JP2002348653A - Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member - Google Patents

Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member

Info

Publication number
JP2002348653A
JP2002348653A JP2002078211A JP2002078211A JP2002348653A JP 2002348653 A JP2002348653 A JP 2002348653A JP 2002078211 A JP2002078211 A JP 2002078211A JP 2002078211 A JP2002078211 A JP 2002078211A JP 2002348653 A JP2002348653 A JP 2002348653A
Authority
JP
Japan
Prior art keywords
particles
rare earth
thermal
spraying
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002078211A
Other languages
Japanese (ja)
Other versions
JP4231990B2 (en
Inventor
Yasushi Takai
康 高井
Takao Maeda
孝雄 前田
Toshihiko Tsukatani
敏彦 塚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002078211A priority Critical patent/JP4231990B2/en
Publication of JP2002348653A publication Critical patent/JP2002348653A/en
Application granted granted Critical
Publication of JP4231990B2 publication Critical patent/JP4231990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide particles of high purity rare-earths oxide for thermal spraying, which can form a thermal sprayed coating with high adhesiveness in spite of employing rare-earths oxide with high melting point. SOLUTION: The particles of rare-earths oxide for thermal spraying have a mean particle diameter of 3-20 μm, dispersion index of 0.4 or less, and an aspect ratio of 2 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属、セラミック
ス等の基材表面にプラズマ溶射等を用いて希土類酸化物
溶射被膜を形成した際に、密着性が高く、しかも平滑で
高純度の溶射被膜を形成できる希土類酸化物溶射用粒
子、およびこの溶射用粒子からなる被膜を有する溶射部
材、ならびにこの溶射部材を用いてなる耐食性部材に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spray coating of high adhesion, smoothness and high purity when a rare earth oxide spray coating is formed on the surface of a base material such as metal or ceramics by plasma spraying or the like. TECHNICAL FIELD The present invention relates to a rare-earth oxide spray particle capable of forming the following, a spray member having a coating made of the spray particle, and a corrosion-resistant member using the spray member.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
から、金属、セラミックス等に金属酸化物を溶射するこ
とにより被膜を形成し、耐熱性、耐磨耗性、耐食性を付
与することが行なわれている。このような溶射被膜を形
成するための溶射用粒子の製造方法として、(1)原料
を電気炉で溶融し、冷却凝固後、粉砕機で微粉化し、そ
の後分級することにより粒度調整を行って溶融粉砕粉を
得る方法、(2)原料を焼結後、粉砕機で微粉化し、そ
の後分級することにより粒度調整を行って焼結粉砕粉を
得る方法、(3)原料粉末を有機バインダーに加えてス
ラリー化し、噴霧乾燥型造粒機を用いて造粒後、焼成
し、場合によっては分級することにより粒度調整を行っ
て造粒粉を得る方法、等が挙げられる。
2. Description of the Related Art Conventionally, a coating is formed by spraying a metal oxide onto a metal, ceramics, or the like to impart heat resistance, abrasion resistance, and corrosion resistance. ing. As a method for producing thermal spray particles for forming such a thermal spray coating, (1) a raw material is melted in an electric furnace, cooled and solidified, pulverized with a pulverizer, and then classified to adjust the particle size and melt. (2) a method of obtaining a pulverized powder, (2) a method of obtaining a sintered pulverized powder by sintering a raw material, pulverizing the raw material with a pulverizer, and then classifying the powder to obtain a sintered pulverized powder; A method of obtaining granulated powder by adjusting the particle size by slurrying, granulating using a spray-drying type granulator, firing, and, if necessary, classifying, is mentioned.

【0003】また、上記溶射用粒子に求められる特性と
して、溶射時のプラズマ炎またはフレーム炎まで材料
が安定、かつ、定量的に供給できること、供給時およ
び溶射時に(プラズマ炎またはフレーム炎中で)粒子形
状が崩れないこと、溶射時に(プラズマ炎またはフレ
ーム炎中で)粒子が完全に溶融すること、が要求され、
これら各特性は、十数項目からなる粉体物性値で定量的
に表現される。
Further, the properties required for the above-mentioned particles for thermal spraying are that the material can be supplied stably and quantitatively up to the plasma flame or flame flame at the time of thermal spraying, and at the time of supply and thermal spraying (in the plasma flame or flame flame). It is required that the particle shape does not collapse, and that the particles are completely melted during thermal spraying (in a plasma flame or flame flame).
Each of these characteristics is quantitatively expressed by a powder property value consisting of more than ten items.

【0004】ところで、上記溶射用粒子の供給は搬送チ
ューブ等の細い流路を介して溶射ガンまで供給されるこ
とから、安定的かつ定量的に供給を行えるか否かは、溶
射用粒子の粉体物性中、流動性にかなり影響されること
となる。しかしながら、上記(1)、(2)の方法で得
られる溶融粉砕粉や、焼結粉砕粉は、形状が不定形であ
るうえ、粒度分布が広いため、搬送中の粒子同士の摩擦
により微粒子が発生するとともに、安息角が大きく流動
性が悪いので、搬送チューブや溶射ガン内で閉塞等が生
じ、連続的に溶射できない等の問題があった。
Since the above-mentioned spray particles are supplied to the spray gun through a narrow flow path such as a transport tube, it is determined whether or not the supply can be performed stably and quantitatively. During physical properties, it is considerably affected by fluidity. However, the melt-pulverized powder and the sinter-pulverized powder obtained by the methods (1) and (2) have an irregular shape and a wide particle size distribution. In addition to the occurrence, the angle of repose is large and the fluidity is poor, so that there is a problem that clogging or the like occurs in the transfer tube or the spray gun, and the spray cannot be continuously performed.

【0005】これら各粉砕粉の問題点を解決するものと
して、上記(3)の方法で得られる造粒粉、すなわち、
球形または球に近い形状であるため流動性が良いという
特徴を有する造粒粉、が開発されてきている。この造粒
粉の粉体強度は、原料とする粒子の粒度分布と、焼結工
程の条件とによって決まるものであるため、粉体強度に
ばらつきが生じやすく、強度が低いものは、供給時およ
び溶射時に(フレーム炎またはプラズマ炎中で)崩れ易
いという問題があった。
In order to solve the problems of each of these pulverized powders, granulated powders obtained by the above method (3),
Granulated powders having the characteristic that they have a good flowability due to their spherical or nearly spherical shape have been developed. Since the powder strength of this granulated powder is determined by the particle size distribution of the raw material particles and the conditions of the sintering process, the powder strength tends to vary, and the powder having a low strength is supplied during supply and There has been a problem that it tends to collapse during thermal spraying (in flame flame or plasma flame).

