JPH08311635A - Tungsten carbide-base cermet powder for high-speed powder flame spraying - Google Patents

Tungsten carbide-base cermet powder for high-speed powder flame spraying

Info

Publication number
JPH08311635A
JPH08311635A JP13741095A JP13741095A JPH08311635A JP H08311635 A JPH08311635 A JP H08311635A JP 13741095 A JP13741095 A JP 13741095A JP 13741095 A JP13741095 A JP 13741095A JP H08311635 A JPH08311635 A JP H08311635A
Authority
JP
Japan
Prior art keywords
powder
particles
speed
flame spraying
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13741095A
Other languages
Japanese (ja)
Inventor
Tatsuo Shimatani
竜男 島谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13741095A priority Critical patent/JPH08311635A/en
Publication of JPH08311635A publication Critical patent/JPH08311635A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the fluidity of powder in high-speed powder flame spraying by allowing each powder to contain specified wt.% particle and specifying the average diameter of the particles. CONSTITUTION: Each particle is formed with a tungsten carbide phase and a metal phase. The fluidity of powder is made unstable when the major axis/ minor axis of the powder particle exceeds 1.5, and the thickness of the sprayed film (the largest possible thickness of the high-speed flame spraying being only 0.2-0.4mm) is made nonuniform. Accordingly, the ratio is controlled to <1.5, the powder contg. <=10wt.% particles having >=45μm diameter, <=2wt.% particles having <5μm diameter and the balance particles having 5-45μm diameter is used, and the average particle diameter of the powder is controlled to 20-25μm. The metal phase consists of Co, Ni and Ni-CR alloy. Consequently, the powder deposition yield is increased in spraying, and the thickness of the sprayed film is made uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速粉末式フレーム溶
射用タングステンカーバイト系サーメット粉末の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of tungsten carbide type cermet powder for high speed powder flame spraying.

【0002】[0002]

【従来の技術】ステンレス鋼等の基材の表面の特性を著
しく改善して基材の表面の全部または一部に耐磨耗性、
耐食性等を付与するために、各粒子がタングステンカー
バイト等の炭化物相とコバルト、ニッケル、ニッケルク
ロム合金等のメタル相からなる高融点および高硬度のサ
ーメット粉末の溶射が行われている。前記サーメット粉
末の溶射法としては、種々のものが開発されているが、
中でもプロピレン、水素、プロパンなどの燃料ガスと酸
素との燃焼ガスを熱源とする高速粉末式フレーム溶射法
は、従来のプラズマ溶射法等に比較して、高速かつ低温
で溶射できることから、炭化物の酸化や分解が少なく、
また、ち密な溶射皮膜の形成が可能であるため、近年特
に注目を集めるようになっている(例えば、平成5年3
月25日、株式会社産業技術センター社発行、「実用表
面改質技術総覧」、727〜733頁参照)。
2. Description of the Related Art The characteristics of the surface of a base material such as stainless steel are remarkably improved so that the entire surface or a part of the surface of the base material has abrasion resistance,
In order to impart corrosion resistance and the like, a cermet powder having a high melting point and a high hardness, in which each particle is composed of a carbide phase such as tungsten carbide and a metal phase such as cobalt, nickel and nickel-chromium alloy, is sprayed. As the thermal spraying method of the cermet powder, various ones have been developed,
Among them, the high-speed powder flame spraying method, which uses combustion gas of fuel gas such as propylene, hydrogen, propane, and oxygen as heat sources, is capable of thermal spraying at high speed and low temperature as compared with the conventional plasma spraying method, so that oxidation of carbide And less disassembly,
Further, since it is possible to form a dense thermal spray coating, it has been particularly attracting attention in recent years (for example, March 1993).
May 25, published by Industrial Technology Center Co., Ltd., "Practical Surface Modification Techniques", pages 727-733).

