9%) was weighed. In addition, 1.43 g of yttrium oxide (purity 99.9%) was weighed.

【0026】これらの粉末をポリプロピレン製ポットに
入れ、ポットミル回転台上で2時間混合した。これを、
高純度処理されたカーボンモールド内に充填した。仕込
形状は直径φ90mm、高さ25mmとした。これを、
真空排気しつつ減圧下で電気溶融した。常温〜1850
℃まで5℃/分で昇温し、1850℃を5分保持した
後、窒素雰囲気下で炉冷した。生成した複合石英ガラス
についてEPMAでアルミニウムAlの濃度,イットリ
ウムY濃度を定量したところ、変動係数は160〜20
0であった。
These powders were placed in a polypropylene pot and mixed on a pot mill rotary table for 2 hours. this,
It was filled into a highly purified carbon mold. The charging shape was φ90 mm in diameter and 25 mm in height. this,
It was electromelted under reduced pressure while evacuating. Room temperature to 1850
The temperature was raised at a rate of 5 ° C./min to 1 ° C., the temperature was maintained at 1850 ° C. for 5 minutes, and the furnace was cooled in a nitrogen atmosphere. When the concentration of aluminum Al and the concentration of yttrium Y in the produced composite quartz glass were determined by EPMA, the coefficient of variation was 160 to 20.
It was 0.

【0027】この複合石英ガラスを切断してCF4/O2
系プラズマおよびBCl3/Cl2系プラズマに対するエ
ッチング耐性を確認したところ、無垢の石英ガラス並み
であった。また、比較例1の場合より悪化した。
The composite quartz glass is cut to obtain CF 4 / O 2
When the etching resistance to the system plasma and the BCl 3 / Cl 2 system plasma was confirmed, it was as good as pure quartz glass. In addition, it was worse than in the case of Comparative Example 1.

【0028】以上から、添加元素を石英ガラス中に均一
に混合する場合、乾式法よりも湿式法のほうが分散性が
向上し、また耐プラズマ性も向上することがわかった。
From the above, it has been found that when the additive elements are uniformly mixed in the quartz glass, the wet method improves the dispersibility and the plasma resistance as well as the dry method.

【0029】[0029]

【発明の効果】本発明による製造法によって添加元素の
均一な分散状態を有する複合石英ガラスが得られる。ま
た、本発明による複合石英ガラスは耐プラズマ性が向上
する。従って、例えば、半導体製造用の治工具類、特に
反応管フランジ、ベルジャー等に利用される。また、耐
熱が必要とされる半導体製造装置や液晶製造装置の部品
としても有用となる。
According to the production method of the present invention, a composite quartz glass having a uniform dispersion state of the added element can be obtained. Further, the composite quartz glass according to the present invention has improved plasma resistance. Therefore, it is used, for example, for jigs and tools for manufacturing semiconductors, particularly for reaction tube flanges and bell jars. It is also useful as a component of a semiconductor manufacturing device or a liquid crystal manufacturing device requiring heat resistance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G062 AA18 BB02 CC04 DA08 DB02 DC01 DD01 DE01 DF01 EA02 EB02 EC02 ED01 EE02 EF01 EG01 FA01 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ02 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH04 HH05 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM04 MM12 MM23 MM31 NN34 ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4G062 AA18 BB02 CC04 DA08 DB02 DC01 DD01 DE01 DF01 EA02 EB02 EC02 ED01 EE02 EF01 EG01 FA01 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ02 FK01 FL01 GA01 GA01 GB01 H01 GD01 H01 GD01 HH07 HH09 HH11 HH12 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM04 MM12 MM23 MM31 NN34