【0006】一方、金属酸化物からなる溶射用粒子を溶
射する場合、密着強度に優れた溶射被膜を形成するため
には、溶射時にフレーム炎またはプラズマ炎中で溶射用
粒子を完全に溶融させる必要がある。特に、希土類酸化
物を用いる場合には、融点が高いので、完全に溶融させ
るためには平均粒径の小さい溶射用粒子を用いる必要が
ある。しかしながら、噴霧乾燥型造粒機を用いた造粒粉
の場合、平均粒径20μm以下にするのは難しく、一
方、溶融粉砕粉や焼結粉砕粉の場合、粉砕することで平
均粒径が小さい溶射材料が得られるものの、粉砕機等か
らの汚染があるため、通常の粒子では数十ppm程度の
不純物の混入を避けることができなかった。
On the other hand, when thermal spraying particles made of a metal oxide are sprayed, it is necessary to completely melt the thermal spraying particles in a flame flame or plasma flame at the time of thermal spraying in order to form a thermal spray coating having excellent adhesion strength. There is. In particular, when a rare earth oxide is used, its melting point is high, so that it is necessary to use thermal spraying particles having a small average particle size to completely melt. However, in the case of granulated powder using a spray-drying type granulator, it is difficult to reduce the average particle diameter to 20 μm or less, while, in the case of melt-pulverized powder or sintered pulverized powder, the average particle diameter is small by pulverization. Although a thermal spray material can be obtained, contamination from a pulverizer or the like has prevented the introduction of impurities of about several tens ppm in ordinary particles.

【0007】このように、上述した溶融粉砕粉、焼結粉
砕粉、造粒粉には、それぞれ長所、短所があるため、希
土類酸化物の溶射材料として必ずしも最適なものとはい
えなかった。しかも、3種類の粉体全てにおいて、粉砕
工程、造粒工程、分級工程からの汚染があるため、高純
度化という点でも問題となっていた。すなわち、上記各
工程を経て得られる溶融粉砕粉、焼結粉砕粉、造粒粉で
は、鉄族元素、アルカリ金属元素、アルカリ土類金属元
素等の不純物が、通常、20ppm以上混入しているた
め、当該溶射用粒子を溶射してなる被膜を有する溶射部
材が不純物部分から腐食を起こしやすく、十分な耐久性
が得られないという問題もあった。
As described above, the above-mentioned melt-pulverized powder, sintered pulverized powder, and granulated powder each have advantages and disadvantages, and thus cannot be said to be necessarily the most suitable as a rare-earth oxide thermal spray material. In addition, all three types of powder have contamination from the pulverizing step, the granulating step, and the classifying step, and thus have a problem in terms of high purification. That is, in the melt-pulverized powder, sintered pulverized powder, and granulated powder obtained through each of the above steps, impurities such as iron group elements, alkali metal elements, and alkaline earth metal elements are usually mixed in at least 20 ppm. In addition, there is a problem that a thermal spray member having a coating formed by thermal spraying of the thermal spray particles is liable to corrode from an impurity portion, and sufficient durability cannot be obtained.

【0008】本発明は、このような事情に鑑みてなされ
たものであり、高融点の希土類酸化物を用いても密着性
の高い溶射被膜を形成できるとともに、純度の高い希土
類酸化物溶射用粒子、および当該溶射用粒子を基材表面
に溶射してなる溶射部材、ならびに当該溶射部材を用い
た耐食性部材を提供することを目的とする。
[0008] The present invention has been made in view of such circumstances, and it is possible to form a sprayed coating having high adhesion even with the use of a rare-earth oxide having a high melting point. It is another object of the present invention to provide a thermal spraying member obtained by spraying the thermal spraying particles on the surface of a base material, and a corrosion resistant member using the thermal spraying member.

【0009】[0009]

【課題を解決するための手段および発明の実施の形態】
本発明者らは、上記目的を達成するために鋭意検討を行
った結果、希土類酸化物溶射用粉末において、平均粒
径、分散指数、およびアスペクト比を所定の値にするこ
と、さらに必要に応じて比表面積、嵩密度、結晶子、な
らびに鉄族、アルカリ金属およびアルカリ土類金属元素
の総量を所定範囲に制御することで、流動性がよく、緻
密かつ高強度であり、溶射時に崩壊せずに完全に溶解す
る可能性があることを見いだすとともに、当該溶射用粒
子を溶射してなる被膜が、従来の溶射被膜に比べて平滑
で高純度になり、密着性および耐食性に優れることを見
いだし、本発明を完成した。
Means for Solving the Problems and Embodiments of the Invention
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, in the rare-earth oxide thermal spraying powder, the average particle diameter, the dispersion index, and the aspect ratio to a predetermined value, further if necessary By controlling the specific surface area, bulk density, crystallites, and the total amount of the iron group, alkali metal and alkaline earth metal elements within a predetermined range, good fluidity, dense and high strength, do not collapse during thermal spraying In addition to finding that there is a possibility of completely dissolving in, the coating formed by spraying the particles for thermal spraying is smoother and more pure than the conventional thermal spray coating, and is found to be excellent in adhesion and corrosion resistance, The present invention has been completed.

【0010】すなわち、本発明は、 1.平均粒径が3〜20μm、分散指数が0.4以下、
アスペクト比が2以下であることを特徴とする希土類酸
化物溶射用粒子、 2.比表面積が0.3〜1.0m2/gであることを特
徴とする1の希土類酸化物溶射用粒子、 3.嵩密度が真密度の30〜50%であることを特徴と
する1または2の希土類酸化物溶射用粒子、 4.結晶子が25nm以上であることを特徴とする1、
2または3の希土類酸化物溶射用粒子、 5.鉄族元素、アルカリ金属元素、およびアルカリ土類
金属元素の総量が20ppm以下であることを特徴とす
る1〜4のいずれかに記載の希土類酸化物溶射用粒子、 6.基材と、この基材表面に1〜5のいずれかに記載の
希土類酸化物溶射用粒子を溶射してなる被膜と、を備え
ることを特徴とする溶射部材、 7.6に記載の溶射部材を用いることを特徴とする耐食
性部材を提供する。
That is, the present invention provides: Average particle size is 3-20 μm, dispersion index is 0.4 or less,
1. particles for rare earth oxide spraying, wherein the aspect ratio is 2 or less; 2. particles for rare earth oxide spraying, wherein the particles have a specific surface area of 0.3 to 1.0 m 2 / g; 3. particles for rare earth oxide spraying according to 1 or 2, wherein the bulk density is 30 to 50% of the true density; 1, characterized in that the crystallite is at least 25 nm.
4. particles for rare earth oxide spraying of 2 or 3; 5. The rare earth oxide spray particles according to any one of 1 to 4, wherein the total amount of the iron group element, the alkali metal element, and the alkaline earth metal element is 20 ppm or less. 7. A thermal spray member comprising: a base material; and a film formed by spraying the rare earth oxide thermal spray particles according to any one of 1 to 5 on the surface of the base material. The present invention provides a corrosion-resistant member characterized by using:

【0011】以下、本発明について更に詳しく説明す
る。本発明における希土類酸化物としては、イットリウ
ム(Y)を含む3A族の希土類元素のうちから1種以上
を用いることができる。なお、上記希土類酸化物とA
l、Si、Zr、In等から選ばれる1種以上の金属と
の複合酸化物を用いてもよい。また、希土類酸化物溶射
用粒子の平均粒径は3〜20μmであり、特に7〜16
μmが好ましい。平均粒径が3μm未満では、溶射時の
プラズマ炎等の中で蒸発、飛散してしまい、その分だけ
ロスが生じるという問題がある。一方、平均粒径が20
μmを超えると、溶射時のプラズマ炎等の中で完全に溶
融されずに溶け残り、それが未融着粉となって、密着強
度の低下を招くこととなる。なお、上記平均粒径とは、
レーザー回折法で測定した粒度分布のD50の値であ
る。
Hereinafter, the present invention will be described in more detail. As the rare earth oxide in the present invention, one or more of the group 3A rare earth elements including yttrium (Y) can be used. The rare earth oxide and A
A composite oxide with one or more metals selected from l, Si, Zr, In and the like may be used. The average particle diameter of the particles for spraying rare earth oxides is 3 to 20 μm, especially 7 to 16 μm.
μm is preferred. If the average particle size is less than 3 μm, there is a problem that evaporation and scattering occur in a plasma flame or the like at the time of thermal spraying, resulting in a loss correspondingly. On the other hand, when the average particle size is 20
If it exceeds μm, it is not completely melted and remains in a plasma flame or the like at the time of thermal spraying, and remains unfused, resulting in a decrease in adhesion strength. The average particle size is
It is a value of D50 of the particle size distribution measured by a laser diffraction method.

【0012】本発明の希土類酸化物溶融粒子は、球また
は球に近い形状を有するとともに、粒度分布の狭いもの
である。具体的には、分散指数が0.4以下、アスペク
ト比が2以下の粒子である。ここで、分散指数が0.4
を超えると、粒度分布がブロードになり、流動性が悪化
し、粉体供給時にノズル内で閉塞等を生じることとな
る。より好ましい分散指数は0.3以下である。なお、
分散指数とは、下記式で定義されるものである。 分散指数 = (D90−D10)/(D90+D1
0) 上式において、D10は10重量%での粒径を、D90
は90重量%での粒径を示し、ともにレーザー回折法で
の測定値である。
The rare earth oxide molten particles of the present invention have a sphere or a shape close to a sphere and a narrow particle size distribution. Specifically, the particles have a dispersion index of 0.4 or less and an aspect ratio of 2 or less. Here, the dispersion index is 0.4
If the particle size exceeds 1, the particle size distribution becomes broad, the fluidity deteriorates, and clogging or the like occurs in the nozzle during powder supply. A more preferred dispersion index is 0.3 or less. In addition,
The dispersion index is defined by the following equation. Dispersion index = (D90−D10) / (D90 + D1)
0) In the above formula, D10 is the particle size at 10% by weight, D90
Indicates a particle size at 90% by weight, and both are values measured by a laser diffraction method.

【0013】また、上記アスペクト比は、粒子の長径と
短径との比、すなわち、長径/短径で表され、形状が球
に近いか否かを表す指標となるものである。ここで、ア
スペクト比が2を超えると、形状が球からかけ離れたも
のとなり、流動性が悪化することとなる。この場合、ア
スペクト比の下限値は、特に限定されないが、1により
近いものが好ましい。
The aspect ratio is expressed by the ratio of the major axis to the minor axis, that is, the major axis / minor axis, and serves as an index indicating whether the shape is close to a sphere. Here, when the aspect ratio exceeds 2, the shape becomes far apart from the sphere, and the fluidity deteriorates. In this case, the lower limit of the aspect ratio is not particularly limited, but a value closer to 1 is preferable.

【0014】以上において、希土類酸化物溶射用粒子の
比表面積が0.3〜1.0m2/gであることが好まし
く、より好ましくは、0.3〜0.8m2/gである。
ここで、比表面積が1.0m2/gを超える場合、表面
平滑性が悪化し、流動性が低下する虞がある。また、嵩
密度が真密度の30〜50%であることが好ましい。嵩
密度が真密度の30%未満では、粒子が緻密ではないた
めに強度が弱くなりがちであり、溶射時に崩壊する虞が
ある。なお、粒子がどんなに緻密な場合でも、嵩密度が
真密度の50%を超えるものは、ほとんど見られない。
[0014] In the above, it is preferable that the specific surface area of the rare earth oxide particles for thermal spraying is 0.3~1.0m 2 / g, more preferably 0.3~0.8m 2 / g.
Here, when the specific surface area exceeds 1.0 m 2 / g, the surface smoothness may be deteriorated and the fluidity may be reduced. The bulk density is preferably 30 to 50% of the true density. If the bulk density is less than 30% of the true density, the particles tend to be weak because the particles are not dense and may collapse during thermal spraying. It should be noted that no matter how dense the particles are, those whose bulk density exceeds 50% of the true density are hardly seen.

【0015】ところで、単結晶粒子は最も緻密であり、
多結晶粒子でも粒子を構成する単結晶粒子の粒径が大き
いほど緻密であると考えられる。このような粒子を構成
する単結晶粒子の粒径を結晶子といい、上記希土類酸化
物溶射用粒子において、当該結晶子が25nm以上であ
ることが好ましく、より好ましくは、50nm以上であ
る。結晶子が25nm未満の場合、単結晶粒子の粒径が
小さい多結晶粒子であるため、緻密とはいえない場合が
多いと考えられる。なお、結晶子はX線回折のwils
on法から求めた値であり、このwilson法では、
単結晶粒子の粒径が最大でも100nm以下になる。
By the way, single crystal particles are the most dense,
It is considered that the polycrystalline particles are denser as the diameter of the single crystal particles constituting the particles is larger. The particle size of the single crystal particles constituting such particles is called a crystallite, and in the rare earth oxide thermal spraying particles, the crystallite is preferably 25 nm or more, more preferably 50 nm or more. When the crystallite size is less than 25 nm, the single crystal particles are polycrystalline particles having a small particle size, and thus it is considered that they are often not dense. Note that the crystallite is the Wils of X-ray diffraction.
This is the value obtained from the on method. In this Wilson method,
The single crystal particles have a maximum particle size of 100 nm or less.

【0016】また、上記希土類酸化物溶射用粒子は、当
該溶射用粒子を溶射してなる被膜を有する溶射部材に十
分な耐食性を付与することを考慮すると、鉄族元素(F
e,Ni,Co等)、アルカリ金属元素(Na,K
等)、およびアルカリ土類金属元素(Mg,Ca等)の
総量が20ppm以下であることが好ましく、より好ま
しくは、15ppm以下、特に5ppm以下であること
が好ましい。これらの各金属元素の総量は、少なければ
少ないほど好ましいものであるが、通常、その下限値は
0.1ppm程度である。なお、鉄族元素、アルカリ金
属元素、アルカリ土類金属元素の測定は、上記希土類酸
化物溶射用粒子を酸分解した後、ICP分光分析(誘導
結合高周波プラズマ分光分析)で測定したものである。
Further, considering that the rare earth oxide thermal spray particles impart sufficient corrosion resistance to a thermal spray member having a coating formed by spraying the thermal spray particles, the iron group element (F
e, Ni, Co, etc.), alkali metal elements (Na, K
And the like, and the total amount of alkaline earth metal elements (Mg, Ca, etc.) is preferably at most 20 ppm, more preferably at most 15 ppm, particularly preferably at most 5 ppm. The total amount of each of these metal elements is preferably as small as possible, but the lower limit is usually about 0.1 ppm. The iron group element, alkali metal element and alkaline earth metal element are measured by ICP spectroscopy (inductively coupled high frequency plasma spectroscopy) after acid-decomposition of the rare earth oxide spray particles.