【0003】サーメット粉末溶射において使用されるサ
ーメット粉末は、(1)溶解インゴットを粉砕する鋳造
−粉砕法、(2)焼結体を粉砕する焼結−粉砕法、
(3)炭化物粉末の一粒一粒の粒子表面にメタル相を付
着させるコーティング法、(4)炭化物粉末と金属粉末
の原料混合粉末に有機質のバインダーを加えて造粒した
後、高温で焼結する造粒−焼結法等によって製造され、
その粒度分布を適宜に調整して使用されている。前記粉
末製造法において、(4)造粒−焼結法では粉末は球形
化するが、(1)鋳造−粉砕法および(2)焼結−粉砕
法では不規則形状の粉末となる。また、コーティング法
では、スプレー法によりメタル相を付着させると、球形
状となり、メタル相を付着させた後、粉砕すると不規則
形状となる。不規則形状の粉末は、その粒子の長径と短
径の比が大きく、かつ一定していないため、高速粉末式
フレーム溶射法にこの粉末を用いた場合、前記粉末の流
動性が不安定となり、溶融粉末粒子あるいは半溶融粉末
粒子を含む火炎の太さが一定しない。そのため、粉末の
流動ムラにより溶射皮膜の厚さが不均一になりやすい。
The cermet powder used in cermet powder thermal spraying is (1) a casting-crushing method for crushing a molten ingot, (2) a sintering-crushing method for crushing a sintered body,
(3) A coating method in which a metal phase is attached to the surface of each of the carbide powder particles, (4) An organic binder is added to the raw material mixed powder of the carbide powder and the metal powder, the mixture is granulated, and then sintered at a high temperature. Manufactured by a granulation-sintering method or the like,
The particle size distribution is adjusted appropriately before use. In the powder manufacturing method, the powder is made spherical by (4) granulation-sintering method, but becomes irregularly shaped powder by (1) casting-crushing method and (2) sintering-crushing method. In addition, in the coating method, when the metal phase is attached by the spray method, the shape becomes spherical, and when the metal phase is attached and then pulverized, the shape becomes irregular. The irregularly shaped powder has a large ratio of the major axis and the minor axis of the particle, and is not constant, so when this powder is used in the high-speed powder flame spraying method, the fluidity of the powder becomes unstable, The thickness of the flame containing molten powder particles or semi-molten powder particles is not constant. Therefore, the thickness of the thermal spray coating is likely to be non-uniform due to the uneven flow of the powder.

【0004】一方、球形状をなし、粒子の長径と短径の
比が小さい粉末は、粉末の流動性が良好であり、従って
一定量の粉末が基材に付着していくので、溶射皮膜の厚
さも均一なものとなる。しかしながら、溶射皮膜の膜厚
は均一となるものの、(1)粉末の付着歩留りが低い、
(2)多孔質の溶射皮膜が形成され易い、(3)高速フ
レーム溶射ガンのノズル内面で粉末が堆積して目詰まり
を起こしやすい、即ち、溶射作業性が悪いという欠点が
あった。
On the other hand, a powder having a spherical shape and a small ratio of the major axis to the minor axis of the particles has a good fluidity of the powder, and therefore a certain amount of the powder adheres to the base material, so that the thermal spray coating is formed. The thickness is also uniform. However, although the thickness of the sprayed coating is uniform, (1) the deposition yield of the powder is low,
(2) The porous thermal spray coating is easily formed, and (3) the powder is likely to be clogged due to the accumulation of powder on the inner surface of the nozzle of the high-speed flame spray gun, that is, the spraying workability is poor.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述した課
題に着目してなされたもので、球形状をなす利点を維持
しながら、高い付着歩留りが得られ、気孔量の少ない溶
射皮膜を形成し得、さらには良好な溶射作業性を有した
高速粉末式フレーム溶射用タングステンカーバイト系サ
ーメット粉末を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems and forms a thermal spray coating having a high deposition yield and a small amount of pores while maintaining the advantage of forming a spherical shape. It is also an object of the present invention to provide a tungsten carbide type cermet powder for high-speed powder flame spraying, which has good spraying workability.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の高速粉末式フレーム溶射用タングステンカ
ーバイト系サーメット粉末は、各粒子がタングステンカ
ーバイト相とメタル相からなり、長径と短径の比が1.
5以下の球形状を呈する粉末において、粉末の粒度分布
が、粒径45μmを超える粒子を10重量%以下、粒径
5μm未満の粒子を2重量%以下含み、残部が粒径5〜
45μmの粒子であり、かつ、粉末の平均粒径が20〜
25μmであることを特徴とする。メタル相の成分とし
て、コバルト、ニッケル、ニッケルクロム合金などが挙
げられる。
In order to achieve the above object, a tungsten carbide type cermet powder for high-speed powder flame spraying according to the present invention, wherein each particle is composed of a tungsten carbide phase and a metal phase, a major axis and a minor axis The ratio of 1.
In a powder having a spherical shape of 5 or less, the particle size distribution of the powder includes 10% by weight or less of particles having a particle size of more than 45 μm, 2% by weight or less of particles having a particle size of less than 5 μm, and the balance of 5 to 5%.
45 μm particles, and the average particle size of the powder is 20 to
It is characterized in that it is 25 μm. Examples of components of the metal phase include cobalt, nickel, and nickel-chromium alloys.