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム及び/又はイットリウムを含
む化合物溶液をシリカ粉末と混ぜて攪拌した後、この混
合溶液を60〜130℃で保持し溶媒を徐々に蒸発さ
せ、酸化雰囲気下300〜500℃に昇温し、アルミニ
ウム及び/又はイットリウムを含む化合物を酸化物に転
換させた後、これを冷却して仮焼粉末を得、さらに得ら
れた粉末を減圧下1700℃以上の温度で電気溶融して
石英ガラスを得ることを特徴とする耐食性石英ガラスの
製造方法。
1. A compound solution containing aluminum and / or yttrium is mixed with silica powder and stirred. The mixed solution is maintained at 60 to 130 ° C., and the solvent is gradually evaporated to 300 to 500 ° C. in an oxidizing atmosphere. After raising the temperature to convert the compound containing aluminum and / or yttrium into an oxide, the resultant is cooled to obtain a calcined powder, and the obtained powder is electromelted at a temperature of 1700 ° C. or more under reduced pressure. A method for producing corrosion-resistant quartz glass, characterized by obtaining quartz glass.
【請求項2】化合物が塩であることを特徴とする請求項
1記載の石英ガラスの製造方法。
2. The method for producing quartz glass according to claim 1, wherein the compound is a salt.
【請求項3】化合物が塩化物、硝酸塩または硫酸塩であ
ることを特徴とする請求項1記載の石英ガラスの製造方
法。
3. The method according to claim 1, wherein the compound is chloride, nitrate or sulfate.
【請求項4】請求項1〜3のいずれかに記載の方法によ
り得られた石英ガラスからなる石英ガラス部材。
4. A quartz glass member comprising quartz glass obtained by the method according to claim 1.
【請求項5】半導体製造用容器、半導体製造用治工具又
はプラズマエッチャーのベルジャーに用いられる請求項
4記載の石英ガラス部材。
5. The quartz glass member according to claim 4, which is used for a container for semiconductor production, a jig for semiconductor production, or a bell jar for a plasma etcher.
【請求項6】請求項4又は請求項5記載の石英ガラス部
材を備えた半導体製造装置。
6. A semiconductor manufacturing apparatus comprising the quartz glass member according to claim 4.
【請求項7】請求項4又は請求項5記載の石英ガラス部
材を備えた液晶製造装置。
7. A liquid crystal manufacturing apparatus comprising the quartz glass member according to claim 4.
JP2001166314A 2001-06-01 2001-06-01 Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass Pending JP2002356345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001166314A JP2002356345A (en) 2001-06-01 2001-06-01 Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001166314A JP2002356345A (en) 2001-06-01 2001-06-01 Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass

Publications (1)

Publication Number Publication Date
JP2002356345A true JP2002356345A (en) 2002-12-13

Family

ID=19008863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001166314A Pending JP2002356345A (en) 2001-06-01 2001-06-01 Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass

Country Status (1)

Country Link
JP (1) JP2002356345A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097722A (en) * 2003-08-25 2005-04-14 Tosoh Corp Corrosion resistant member, and method for manufacturing the same
EP1681276A1 (en) * 2004-09-30 2006-07-19 Shin-Etsu Quartz Products Co., Ltd. Quartz glass excelling in plasma corrosion resistance and process for producing the same
WO2009017020A1 (en) * 2007-08-02 2009-02-05 Shin-Etsu Quartz Products Co., Ltd. Quartz glass member for plasma etching
JP2010524822A (en) * 2007-04-20 2010-07-22 アプライド マテリアルズ インコーポレイテッド Quartz with enhanced corrosion resistance used in plasma etch chambers
WO2022035111A1 (en) * 2020-08-11 2022-02-17 아이원스 주식회사 Plasma-resistant glass, and method for manufacturing same
KR20220020204A (en) * 2020-08-11 2022-02-18 아이원스 주식회사 Plasma resistant glass and manufacturing method the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220242A (en) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd Method of producing quartz glass and quartz glass
JP2002220251A (en) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd Quartz glass and method of manufacturing it
JP2002220257A (en) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd Quartz glass, quartz glass jig, and method of manufacturing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220242A (en) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd Method of producing quartz glass and quartz glass
JP2002220251A (en) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd Quartz glass and method of manufacturing it
JP2002220257A (en) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd Quartz glass, quartz glass jig, and method of manufacturing them