【0017】上記希土類酸化物溶射用粒子の製造方法
は、以下のような方法を用いることが好ましい。まず、
希土類水溶液(塩化物、硝酸塩、硫酸塩等の水溶性塩の
水溶液)と蓚酸水溶液とを、蓚酸イオンの量として希土
類総量に対して1.5〜2.0モルで混合し、−5〜2
0℃の低温で晶析することで、形状が球に近い平均粒径
3〜20μmの希土類蓚酸塩を製造する。続いて、得ら
れた希土類蓚酸塩を凍結乾燥機等で−20〜80℃で乾
燥した後、大気中で800〜1,700℃、より好まし
くは1,200〜1,600℃、1〜6時間、より好ま
しくは2〜4時間で焼成することにより希土類酸化物溶
射用粒子を得る。
It is preferable to use the following method for producing the rare earth oxide thermal spray particles. First,
A rare earth aqueous solution (aqueous solution of a water-soluble salt such as chloride, nitrate, sulfate, etc.) and an oxalic acid aqueous solution are mixed in an amount of 1.5 to 2.0 mol based on the total amount of the rare earth as oxalate ions, and -5 to 2
By crystallization at a low temperature of 0 ° C., a rare earth oxalate having an average particle size of 3 to 20 μm, which is close to a sphere, is produced. Subsequently, after the obtained rare earth oxalate is dried at −20 to 80 ° C. by a freeze dryer or the like, it is 800 to 1,700 ° C. in air, more preferably 1,200 to 1,600 ° C., and 1 to 6 ° C. By calcining for a period of time, more preferably 2 to 4 hours, particles for spraying rare earth oxides are obtained.

【0018】ここで、希土類総量が多過ぎる(蓚酸イオ
ン量が1.5モル未満)場合、希土類が完全に沈殿しな
いため収率が悪くなる。一方、希土類総量が少なすぎる
(蓚酸イオン量が2.0モルを超える)場合、蓚酸が多
すぎて経済的ではない。すなわち、希土類総量に対して
蓚酸イオン量を上記範囲にすることで、良好な球状粒子
を収率よく得ることができる。上記製造方法は、造粒工
程および/または粉砕工程を必要としないため、副材料
や機器からの汚染物質の混入が少なく、その結果、鉄族
元素(Fe,Ni,Co等)、アルカリ金属元素(N
a,K等)、アルカリ土類金属元素(Mg,Ca等)が
20ppm以下の高純度な溶射用球状粒子を得やすいと
いう特徴を有する。
Here, if the total amount of rare earths is too large (the amount of oxalate ions is less than 1.5 mol), the rare earths will not be completely precipitated, resulting in a poor yield. On the other hand, when the total amount of the rare earth elements is too small (the amount of oxalate ions exceeds 2.0 mol), the amount of oxalic acid is too large, which is not economical. That is, by setting the amount of oxalate ions to the above range relative to the total amount of rare earths, good spherical particles can be obtained with good yield. The above manufacturing method does not require a granulating step and / or a pulverizing step, so that contamination of contaminants from auxiliary materials and equipment is small, and as a result, iron group elements (Fe, Ni, Co, etc.), alkali metal elements (N
a, K, etc.) and alkaline earth metal elements (Mg, Ca, etc.) are easy to obtain spherical particles for thermal spraying having a purity of 20 ppm or less.

【0019】以上説明したように、本発明に係る溶射用
球状粒子は、流動性がよく、搬送チューブ内等で詰まる
ことがないため、安定的かつ連続的に供給でき、しか
も、緻密で強度が高いため、溶射時のプラズマ炎中で崩
れることがないという特徴を有する。さらに、平均粒径
が小さいので、溶射時のプラズマ炎中で完全に溶融する
可能性があるとともに、高純度かつほぼ球状であるの
で、当該溶射用粒子からなる被膜の密着強度が高くする
ことができ、しかも、被膜の表面粗さを細かく(60μ
m以下)制御することができる。
As described above, the thermal spraying spherical particles according to the present invention have good fluidity and do not become clogged in a transport tube or the like, so that they can be supplied stably and continuously, and are dense and have high strength. Since it is high, it has the feature that it does not collapse in the plasma flame during thermal spraying. Furthermore, since the average particle diameter is small, there is a possibility that the film is completely melted in the plasma flame at the time of thermal spraying, and since it is high purity and almost spherical, the adhesion strength of the coating composed of the thermal spraying particles can be increased. And the surface roughness of the coating is fine (60μ).
m or less) can be controlled.

【0020】本発明に係る溶射部材は、基材と、この基
材表面に上述の希土類酸化物溶射用粒子を溶射してなる
被膜と、を備えることを特徴とする。ここで、基材とし
ては、特に限定はなく、Al、Fe、Si、Cr、Z
n、ZrもしくはNiを主成分とする金属、合金、セラ
ミックス(金属窒化物、金属炭化物、金属酸化物(例え
ば、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素
等))、ガラス(石英ガラス等)等を用いることができ
るが、セラミックス、ガラスを基材に用いた場合、被膜
の密着力が弱くなるため、Si、Al、FeもしくはN
iを主成分とする金属、または合金を基材とすることが
好ましい。
[0020] The thermal spraying member according to the present invention is characterized by comprising a base material and a coating formed by spraying the rare earth oxide spray particles on the surface of the base material. Here, the substrate is not particularly limited, and Al, Fe, Si, Cr, Z
Metals, alloys, ceramics (metal nitride, metal carbide, metal oxide (eg, alumina, aluminum nitride, silicon nitride, silicon carbide, etc.)) containing n, Zr or Ni as main components, glass (quartz glass, etc.), etc. However, when ceramics or glass is used as the base material, the adhesion of the coating film is weakened, so that Si, Al, Fe or N
It is preferable that the base material is a metal or alloy containing i as a main component.