【0007】[0007]

【作用】本発明の高速粉末式フレーム溶射用タングステ
ンカーバイト系サーメット粉末において、次の項目の各
々について説明する。
In the tungsten carbide type cermet powder for high speed powder flame spraying of the present invention, each of the following items will be described.

【0008】1.長径と短径の比 粉末粒子の長径と短径との比、即ち長径/短径の値が
1.5を超えると、粉末の流動性が不安定となり、形成
される溶射皮膜の膜厚(高速フレーム溶射の最大溶射可
能厚さは0.2〜0.4mmと薄い)が不均一になるこ
とから、その比は1.5以下とした。
1. Ratio of major axis to minor axis If the ratio of major axis to minor axis of the powder particles, that is, the value of major axis / minor axis exceeds 1.5, the fluidity of the powder becomes unstable and the film thickness of the sprayed coating formed ( Since the maximum sprayable thickness of high-speed flame spraying is as thin as 0.2 to 0.4 mm), the ratio is set to 1.5 or less.

【0009】2.粉末の粒度分布 高速粉末式フレーム溶射中に粉末粒子がよりよく溶融す
るため緻密で高硬度の溶射皮膜を形成することができ
る。しかし、粒径45μmを超える粒子が10重量%を
超えると、粉末の流動性はさらに向上(速く)するもの
の、形成される溶射皮膜の硬度および耐磨耗性を低下さ
せ、さらには発生する気孔の量も多くなることから、1
0重量%以下とした。また、粒径5μm未満の粒子が2
重量%を超えると、(1)粒度範囲が広がるため、粉末
の流動性が不安定になる、(2)高度粉末式フレーム溶
射時に微粉末のみが火炎の外に飛散するため粉末付着歩
留りが低下する(所定の膜厚まで溶射するのに時間がか
かる)、(3)溶射皮膜表面の酸化が激しくなる、
(4)ノズル内面に溶融し易い微粉末が堆積して目詰ま
りを起こすため、2重量%以下とした。
2. Particle size distribution of powder Since powder particles are better melted during high-speed powder flame spraying, a dense and high-hardness sprayed coating can be formed. However, if the amount of particles having a particle size of more than 45 μm exceeds 10% by weight, the fluidity of the powder is further improved (faster), but the hardness and abrasion resistance of the formed sprayed coating are reduced, and the generated pores are further reduced. Since the amount of
It was set to 0% by weight or less. In addition, the number of particles having a particle size of less than 5 μm is 2
When the content is more than 1% by weight, (1) the particle size range is widened and the fluidity of the powder becomes unstable, and (2) only the fine powder scatters out of the flame during thermal spraying of the advanced powder type flame, which reduces the powder deposition yield. Yes (it takes time to spray to a predetermined film thickness), (3) oxidation of the sprayed coating surface becomes severe,
(4) Since fine powder that easily melts is deposited on the inner surface of the nozzle to cause clogging, the content is set to 2% by weight or less.

【0010】3.平均粒径 20μm未満では形成される溶射皮膜は硬さが高くなり
過ぎて脆化し、後工程の機械加工や溶射皮膜の使用時に
おいて、溶射皮膜に割れや剥離が発生し易く、さらには
粉末付着歩留りが低下して著しく溶射作業性が悪化す
る。一方、25μmを超えると、硬さの低下と気孔の多
量発生を招き易いことから、その平均粒径は20〜25
μmとした。
3. If the average particle size is less than 20 μm, the hardness of the thermal spray coating that is formed becomes too high and becomes brittle, and cracks and peeling easily occur in the thermal spray coating during the subsequent machining process or when the thermal spray coating is used, and further powder adhesion Yield decreases, and the spraying workability deteriorates significantly. On the other hand, if it exceeds 25 μm, the hardness tends to decrease and a large number of pores are likely to be generated, so that the average particle size is 20 to 25
μm.