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097722A (en) * 2003-08-25 2005-04-14 Tosoh Corp Corrosion resistant member, and method for manufacturing the same
EP1681276A1 (en) * 2004-09-30 2006-07-19 Shin-Etsu Quartz Products Co., Ltd. Quartz glass excelling in plasma corrosion resistance and process for producing the same
EP1681276A4 (en) * 2004-09-30 2008-01-23 Shinetsu Quartz Prod Quartz glass excelling in plasma corrosion resistance and process for producing the same
US7365037B2 (en) 2004-09-30 2008-04-29 Shin-Etsu Quartz Products Co., Ltd. Quartz glass having excellent resistance against plasma corrosion and method for producing the same
US7661277B2 (en) 2004-09-30 2010-02-16 Shin-Etsu Quartz Products Co., Ltd. Quartz glass having excellent resistance against plasma corrosion and method for producing the same
JP2010524822A (en) * 2007-04-20 2010-07-22 アプライド マテリアルズ インコーポレイテッド Quartz with enhanced corrosion resistance used in plasma etch chambers
WO2009017020A1 (en) * 2007-08-02 2009-02-05 Shin-Etsu Quartz Products Co., Ltd. Quartz glass member for plasma etching
JP5284960B2 (en) * 2007-08-02 2013-09-11 信越石英株式会社 Quartz glass material for plasma etching
WO2022035111A1 (en) * 2020-08-11 2022-02-17 아이원스 주식회사 Plasma-resistant glass, and method for manufacturing same
KR20220020204A (en) * 2020-08-11 2022-02-18 아이원스 주식회사 Plasma resistant glass and manufacturing method the same
KR102608654B1 (en) * 2020-08-11 2023-12-04 한솔아이원스 주식회사 Plasma resistant glass and manufacturing method the same

Similar Documents

Publication Publication Date Title
Han et al. Salt-assisted chemical vapor deposition of two-dimensional materials
JP6451340B2 (en) Composite and production method thereof
CN110636989B (en) Spherical crystalline silica particles and process for producing the same
JP3744010B2 (en) Method for producing α-alumina powder
Kępiński et al. Structure evolution of nanocrystalline CeO2 supported on silica: effect of temperature and atmosphere
TWI247822B (en) Adhesive of a silicon and silica composite particularly useful for joining silicon parts
KR102210029B1 (en) Method preparing silicon carbide particle and the silicon carbide particle prepared the same
BRPI0616485A2 (en) crucible for the crystallization of silicon, and process for the preparation thereof
CN105859272B (en) Low-temperature sintering prepares nanometer negative expansion ceramics LiAlSiO4Method
JP2002356345A (en) Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass
CN112607741A (en) Titanium oxide coated porous hollow silicon ball, preparation method and application thereof
JP7096315B2 (en) Method for manufacturing high-purity granule α-phase silicon carbide powder
CN112320801B (en) Method for preparing titanium carbide two-dimensional nanosheet through high-temperature vulcanization heat treatment method
KR20170127636A (en) Ceramic composites for electrostatic chuck and manufacturing method of the same
JP5190809B2 (en) Corrosion resistant member and manufacturing method thereof
JP4744003B2 (en) Quartz glass having uniform dispersibility of zirconium, method for producing the same, member and apparatus using the same
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
CN115448720A (en) Preparation method of plasma spraying yttrium oxide coating powder
JP6660776B2 (en) Method for producing tantalum nitride (Ta3N5)
JP2009234877A (en) Member used for plasma processing apparatus
CN106365438B (en) The preparation method and quartz glass of quartz glass
JP2002356340A (en) Quarts glass having plasma corrosion resistance, production method therefor and member and apparatus using the same
US10246334B2 (en) Method of producing heterophase graphite
JP2002193634A (en) Quartz glass having excellent resistance to plasma corrosion and quartz glass jig
JP2010241642A (en) Colloidal silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927