【0021】上記基材表面の被膜の厚さは50〜500
μmが好ましく、より好ましくは、150〜300μm
である。被膜の厚さが50μm未満であると、当該被膜
を有する溶射部材を耐食性部材として使用する場合、わ
ずかの腐食で交換する必要が生じる虞がある。一方、被
膜の厚さが500μmを超えると、厚すぎて被膜内部で
の剥離が生じやすくなる虞がある。また、被膜の表面粗
さが60μm以下であることが好ましく、より好ましく
は20μm以下である。表面粗さが60μmを超える
と、プラズマ接触面積が大きくなるため、耐食性が悪く
なる虞があり、腐食の進行によりパーティクルが発生す
る虞がある。すなわち、被膜の表面粗さを60μm以下
とすることで、良好な耐食性が得られる。したがって、
腐食性ガス(ハロゲン系ガスプラズマ等)雰囲気下にお
いても腐食が起こりにくく、当該溶射部材を耐食性部材
として好適に使用することができる。
The thickness of the coating on the surface of the substrate is 50 to 500.
μm is preferred, and more preferably 150 to 300 μm
It is. When the thickness of the coating is less than 50 μm, when the thermal sprayed member having the coating is used as a corrosion-resistant member, it may be necessary to replace it with a slight corrosion. On the other hand, if the thickness of the coating is more than 500 μm, there is a possibility that the coating is too thick and peeling easily occurs inside the coating. Further, the surface roughness of the coating is preferably 60 μm or less, more preferably 20 μm or less. If the surface roughness exceeds 60 μm, the plasma contact area becomes large, so that the corrosion resistance may be deteriorated, and particles may be generated due to the progress of corrosion. That is, by setting the surface roughness of the coating to 60 μm or less, good corrosion resistance can be obtained. Therefore,
Corrosion hardly occurs even in a corrosive gas (eg, halogen-based gas plasma) atmosphere, and the sprayed member can be suitably used as a corrosion-resistant member.

【0022】本発明の溶射部材は、基材表面に、上述の
希土類酸化物溶射用粒子をプラズマ溶射または減圧プラ
ズマ溶射等にて被膜を形成することで得ることができ
る。ここで、プラズマガスとしては、特に限定されるも
のではなく、窒素/水素、アルゴン/水素、アルゴン/
ヘリウム、アルゴン/窒素等を用いることができる。な
お、溶射条件等については、特に限定はなく、基材、希
土類酸化物溶射用粒子等の具体的材質、得られる溶射部
材の用途等に応じて適宜設定すればよい。
The thermal sprayed member of the present invention can be obtained by forming a coating on the surface of the substrate by the plasma spraying or the reduced pressure plasma spraying of the rare earth oxide spraying particles. Here, the plasma gas is not particularly limited, and may be nitrogen / hydrogen, argon / hydrogen, or argon / hydrogen.
Helium, argon / nitrogen, or the like can be used. The thermal spraying conditions and the like are not particularly limited, and may be appropriately set according to the specific materials such as the base material, the particles for rare earth oxide thermal spraying, and the use of the obtained thermal spraying member.

【0023】本発明の溶射部材においても、被膜中の鉄
族元素、アルカリ金属元素、アルカリ土類金属元素の総
量が20ppm以下であることが好ましいが、これは上
述した各金属元素の総量が20ppm以下の希土類酸化
物溶射用粒子を用いて被膜を形成することで達成でき
る。すなわち、鉄族元素、アルカリ金属元素、アルカリ
土類金属元素が20ppm以上混入している溶射用粒子
を用いて被膜を形成した場合、被膜には溶射用粒子に混
入しているだけの鉄族元素、アルカリ金属元素、アルカ
リ土類金属元素がそのまま混入することになるが、上記
希土類酸化物溶射用粒子を用いることで、このような問
題は生じないこととなる。
Also in the thermal spraying member of the present invention, the total amount of the iron group element, the alkali metal element and the alkaline earth metal element in the coating is preferably 20 ppm or less. This can be achieved by forming a coating using the following rare earth oxide spray particles. That is, when a coating is formed using particles for thermal spraying containing at least 20 ppm of an iron group element, an alkali metal element, and an alkaline earth metal element, the coating contains only an iron group element mixed in the thermal spraying particles. However, the alkali metal element and the alkaline earth metal element are mixed as they are, but the use of the rare earth oxide spray particles does not cause such a problem.

【0024】また、被膜中における上記各金属元素の総
量が20ppm以下であれば、汚染が少ないため、当該
溶射部材を高純度であることが要求される装置にも問題
なく使用することができる。具体的には、液晶製造装置
用部材および半導体製造装置用部材等として好適に使用
することができる。
If the total amount of each of the above metal elements in the coating is 20 ppm or less, contamination is small, so that the thermal sprayed member can be used without problems in an apparatus which requires high purity. Specifically, it can be suitably used as a member for a liquid crystal manufacturing device, a member for a semiconductor manufacturing device, or the like.

【0025】[0025]

【実施例】以下、実施例および比較例を挙げて、本発明
をより具体的に説明するが、本発明は、下記の実施例に
限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0026】[実施例1]3℃に冷却した硝酸イットリ
ウム溶液(0.3mol/L)30Lを200rpmの
回転数で攪拌しながら、この中に蓚酸溶液(0.5mo
l/L)30Lを、約5分かけて添加して反応させた。
この溶液を3℃に保ったまま10分熟成した後、生成し
た蓚酸イットリウムをろ取、水洗後、−10℃で6時間
凍結し、その後20℃で24時間真空乾燥した。続い
て、凍結乾燥した蓚酸イットリウムを大気中1,500
℃で、2時間焼成し、酸化イットリウム990gを得
た。得られた酸化イットリウムの粒径、結晶子等の各物
性値について測定した結果を表1に示す。なお、酸化イ
ットリウムの真密度として、5.03g/cm3を使用
した。この酸化イットリウム粒子をアルゴン/水素でプ
ラズマ溶射し、基材であるアルミニウム合金基板(JI
S H4000に記載のNo.6061)上に膜厚21
0μmの被膜を形成した。形成した被膜の物性値につい
て測定した結果を表2に示す。なお、表2において、表
面粗さRaはJIS B0601に準拠した方法により
測定した。また、耐食性は、部材をRIE(反応性イオ
ンエッチング)装置を用いて、CF4プラズマ中で24
時間の暴露試験を行うことにより測定し、試験前の部材
重量に対する試験後の部材重量の百分率として算出し
た。
Example 1 While stirring 30 L of a yttrium nitrate solution (0.3 mol / L) cooled to 3 ° C. at a rotation speed of 200 rpm, an oxalic acid solution (0.5 mol
1 / L) was added and reacted over about 5 minutes.
The solution was aged for 10 minutes while maintaining the solution at 3 ° C., and the produced yttrium oxalate was collected by filtration, washed with water, frozen at −10 ° C. for 6 hours, and then dried in vacuum at 20 ° C. for 24 hours. Subsequently, the freeze-dried yttrium oxalate was placed in air at 1,500.
C. for 2 hours to obtain 990 g of yttrium oxide. Table 1 shows the results of measurements of the physical properties of the obtained yttrium oxide, such as the particle size and the crystallite. Note that 5.03 g / cm 3 was used as the true density of yttrium oxide. The yttrium oxide particles are plasma-sprayed with argon / hydrogen to form an aluminum alloy substrate (JI
No. SH4000. 6061) Film thickness 21
A coating of 0 μm was formed. Table 2 shows the measurement results of the physical properties of the formed coating. In Table 2, the surface roughness Ra was measured by a method according to JIS B0601. The corrosion resistance of the member was measured using a RIE (reactive ion etching) device in a CF 4 plasma.
It was measured by performing a time exposure test and calculated as a percentage of the weight of the member after the test with respect to the weight of the member before the test.