【0011】本発明の高速粉末式フレーム溶射用タング
ステンカーバイト系サーメット粉末を製造するには、前
記造粒−焼結法を採用するのが好ましい。この方法によ
り球形状粉末粒子が得られるだけでなく、次の利点も挙
げられる。即ち、造粒−焼結法による粉末は、高温の高
速粉末式フレーム溶射ガンを通過した後も20重量%以
下がW2CとWに変化する(WCはCを失うことにより
2CとWに還元され、Cは酸化、マトリックスへの拡
散によって失われる)だけであり、溶射皮膜の硬度、耐
食性および耐磨耗性が劣化しにくい。これに対して、鋳
造−粉砕法により製造した、例えば、WC−Co粉末で
は、粉末粒子中に、WCの他に、W、W2C、Co33
C の相が含まれており、WC−Co粉末が高速粉末式
フレームを通過すると、これらの相が分解してWが増大
し、溶射皮膜の硬度、耐食性および耐磨耗性が劣化しや
すい。また、焼結−粉砕法による粉末は、上記W化合物
の分解による溶射皮膜の劣化を生じにくいものの、粉末
粒子の球形状化が困難である。
In order to produce the tungsten carbide type cermet powder for high speed powder flame spraying of the present invention, it is preferable to adopt the above-mentioned granulation-sintering method. Not only spherical powder particles can be obtained by this method, but also the following advantages can be mentioned. That is, in the powder obtained by the granulation-sintering method, 20% by weight or less is changed to W 2 C and W even after passing through a high-speed high-speed powder flame spray gun (WC becomes W 2 C by losing C). It is reduced to W and C is lost by oxidation and diffusion into the matrix), and the hardness, corrosion resistance and wear resistance of the sprayed coating are less likely to deteriorate. On the other hand, in the case of, for example, WC-Co powder produced by the casting-crushing method, W, W 2 C, Co 3 W 3 are contained in the powder particles in addition to WC.
When the WC-Co powder contains a C 2 phase and passes through a high-speed powder type flame, these phases are decomposed and W is increased, and the hardness, corrosion resistance and wear resistance of the thermal spray coating are likely to deteriorate. Further, although the powder obtained by the sintering-pulverization method is unlikely to cause the deterioration of the thermal spray coating due to the decomposition of the W compound, it is difficult to make the powder particles spherical.

【0012】[0012]

【実施例】【Example】

[実施例1〜4、比較例1、2]造粒−焼結法を行った
後、空気分級機を用いて表1に示す粒度分布を有するW
C−12重量%Co粉末およびWC−12重量%Ni粉
末を調製した。これらの粉末の球形度(長径/短径
比)、粒度分布(レーザー回折法による)、平均粒径お
よび流動度を調べたところ、表1に示す結果となった。
これらの粉末を使用して、表2に示す条件で基材表面に
高速粉末式フレーム溶射を行い、粉末の付着歩留り、溶
射時の粉末の流動性、並びに、形成された溶射皮膜の表
面粗さ(盛放し状態)、ビッカース硬度および気孔率を
調べたところ、表3に示す結果となった。なお、粉末の
付着歩留りは、溶射皮膜重量と粉末使用重量から算出し
た。また、溶射時の粉末の流動性は、ノズル部分におけ
る粉末の詰まりや飛行粉末を含む火炎の太さの変化を見
た。
[Examples 1 to 4, Comparative Examples 1 and 2] W having a particle size distribution shown in Table 1 using an air classifier after performing the granulation-sintering method.
C-12 wt% Co powder and WC-12 wt% Ni powder were prepared. When the sphericity (major axis / minor axis ratio), particle size distribution (by laser diffraction method), average particle size and fluidity of these powders were examined, the results shown in Table 1 were obtained.
Using these powders, high-speed powder flame spraying was performed on the surface of the base material under the conditions shown in Table 2, the adhesion yield of the powders, the fluidity of the powders during the spraying, and the surface roughness of the sprayed coating formed. When the (extended state), Vickers hardness and porosity were examined, the results shown in Table 3 were obtained. The powder adhesion yield was calculated from the weight of the sprayed coating and the weight of the powder used. Regarding the fluidity of the powder during thermal spraying, we observed clogging of the powder at the nozzle and changes in the thickness of the flame containing the flying powder.