【0027】[実施例2]硝酸イットリウムの代わりに
硝酸エルビウムを用いた以外は、実施例1と同様にし
て、酸化エルビウム1,680gを得た。得られた酸化
エルビウムの粒径、結晶子等の各物性値について測定し
た結果を表1に示す。なお、酸化エルビウムの真密度と
して8.64g/cm3を使用した。この酸化エルビウ
ム粒子をアルゴン/水素でプラズマ溶射し、基材である
シリコン基板上に膜厚250μmの被膜を形成した。形
成した被膜の物性値および耐食性について測定した結果
を表2に示す。
Example 2 In the same manner as in Example 1 except that erbium nitrate was used instead of yttrium nitrate, 1,680 g of erbium oxide was obtained. Table 1 shows the results of measurements of the physical properties of the obtained erbium oxide, such as the particle size and the crystallite. 8.64 g / cm 3 was used as the true density of erbium oxide. The erbium oxide particles were plasma-sprayed with argon / hydrogen to form a 250 μm-thick film on a silicon substrate as a base material. Table 2 shows the measured values of the physical properties and corrosion resistance of the formed coating.

【0028】[比較例1]PVA(ポリビニルアルコー
ル)15gを溶かした純水15リットルに、平均粒子径
1.2μmの酸化イットリウム5kgを分散させてスラ
リーを作製し、流体ノズル噴霧型造粒機でこのスラリー
を噴霧乾燥させて造粒粉を作製した。さらに、この造粒
粉を1,600℃で2時間焼成して溶射用粒子とした。
上記、造粒工程によって得られた酸化イットリウムの粒
径、結晶子等の各物性値について測定した結果を表1に
示す。さらに、この酸化イットリウム溶射用粒子をアル
ゴン/水素でプラズマ溶射し、基材であるアルミニウム
合金基板上に膜厚250μmになるように被膜を形成し
た。形成した被膜の物性値および耐食性について測定し
た結果を表2に示す。
Comparative Example 1 A slurry was prepared by dispersing 5 kg of yttrium oxide having an average particle diameter of 1.2 μm in 15 liters of pure water in which 15 g of PVA (polyvinyl alcohol) was dissolved, and a slurry was prepared using a fluid nozzle spray granulator. This slurry was spray-dried to produce a granulated powder. Further, the granulated powder was fired at 1600 ° C. for 2 hours to obtain thermal spray particles.
Table 1 shows the results of measuring the physical properties of yttrium oxide obtained by the above-described granulation step, such as the particle size and crystallite. Further, the particles for thermal spraying of yttrium oxide were plasma-sprayed with argon / hydrogen to form a coating on the aluminum alloy substrate as a substrate to a thickness of 250 μm. Table 2 shows the measurement results of the physical properties and corrosion resistance of the formed coating.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1に示されるように、実施例1、2で得
られた希土類酸化物溶射用粒子は、平均粒径が20μm
以下で、かつ、分散指数が0.3以下と小さく、Ca
O、Fe23、Na2O等の不純物が少なく高純度であ
り、嵩密度が高く緻密であることがわかる。これに対し
て、比較例1で得られた希土類酸化物溶射用粒子は、分
散指数が0.5と大きく、Fe23、Na2O等の不純
物があり、嵩密度も小さいことがわかる。
As shown in Table 1, the rare-earth oxide spray particles obtained in Examples 1 and 2 have an average particle diameter of 20 μm.
Or less, and the dispersion index is as small as 0.3 or less, and Ca
It can be seen that there are few impurities such as O, Fe 2 O 3 , Na 2 O, etc., high purity, high bulk density and high density. On the other hand, the rare-earth oxide spray particles obtained in Comparative Example 1 have a large dispersion index of 0.5, contain impurities such as Fe 2 O 3 and Na 2 O, and have a low bulk density. .

【0032】また、表2に示されるように、実施例1、
2の希土類酸化物溶射用粒子からなる被膜は、CaO、
Fe23、Na2O等の不純物が少なく、高純度が必要
とされる用途、例えば、液晶製造装置用部材および半導
体製造装置用部材に適していることがわかる。しかも、
表面粗さが細かく、腐食性ガス雰囲気(例えばハロゲン
系ガスプラズマ)に対する耐食性部材として適している
こともわかる。これに対して、比較例1の溶射用粒子か
らなる被膜は、溶射用粒子に混入している量の鉄族元
素、アルカリ金属元素、アルカリ土類金属元素がそのま
ま混入しており、しかも、表面粗さも73μmと粗いこ
とがわかる。
Further, as shown in Table 2, in Example 1,
The coating composed of particles for spraying rare earth oxides is CaO,
Fe 2 O 3, Na 2 O or the like impurities less, applications where high purity is required, for example, it can be seen that suitable member and a member for a semiconductor manufacturing apparatus for a liquid crystal manufacturing apparatus. Moreover,
It can also be seen that the surface roughness is fine and suitable as a corrosion-resistant member for a corrosive gas atmosphere (for example, a halogen-based gas plasma). On the other hand, in the coating made of the thermal spray particles of Comparative Example 1, the iron group element, the alkali metal element, and the alkaline earth metal element mixed in the thermal spray particles were directly mixed, and It can be seen that the roughness is as coarse as 73 μm.

【0033】[0033]

【発明の効果】以上に述べたように、本発明の希土類酸
化物溶射用球状粒子は、平均粒径が3〜20μm、分散
指数が0.4以下、アスペクト比が2以下であるため、
安定的かつ連続的に供給でき、しかも、溶射時のプラズ
マ炎中で完全に溶融する可能性があるので、当該溶射用
粒子からなる被膜と被溶射材との密着強度を高くするこ
とができる。
As described above, the spherical particles for spraying rare earth oxides of the present invention have an average particle diameter of 3 to 20 μm, a dispersion index of 0.4 or less, and an aspect ratio of 2 or less.
Since it can be supplied stably and continuously and may be completely melted in the plasma flame at the time of thermal spraying, the adhesion strength between the coating made of the thermal spraying particles and the material to be sprayed can be increased.

フロントページの続き (72)発明者 塚谷 敏彦 福井県武生市北府2−1−5 信越化学工 業株式会社磁性材料研究所内 Fターム(参考) 4K031 AA08 AB02 AB09 CB02 CB17 CB18 CB42 CB52 DA04 Continued on the front page (72) Inventor Toshihiko Tsukaya 2-1-5 Kitafu, Takefu-shi, Fukui Shin-Etsu Chemical Co., Ltd. Magnetic Materials Research Laboratory F-term (reference) 4K031 AA08 AB02 AB09 CB02 CB17 CB18 CB42 CB52 DA04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が3〜20μm、分散指数が
0.4以下、アスペクト比が2以下であることを特徴と
する希土類酸化物溶射用粒子。
1. Rare earth oxide spray particles having an average particle size of 3 to 20 μm, a dispersion index of 0.4 or less, and an aspect ratio of 2 or less.
【請求項2】 比表面積が0.3〜1.0m2/gであ
ることを特徴とする請求項1記載の希土類酸化物溶射用
粒子。
2. The rare earth oxide thermal spray particles according to claim 1, wherein the specific surface area is 0.3 to 1.0 m 2 / g.
【請求項3】 嵩密度が真密度の30〜50%であるこ
とを特徴とする請求項1または2記載の希土類酸化物溶
射用粒子。
3. The rare earth oxide spray particles according to claim 1, wherein the bulk density is 30 to 50% of the true density.
【請求項4】 結晶子が25nm以上であることを特徴
とする請求項1、2または3記載の希土類酸化物溶射用
粒子。
4. The rare earth oxide thermal spray particles according to claim 1, wherein the crystallite has a crystallite size of 25 nm or more.
【請求項5】 鉄族元素、アルカリ金属元素、およびア
ルカリ土類金属元素の総量が20ppm以下であること
を特徴とする請求項1乃至4のいずれか1項に記載の希
土類酸化物溶射用粒子。
5. The rare earth oxide thermal spray particles according to claim 1, wherein the total amount of the iron group element, the alkali metal element, and the alkaline earth metal element is 20 ppm or less. .
【請求項6】 基材と、この基材表面に請求項1乃至5
のいずれか1項に記載の希土類酸化物溶射用粒子を溶射
してなる被膜と、を備えることを特徴とする溶射部材。
6. A base material and a surface of the base material according to claim 1.
And a coating formed by spraying the particles for spraying rare earth oxides according to any one of the above.
【請求項7】 請求項6に記載の溶射部材を用いること
を特徴とする耐食性部材。
7. A corrosion resistant member using the thermal sprayed member according to claim 6.
JP2002078211A 2001-03-21 2002-03-20 Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member Expired - Fee Related JP4231990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078211A JP4231990B2 (en) 2001-03-21 2002-03-20 Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001080154 2001-03-21
JP2001-80154 2001-03-21
JP2002078211A JP4231990B2 (en) 2001-03-21 2002-03-20 Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member

Publications (2)

Publication Number Publication Date
JP2002348653A true JP2002348653A (en) 2002-12-04
JP4231990B2 JP4231990B2 (en) 2009-03-04

Family

ID=26611641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078211A Expired - Fee Related JP4231990B2 (en) 2001-03-21 2002-03-20 Rare earth oxide spray particles and method for producing the same, thermal spray member and corrosion resistant member

Country Status (1)

Country Link
JP (1) JP4231990B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
JP2006108178A (en) * 2004-09-30 2006-04-20 Toshiba Corp Component for semiconductor manufacturing device and semiconductor manufacturing device
JP2006118013A (en) * 2004-10-22 2006-05-11 Fujimi Inc Powder for thermal spraying, thermal spraying method and thermally sprayed coating
JP2006144123A (en) * 2004-10-18 2006-06-08 Nihon Ceratec Co Ltd Corrosion-resistant member and its manufacturing method
JP2006200005A (en) * 2005-01-20 2006-08-03 Fujimi Inc Powder for thermal spraying
JP2007100141A (en) * 2005-09-30 2007-04-19 Fujimi Inc Powder for thermal spraying and method for forming sprayed coating
JP2007100142A (en) * 2005-09-30 2007-04-19 Fujimi Inc Sprayed coating
JP2007100143A (en) * 2005-09-30 2007-04-19 Fujimi Inc Sprayed coating
JP2008512566A (en) * 2004-09-13 2008-04-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
JP2009124129A (en) * 2007-10-26 2009-06-04 Shin Etsu Chem Co Ltd Wafer
KR101121364B1 (en) * 2002-12-27 2012-03-09 신에쓰 가가꾸 고교 가부시끼가이샤 High Withstand Voltage Member
KR101157707B1 (en) * 2003-05-12 2012-06-20 신에쓰 가가꾸 고교 가부시끼가이샤 Plasma-resistant member and method of producing the same
JP2012167301A (en) * 2011-02-10 2012-09-06 Mitsubishi Heavy Ind Ltd Thermal spraying powder and method for producing thermal spraying powder
US8337956B2 (en) 2007-10-26 2012-12-25 Shin-Etsu Chemical Co., Ltd. Wafer
WO2015079906A1 (en) * 2013-11-26 2015-06-04 株式会社フジミインコーポレーテッド Thermal-spray material and thermal-spray coating film
JP2016138309A (en) * 2015-01-27 2016-08-04 日本イットリウム株式会社 Powder for flame spray and flame spray material
JP2018140913A (en) * 2017-02-28 2018-09-13 国立大学法人長岡技術科学大学 Manufacturing method of composite material in which yttrium oxide film is formed on silicon oxide base material
JP2019148010A (en) * 2019-04-05 2019-09-05 日本イットリウム株式会社 Spray deposit
JP2020026579A (en) * 2018-08-10 2020-02-20 信越化学工業株式会社 Slurry for suspension plasma spray coating and method of forming spray coating membrane
JP2021513001A (en) * 2018-01-31 2021-05-20 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Powder for coating the etching chamber
US11987503B2 (en) 2019-04-26 2024-05-21 Nippon Yttrium Co., Ltd. Powder for film formation or sintering