【0013】[従来例1、2]市販の高速粉末式フレー
ム溶射用粉末を入手した。これらの粉末につき実施例1
と同様に調べたところ、表1に示す結果となった。これ
らの粉末を使用して高速粉末式フレーム溶射を行うこと
以後は、実施例1と同様に試験したところ、表2および
表3に示す結果となった。
[Prior Art Examples 1 and 2] Commercially available high-speed powder type flame spray powders were obtained. Example 1 for these powders
When examined in the same manner as above, the results shown in Table 1 were obtained. After performing high-speed powder flame spraying using these powders, the same tests as in Example 1 were performed, with the results shown in Tables 2 and 3.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】以上の結果から次のことが分かる。即ち、 (1)実施例1〜4の高速粉末式フレーム溶射用粉末
は、球形状を呈し、5μm未満の微粉末量が少ないため
溶射時における粉末の付着歩留りや流動性が高く、ノズ
ル内面の詰まりが起こりにくい。また、45μmを超え
る粗粉末量が少なく、粒度範囲も狭いので、厚さの不均
一(粗さ)や低硬度、高気孔率といった不具合がなく、
良好な溶射作業性と溶射皮膜特性を得ることができた。 (2)比較例1の高速粉末式フレーム溶射用粉末は、球
形状であるものの、45μmを超える粗粉末や5μm未
満の微粉末が多く、流動度が悪い。この粉末を用いて高
速粉末式フレーム溶射を行うと、付着歩留りが低く、硬
度が低く、表面粗さが粗く(皮膜厚さの不均一)、気孔
率が高くなる。 (3)比較例2の高速粉末式フレーム溶射用粉末は、球
形状であるものの、5μm未満の微粉末が多く、流動度
が悪い。この粉末を用いて高速粉末式フレーム溶射を行
うと、付着歩留りが低く、硬度が低く、気孔率が高くな
る。また、溶射時の粉末の流動性があまり良くなく、火
炎の太さが不安定である。 (4)従来例1の高速粉末式フレーム溶射用粉末は、製
造方法が異なり長径/短径比の大きい不規則形状であ
り、また、45μmを超える粗粉末や5μm未満の微粉
末が多く、流動度が無い。この粉末を用いて高速粉末式
フレーム溶射を行うと、付着歩留りが低く、硬度が低
く、表面粗さが粗く(皮膜厚さの不均一)、気孔率が高
くなる。また、溶射時の粉末の流動性があまり良くな
く、火炎の太さが不安定である。 (5)従来例2の高速粉末式フレーム溶射用粉末は、従
来例1と同様、長径/短径比の大きい不規則形状であ
り、また、5μm未満の微粉末が多く、流動度が無い。
この粉末を用いて高速粉末式フレーム溶射を行うと、付
着歩留りが低く、また、溶射時の粉末の流動性が良くな
く、ノズルが詰り易く、火炎の太さが不安定であるの
で、溶射作業性が良くない。
From the above results, the following can be understood. That is, (1) The high-speed powder flame spray powders of Examples 1 to 4 have a spherical shape and a small amount of fine powder of less than 5 μm, so that the powder adhesion yield and fluidity during spraying are high, and Less likely to clog. Further, since the amount of coarse powder exceeding 45 μm is small and the particle size range is narrow, there are no problems such as uneven thickness (roughness), low hardness, and high porosity.
Good spraying workability and spray coating characteristics could be obtained. (2) The high-speed powder flame spray powder of Comparative Example 1 has a spherical shape, but has a large amount of coarse powder of more than 45 μm and fine powder of less than 5 μm, resulting in poor flowability. When high-speed powder flame spraying is performed using this powder, the deposition yield is low, the hardness is low, the surface roughness is rough (non-uniform coating thickness), and the porosity is high. (3) The high-speed powder flame spraying powder of Comparative Example 2 has a spherical shape, but has many fine powders of less than 5 μm and has poor flowability. When high-speed powder flame spraying is performed using this powder, the deposition yield is low, the hardness is low, and the porosity is high. Moreover, the fluidity of the powder during thermal spraying is not very good, and the thickness of the flame is unstable. (4) The high-speed powder flame spraying powder of Conventional Example 1 has a different manufacturing method and an irregular shape with a large major axis / minor axis ratio, and also contains a large amount of coarse powder exceeding 45 μm and fine powder of less than 5 μm, which is fluid. There is no degree. When high-speed powder flame spraying is performed using this powder, the deposition yield is low, the hardness is low, the surface roughness is rough (non-uniform coating thickness), and the porosity is high. Moreover, the fluidity of the powder during thermal spraying is not very good, and the thickness of the flame is unstable. (5) Similar to Conventional Example 1, the high-speed powder flame spraying powder of Conventional Example 2 has an irregular shape with a large major axis / minor axis ratio, and has many fine powders of less than 5 μm and has no flowability.
When high-speed powder flame spraying is performed using this powder, the adhesion yield is low, the fluidity of the powder during spraying is not good, the nozzle is easily clogged, and the thickness of the flame is unstable. The sex is not good.

【0018】[0018]

【発明の効果】以上から明らかなように、本発明の高速
粉末式フレーム溶射用タングステンカーバイト系サーメ
ット粉末は、各粒子がタングステンカーバイト相とメタ
ル相からなり、長径と短径の比が1.5以下の球形状を
呈する粉末において、粉末の粒度分布が、粒径45μm
を超える粒子を10重量%以下、粒径5μm未満の粒子
を2重量%以下含み、残部が粒径5〜45μmの粒子で
あり、かつ、粉末の平均粒径が20〜25μmであるこ
とを特徴とするから、高速粉末式フレーム溶射時におけ
る粉末の流動性が優れている。そのため溶射時の粉末付
着歩留りを高くし、溶射皮膜の厚さを均一にすることが
可能であると同時に、硬度や気孔率等の溶射皮膜の特性
を向上することや、ノズルの詰りを防ぐことが可能であ
り、高速粉末式フレーム溶射の利点を充分に生かすこと
ができる。
As is apparent from the above, each particle of the tungsten carbide type cermet powder for high-speed powder flame spraying of the present invention has a tungsten carbide phase and a metal phase, and the ratio of the major axis to the minor axis is 1. In a powder having a spherical shape of 0.5 or less, the particle size distribution of the powder is 45 μm.
10% by weight or less of particles, 2% by weight or less of particles having a particle size of less than 5 μm, and the balance being particles having a particle size of 5 to 45 μm, and having an average particle size of 20 to 25 μm. Therefore, the fluidity of the powder during high-speed powder flame spraying is excellent. Therefore, it is possible to increase the powder deposition yield during thermal spraying and make the thickness of the thermal spray coating uniform, and at the same time improve the characteristics of the thermal spray coating such as hardness and porosity, and prevent nozzle clogging. The advantages of high-speed powder flame spraying can be fully utilized.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 各粒子がタングステンカーバイト相とメ
タル相からなり、長径と短径の比が1.5以下の球形状
を呈する粉末において、粉末の粒度分布が、粒径45μ
mを超える粒子を10重量%以下、粒径5μm未満の粒
子を2重量%以下含み、残部が粒径5〜45μmの粒子
であり、かつ、粉末の平均粒径が20〜25μmである
ことを特徴とする高速粉末式フレーム溶射用タングステ
ンカーバイト系サーメット粉末。
1. In a spherical powder in which each particle is composed of a tungsten carbide phase and a metal phase, and the ratio of major axis to minor axis is 1.5 or less, the particle size distribution of the powder is 45 μm.
10% by weight or less of particles exceeding m, 2% by weight or less of particles having a particle size of less than 5 μm, the balance being particles having a particle size of 5 to 45 μm, and having an average particle size of 20 to 25 μm. High-speed powder type tungsten carbide cermet powder for flame spraying.
【請求項2】 メタル相は、コバルト、ニッケルまたは
ニッケルクロム合金である請求項1に記載の高速粉末式
フレーム溶射用タングステンカーバイト系サーメット粉
末。
2. The tungsten carbide type cermet powder for high speed powder flame spraying according to claim 1, wherein the metal phase is cobalt, nickel or nickel chromium alloy.
JP13741095A 1995-05-12 1995-05-12 Tungsten carbide-base cermet powder for high-speed powder flame spraying Pending JPH08311635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13741095A JPH08311635A (en) 1995-05-12 1995-05-12 Tungsten carbide-base cermet powder for high-speed powder flame spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13741095A JPH08311635A (en) 1995-05-12 1995-05-12 Tungsten carbide-base cermet powder for high-speed powder flame spraying

Publications (1)

Publication Number Publication Date
JPH08311635A true JPH08311635A (en) 1996-11-26

Family

ID=15197996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13741095A Pending JPH08311635A (en) 1995-05-12 1995-05-12 Tungsten carbide-base cermet powder for high-speed powder flame spraying

Country Status (1)

Country Link
JP (1) JPH08311635A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
JP2006176818A (en) * 2004-12-21 2006-07-06 Fujimi Inc Powder for thermal spraying
WO2010143594A1 (en) * 2009-06-10 2010-12-16 株式会社 フジミインコーポレーテッド Powder for thermal spraying and method for forming thermal-spray deposit
JP2011074494A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Single layer bond coat and method of application
DE112010003559T5 (en) 2009-09-07 2012-09-13 Fujimi Inc. Powder for thermal spraying

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
JP2006176818A (en) * 2004-12-21 2006-07-06 Fujimi Inc Powder for thermal spraying
WO2010143594A1 (en) * 2009-06-10 2010-12-16 株式会社 フジミインコーポレーテッド Powder for thermal spraying and method for forming thermal-spray deposit
DE112010003559T5 (en) 2009-09-07 2012-09-13 Fujimi Inc. Powder for thermal spraying
US9340862B2 (en) 2009-09-07 2016-05-17 Fujimi Incorporated Powder for thermal spraying
DE112010003559B4 (en) 2009-09-07 2022-12-22 Fujimi Inc. Powders for thermal spraying and thermal spraying processes
JP2011074494A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Single layer bond coat and method of application

Similar Documents

Publication Publication Date Title
US6071324A (en) Powder of chromium carbide and nickel chromium
US3313633A (en) High temperature flame spray powder
EP0138228B1 (en) Abrasion resistant coating and method for producing the same
CA2337322C (en) Spray powder, thermal spraying process using it, and sprayed coating
EP1485220B1 (en) Corrosion resistant powder and coating
TWI661882B (en) Process for producing chromium nitride-containing sintered spraying powder, chromium-containing sintered spray powder and use thereof, and coated component and producing process thereof
US5063021A (en) Method for preparing powders of nickel alloy and molybdenum for thermal spray coatings
US3378392A (en) High temperature flame spray powder and process
CA2369257A1 (en) Spray powder and method for its production
CA2567089C (en) Wear resistant alloy powders and coatings
JPH10110206A (en) Production of fine-grained (chromium carbide)-(nickel chromium) powder
US20130095250A1 (en) Powder for thermal spraying and process for formation of sprayed coating
US4606948A (en) Process for the production of nickel-chromium/chromium carbide coatings on substrates
CA2267960C (en) Coating powder and method for its production
JP4394349B2 (en) Wear-resistant layer for piston rings containing tungsten carbide and chromium carbide
JPH08311635A (en) Tungsten carbide-base cermet powder for high-speed powder flame spraying
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
US4678511A (en) Spray micropellets
JP2770968B2 (en) Chromium carbide-metal composite powder for high energy spraying
US3395030A (en) Carbide flame spray material
JPH06116703A (en) Hearth roller having heat resistance and wear resistance
US4588606A (en) Abrasion resistant coating and method for producing the same
Arensburger et al. Coatings deposited by the high-velocity flame spraying method
Jewett et al. Plasma Processing of Functionally Graded Materials Part II: Deposit Formation
KR20040020327A (en) WC thermal spray coating method