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452610A (en) * 1987-06-26 1989-02-28 Rhone Poulenc Chimie Manufacture of ceric oxide and novel ceric oxide with morphologic characteristics
JPH02185902A (en) * 1988-11-08 1990-07-20 Hermann C Starck Berlin Gmbh & Co Kg Oxygen-containing molybdenum metal powder and preparation thereof
JPH05320860A (en) * 1992-05-18 1993-12-07 Tosoh Corp Zirconia powder for thermal spraying
JPH061854A (en) * 1992-06-19 1994-01-11 Nippon Zeon Co Ltd Production of fine polymer particle and fine polymer particle produced thereby
JPH0665706A (en) * 1992-08-19 1994-03-08 Tosoh Corp Ziconia powder for thermal spraying
JPH06142822A (en) * 1992-11-09 1994-05-24 Kawasaki Steel Corp Production of casting mold for casting high melting active metal
JPH07187824A (en) * 1993-12-27 1995-07-25 Kurosaki Refract Co Ltd Alumina-titania thermal spraying material
JPH08119632A (en) * 1994-10-25 1996-05-14 Shin Etsu Chem Co Ltd Production of hydroxide of rare earth element and production of oxide of rare earth element
JPH08311635A (en) * 1995-05-12 1996-11-26 Sumitomo Metal Mining Co Ltd Tungsten carbide-base cermet powder for high-speed powder flame spraying
JPH11268906A (en) * 1992-07-29 1999-10-05 Rhodia Chim Rare earth phosphate and product obtained from the same
JP2000001362A (en) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk Corrosion resistant ceramic material
JP2000239066A (en) * 1999-02-22 2000-09-05 Kyocera Corp Corrosionproof member and its production, and member for plasma treatment device using the same
JP2002080954A (en) * 2000-06-29 2002-03-22 Shin Etsu Chem Co Ltd Thermal-spraying powder and thermal-sprayed film
JP2002363724A (en) * 2001-03-08 2002-12-18 Shin Etsu Chem Co Ltd Spherical particle for thermal spraying and thermal spraying member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452610A (en) * 1987-06-26 1989-02-28 Rhone Poulenc Chimie Manufacture of ceric oxide and novel ceric oxide with morphologic characteristics
JPH02185902A (en) * 1988-11-08 1990-07-20 Hermann C Starck Berlin Gmbh & Co Kg Oxygen-containing molybdenum metal powder and preparation thereof
JPH05320860A (en) * 1992-05-18 1993-12-07 Tosoh Corp Zirconia powder for thermal spraying
JPH061854A (en) * 1992-06-19 1994-01-11 Nippon Zeon Co Ltd Production of fine polymer particle and fine polymer particle produced thereby
JPH11268906A (en) * 1992-07-29 1999-10-05 Rhodia Chim Rare earth phosphate and product obtained from the same
JPH0665706A (en) * 1992-08-19 1994-03-08 Tosoh Corp Ziconia powder for thermal spraying
JPH06142822A (en) * 1992-11-09 1994-05-24 Kawasaki Steel Corp Production of casting mold for casting high melting active metal
JPH07187824A (en) * 1993-12-27 1995-07-25 Kurosaki Refract Co Ltd Alumina-titania thermal spraying material
JPH08119632A (en) * 1994-10-25 1996-05-14 Shin Etsu Chem Co Ltd Production of hydroxide of rare earth element and production of oxide of rare earth element
JPH08311635A (en) * 1995-05-12 1996-11-26 Sumitomo Metal Mining Co Ltd Tungsten carbide-base cermet powder for high-speed powder flame spraying
JP2000001362A (en) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk Corrosion resistant ceramic material
JP2000239066A (en) * 1999-02-22 2000-09-05 Kyocera Corp Corrosionproof member and its production, and member for plasma treatment device using the same
JP2002080954A (en) * 2000-06-29 2002-03-22 Shin Etsu Chem Co Ltd Thermal-spraying powder and thermal-sprayed film
JP2002363724A (en) * 2001-03-08 2002-12-18 Shin Etsu Chem Co Ltd Spherical particle for thermal spraying and thermal spraying member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
KR101121364B1 (en) * 2002-12-27 2012-03-09 신에쓰 가가꾸 고교 가부시끼가이샤 High Withstand Voltage Member
KR101157707B1 (en) * 2003-05-12 2012-06-20 신에쓰 가가꾸 고교 가부시끼가이샤 Plasma-resistant member and method of producing the same
JP2008512566A (en) * 2004-09-13 2008-04-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
JP4738414B2 (en) * 2004-09-13 2011-08-03 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
JP2006108178A (en) * 2004-09-30 2006-04-20 Toshiba Corp Component for semiconductor manufacturing device and semiconductor manufacturing device
JP4585260B2 (en) * 2004-09-30 2010-11-24 株式会社東芝 Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP2006144123A (en) * 2004-10-18 2006-06-08 Nihon Ceratec Co Ltd Corrosion-resistant member and its manufacturing method
JP2006118013A (en) * 2004-10-22 2006-05-11 Fujimi Inc Powder for thermal spraying, thermal spraying method and thermally sprayed coating
JP4585832B2 (en) * 2004-10-22 2010-11-24 株式会社フジミインコーポレーテッド Thermal spray powder, thermal spraying method and thermal spray coating
JP4642487B2 (en) * 2005-01-20 2011-03-02 株式会社フジミインコーポレーテッド Thermal spray powder
JP2006200005A (en) * 2005-01-20 2006-08-03 Fujimi Inc Powder for thermal spraying
JP2007100143A (en) * 2005-09-30 2007-04-19 Fujimi Inc Sprayed coating
JP2007100142A (en) * 2005-09-30 2007-04-19 Fujimi Inc Sprayed coating
JP2007100141A (en) * 2005-09-30 2007-04-19 Fujimi Inc Powder for thermal spraying and method for forming sprayed coating
US8337956B2 (en) 2007-10-26 2012-12-25 Shin-Etsu Chemical Co., Ltd. Wafer
JP2009124129A (en) * 2007-10-26 2009-06-04 Shin Etsu Chem Co Ltd Wafer
JP2012167301A (en) * 2011-02-10 2012-09-06 Mitsubishi Heavy Ind Ltd Thermal spraying powder and method for producing thermal spraying powder
JPWO2015079906A1 (en) * 2013-11-26 2017-03-16 株式会社フジミインコーポレーテッド Thermal spray material and thermal spray coating
WO2015079906A1 (en) * 2013-11-26 2015-06-04 株式会社フジミインコーポレーテッド Thermal-spray material and thermal-spray coating film
JP2016138309A (en) * 2015-01-27 2016-08-04 日本イットリウム株式会社 Powder for flame spray and flame spray material
JP2018140913A (en) * 2017-02-28 2018-09-13 国立大学法人長岡技術科学大学 Manufacturing method of composite material in which yttrium oxide film is formed on silicon oxide base material
JP6991474B2 (en) 2017-02-28 2022-01-12 国立大学法人長岡技術科学大学 A method for producing a composite material in which an yttrium oxide film is formed on a silicon oxide substrate.
JP2021513001A (en) * 2018-01-31 2021-05-20 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Powder for coating the etching chamber
JP2020026579A (en) * 2018-08-10 2020-02-20 信越化学工業株式会社 Slurry for suspension plasma spray coating and method of forming spray coating membrane
JP7156203B2 (en) 2018-08-10 2022-10-19 信越化学工業株式会社 Slurry for suspension plasma thermal spraying and method for forming thermal spray coating
JP2019148010A (en) * 2019-04-05 2019-09-05 日本イットリウム株式会社 Spray deposit
US11987503B2 (en) 2019-04-26 2024-05-21 Nippon Yttrium Co., Ltd. Powder for film formation or sintering

Also Published As

Publication number Publication date
JP4231990B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4044348B2 (en) Spherical particles for thermal spraying and thermal spraying member
JP2002348653A (en) Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP3672833B2 (en) Thermal spray powder and thermal spray coating
EP1239055B1 (en) Thermal spray spherical particles, and sprayed components
EP1167565B1 (en) Method for thermal spray coating and rare earth oxide powder used therefor
US6596397B2 (en) Thermal spray particles and sprayed components
JP2006037238A (en) Method for producing spherical particle for thermal spraying
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
US6767636B2 (en) Thermal spray rare earth oxide particles, sprayed components, and corrosion resistant components
JP4273292B2 (en) Thermal spray particles and thermal spray member using the particles
JP2023138599A (en) Thermal spray coating and thermal spray member
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP2006152408A (en) Powder for thermal spraying, thermal spraying method, and thermal-sprayed film
WO2018052128A1 (en) Material for thermal spraying
US11312637B1 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP2024028425A (en) Thermal spray coating, thermal spraying member, method for forming thermal spray coating and method for manufacturing thermal spraying member
JP2002332559A (en) Oxide grain for thermal spraying, production method therefor and thermally sprayed member and corrosion resistant member using the same grain
JP2005097747A (en) Thermal-spraying powder and thermal-sprayed film
JP2006144094A (en) Powder for thermal spraying, and manufacturing method therefor
JP2002332558A (en) Spherical particle for thermal spraying, its manufacturing method, and spray coated member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070829

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees