JP2006176818A - Powder for thermal spraying - Google Patents

Powder for thermal spraying Download PDF

Info

Publication number
JP2006176818A
JP2006176818A JP2004370262A JP2004370262A JP2006176818A JP 2006176818 A JP2006176818 A JP 2006176818A JP 2004370262 A JP2004370262 A JP 2004370262A JP 2004370262 A JP2004370262 A JP 2004370262A JP 2006176818 A JP2006176818 A JP 2006176818A
Authority
JP
Japan
Prior art keywords
thermal spraying
powder
spraying powder
thermal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004370262A
Other languages
Japanese (ja)
Other versions
JP4885445B2 (en
Inventor
Nobuaki Kato
伸映 加藤
Satoru Osawa
悟 大澤
Takeshi Itsukaichi
剛 五日市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2004370262A priority Critical patent/JP4885445B2/en
Priority to KR1020050123259A priority patent/KR101241244B1/en
Priority to US11/311,217 priority patent/US20060134343A1/en
Priority to EP05027976A priority patent/EP1674589A2/en
Priority to CNA2005101339593A priority patent/CN1792469A/en
Publication of JP2006176818A publication Critical patent/JP2006176818A/en
Application granted granted Critical
Publication of JP4885445B2 publication Critical patent/JP4885445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide powder for thermal spraying with which a dense sprayed coating with reduced surface roughness can be satisfactorily formed. <P>SOLUTION: In the powder for thermal spraying, the 90% particle diameters D<SB>90</SB>are ≤15 μm, and also, the ratio of the integrate volume of the particles with the particle diameters of ≤1 μm is ≤2%. The value obtained by dividing the bulk density of the powder for thermal spraying by the theoretical density of the material composing the powder for thermal spraying is preferably ≥0.15. The dispersion index of the particle diameters of the powder for thermal spraying is preferably ≤0.7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は溶射用粉末に関する。   The present invention relates to a thermal spraying powder.

各種産業機械や一般向け機械の金属部品に耐食性、耐摩耗性、耐熱性等の有用な性質を付与するべく、当該部品の表面に溶射皮膜を設ける技術が知られている。溶射皮膜は、加熱により軟化又は溶融した溶射材料を基材に吹き付けて形成されるため、本質的にその表面は平滑でなく粗面である。従って、平滑な表面が要求される場合には、目的の表面粗さが得られるまで溶射皮膜を研磨することが行われている。ところが、上記のような有用な性質を持つ溶射皮膜は硬度が一般に高いため、多くの場合、溶射皮膜の研磨は容易でない。特に、炭化タングステン及び金属を含有するサーメットを溶射して形成される溶射皮膜の場合には、ダイヤモンド砥粒を使用して研磨する必要があってコストが非常に嵩む。従って、溶射後の研磨を省略又は簡略化できるような表面粗さの小さい溶射皮膜を形成する技術が求められている。   In order to impart useful properties such as corrosion resistance, wear resistance, and heat resistance to metal parts of various industrial machines and general-purpose machines, a technique for providing a thermal spray coating on the surface of the parts is known. Since the thermal spray coating is formed by spraying a base material with a thermal spray material softened or melted by heating, its surface is essentially not smooth and rough. Therefore, when a smooth surface is required, the sprayed coating is polished until the desired surface roughness is obtained. However, since the thermal spray coating having the above-mentioned useful properties is generally high in hardness, polishing of the thermal spray coating is not easy in many cases. In particular, in the case of a thermal spray coating formed by thermal spraying cermet containing tungsten carbide and metal, it is necessary to polish using diamond abrasive grains, which is very expensive. Accordingly, there is a need for a technique for forming a sprayed coating with a small surface roughness so that polishing after spraying can be omitted or simplified.

また、溶射皮膜は本質的にポーラスであり、溶射皮膜を貫通して基材から溶射皮膜の表面にまで達する貫通気孔を含むことがある。しかしながら、基材の腐食を防ぐ目的で設けられる場合など、用途によっては貫通気孔を含まないことが溶射皮膜には要求される。貫通気孔を含まないことが要求される場合には従来、溶射皮膜を厚く形成することにより対処がなされている。しかしながら、厚みが増すほどに溶射皮膜のコストが上昇するため、溶射皮膜の厚みは必要最小限であることが望ましい。従って、厚みが薄くても貫通気孔を含まないような溶射皮膜を形成する技術も求められている。また、貫通気孔を防ぐための別の対処として封孔処理により貫通気孔を塞ぐ方法がある。しかしながら、この場合も、工程が増えるためにコストが上昇する。   Further, the thermal spray coating is essentially porous, and may include through pores that penetrate the thermal spray coating and reach the surface of the thermal spray coating from the base material. However, the thermal spray coating is required to contain no through pores depending on the application, such as when it is provided for the purpose of preventing corrosion of the substrate. In the case where it is required not to include the through pores, conventionally, a countermeasure has been taken by forming a thick sprayed coating. However, since the cost of the thermal spray coating increases as the thickness increases, it is desirable that the thickness of the thermal spray coating be the minimum necessary. Therefore, there is also a need for a technique for forming a thermal spray coating that does not include through pores even when the thickness is small. As another countermeasure for preventing the through pores, there is a method of closing the through pores by a sealing treatment. However, in this case as well, the cost increases because the number of processes increases.

こうした溶射皮膜に対する要求に応える技術の一つとして、細粒の溶射用粉末から溶射皮膜を形成することが考えられる。細粒の溶射用粉末を溶射した場合には、表面粗さが小さく、かつ貫通気孔を含まない緻密な溶射皮膜を得ることが可能である。しかしながら、この場合、溶射用粉末供給装置から溶射機への溶射用粉末の供給が不安定になる虞も大きい。これは、細粒になるにつれて溶射用粉末の流動性が低下することが理由である。例えば、溶射用粉末の供給に脈動が生じた場合には、溶射皮膜の品質は大きく低下する。また、溶射用粉末にブリッジ(粉体架橋)が生じた場合には、溶射用粉末が溶射機に円滑に供給されず、場合によっては溶射用粉末の供給の停止が起こる。   As one of the technologies that meet the demand for such a thermal spray coating, it is conceivable to form the thermal spray coating from a fine spray powder. When a fine-grained thermal spraying powder is sprayed, it is possible to obtain a dense thermal sprayed coating having a small surface roughness and no through pores. However, in this case, there is a high possibility that the supply of the thermal spraying powder from the thermal spraying powder supply device to the thermal sprayer becomes unstable. This is because the fluidity of the thermal spraying powder decreases as it becomes finer. For example, when the pulsation occurs in the supply of the thermal spraying powder, the quality of the thermal spray coating is greatly deteriorated. In addition, when a bridge (powder cross-linking) occurs in the thermal spraying powder, the thermal spraying powder is not smoothly supplied to the thermal spraying machine, and in some cases, the supply of the thermal spraying powder is stopped.

例えば特許文献1には、90%粒子径D90が20μm以下である溶射用粉末から溶射皮膜を形成する技術が開示されている。しかしながら、特許文献1に記載の溶射用粉末は、溶射用粉末中の粒子径1μm以下の微粒子の割合が何ら規定されていないため、粒子径1μm以下の微粒子を多く含む虞がある。溶射用粉末に粒子径1μm以下の微粒子が多く含まれると、溶射用粉末の流動性が低下するのに加えて、溶射用粉末の凝集が起こりやすくなる。凝集を起こした溶射用粉末が溶射皮膜に混入すると、溶射皮膜の均一性や緻密性が低下したり、溶射皮膜に貫通気孔が生じたり、溶射皮膜の表面粗さが増大したりすることがある。
特開2003−129212号公報
For example, Patent Document 1 discloses a technique for forming a thermal spray coating from a thermal spraying powder having a 90% particle diameter D 90 of 20 μm or less. However, the thermal spraying powder described in Patent Document 1 does not define any proportion of the fine particles having a particle size of 1 μm or less in the thermal spraying powder, and thus may contain many fine particles having a particle size of 1 μm or less. If the thermal spraying powder contains many fine particles having a particle size of 1 μm or less, the fluidity of the thermal spraying powder is lowered and the thermal spraying powder is likely to aggregate. If the agglomerated thermal spray powder is mixed into the thermal spray coating, the uniformity and density of the thermal spray coating may decrease, through-holes may occur in the thermal spray coating, and the surface roughness of the thermal spray coating may increase. .
JP 2003-129212 A

本発明の目的は、緻密で表面粗さの低い溶射皮膜を良好に形成可能な溶射用粉末を提供することにある。   An object of the present invention is to provide a thermal spraying powder capable of satisfactorily forming a dense thermal spray coating having a low surface roughness.

上記の目的を達成するために、請求項1に記載の発明は、溶射用粉末の90%粒子径D90が15μm以下であり、かつ、溶射用粉末中の全粒子の積算体積に対する粒子径が1μm以下の粒子の積算体積の比率が2%以下であることを特徴とする溶射用粉末を提供する。 In order to achieve the above object, the invention according to claim 1 is such that the 90% particle diameter D 90 of the thermal spraying powder is 15 μm or less, and the particle diameter relative to the total volume of all the particles in the thermal spraying powder is Provided is a thermal spraying powder characterized in that the ratio of the accumulated volume of particles of 1 μm or less is 2% or less.

請求項2に記載の発明は、溶射用粉末を構成する材料の理論密度で溶射用粉末の嵩密度を除した値が0.15以上である請求項1に記載の溶射用粉末を提供する。
請求項3に記載の発明は、溶射用粉末の粒度の分散指数が0.7以下である請求項1又は2に記載の溶射用粉末を提供する。
The invention according to claim 2 provides the thermal spraying powder according to claim 1, wherein a value obtained by dividing the bulk density of the thermal spraying powder by the theoretical density of the material constituting the thermal spraying powder is 0.15 or more.
Invention of Claim 3 provides the powder for thermal spraying of Claim 1 or 2 whose dispersion index of the particle size of the powder for thermal spraying is 0.7 or less.

請求項4に記載の発明は、溶射用粉末が造粒−焼結粉末である請求項1〜3のいずれか一項に記載の溶射用粉末を提供する。
請求項5に記載の発明は、溶射用粉末中の各粒子がサーメットからなる請求項1〜4のいずれか一項に記載の溶射用粉末を提供する。
Invention of Claim 4 provides the powder for thermal spraying as described in any one of Claims 1-3 whose powder for thermal spraying is granulation-sintered powder.
Invention of Claim 5 provides the powder for thermal spraying as described in any one of Claims 1-4 in which each particle | grain in the powder for thermal spraying consists of cermets.

本発明によれば、緻密で表面粗さの小さい溶射皮膜を良好に形成可能な溶射用粉末が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the powder for thermal spraying which can form a fine spray coating with a small surface roughness satisfactorily is provided.

以下、本発明の一実施形態を説明する。
本実施形態に係る溶射用粉末はサーメットの造粒−焼結粉末であり、溶射用粉末中の各粒子は、コバルト、クロム及びニッケルの少なくともいずれか一つと炭化タングステンから構成されている。
Hereinafter, an embodiment of the present invention will be described.
The thermal spraying powder according to the present embodiment is a cermet granulated-sintered powder, and each particle in the thermal spraying powder is composed of at least one of cobalt, chromium and nickel and tungsten carbide.

溶射用粉末中のセラミック成分である炭化タングステンの含有量が92質量%よりも多い場合、換言すれば溶射用粉末中の金属成分であるコバルト、クロム及びニッケルの含有量の合計が8質量%よりも少ない場合には、溶射用粉末から形成される溶射皮膜の脆性が増大して溶射皮膜が高い耐摩耗性を有さない虞がある。従って、溶射用粉末中のセラミック成分の含有量は92質量%以下であることが好ましく、溶射用粉末中の金属成分の含有量は8質量%以上であることが好ましい。   When the content of tungsten carbide as the ceramic component in the thermal spraying powder is more than 92% by mass, in other words, the total content of cobalt, chromium and nickel as the metal components in the thermal spraying powder is from 8% by mass. If the amount is too small, the thermal spray coating formed from the thermal spraying powder may become brittle and the thermal spray coating may not have high wear resistance. Therefore, the content of the ceramic component in the thermal spraying powder is preferably 92% by mass or less, and the content of the metal component in the thermal spraying powder is preferably 8% by mass or more.

溶射用粉末の90%粒子径D90が15μmよりも大きい場合(すなわち溶射用粉末中の全粒子の積算体積に対する粒子径が15μm以下の粒子の積算体積の比率が90%よりも小さい場合)には、粒子径が15μmよりも大きい粒子が溶射用粉末に多く含まれるため、緻密で表面粗さの小さい溶射皮膜を溶射用粉末から形成することは困難である。従って、溶射用粉末の90%粒子径D90が15μm以下であること(すなわち粒子径が15μm以下の粒子の積算体積の比率が90%以上であること)は必須である。ただし、溶射用粉末の90%粒子径D90がたとえ15μm以下であっても13μmよりも大きい場合(すなわち粒子径が13μm以下の粒子の積算体積の比率が90%よりも小さい場合)には、溶射用粉末から形成される溶射皮膜の表面粗さ及び緻密さはそれほど改善されない。従って、溶射用粉末の90%粒子径D90は好ましくは13μm以下(好ましくは粒子径が13μm以下の粒子の積算体積の比率が90%以上)である。 When the 90% particle diameter D 90 of the thermal spraying powder is larger than 15 μm (that is, when the ratio of the cumulative volume of particles having a particle diameter of 15 μm or less to the cumulative volume of all particles in the thermal spraying powder is smaller than 90%). Since a large number of particles having a particle diameter of more than 15 μm are contained in the thermal spraying powder, it is difficult to form a dense thermal spray coating having a small surface roughness from the thermal spraying powder. Therefore, it is essential that the 90% particle diameter D 90 of the thermal spraying powder is 15 μm or less (that is, the ratio of the cumulative volume of particles having a particle diameter of 15 μm or less is 90% or more). However, if the 90% particle diameter D 90 of the thermal spraying powder is greater than 13μm even though 15μm or less (that is, if the ratio particle diameter of the accumulated volume of particles less than 13μm is less than 90 percent), The surface roughness and density of the thermal spray coating formed from the thermal spraying powder are not so improved. Therefore, the 90% particle diameter D 90 of the thermal spraying powder is preferably 13 μm or less (preferably the ratio of the cumulative volume of particles having a particle diameter of 13 μm or less is 90% or more).

溶射用粉末の90%粒子径D90が5μmよりも小さい場合(すなわち粒子径が5μm以下の粒子の積算体積の比率が90%よりも大きい場合)、さらに言えば7μmよりも小さい場合(すなわち粒子径が7μm以下の粒子の積算体積の比率が90%よりも大きい場合)には、粒子径が5μm(又は7μm)以下の粒子が溶射用粉末に多く含まれるために溶射用粉末の流動性がやや低下する。従って、溶射用粉末の90%粒子径D90は好ましくは5μm以上(好ましくは粒子径が5μm以下の粒子の積算体積の比率が90%以下)であり、溶射用粉末の90%粒子径D90はより好ましくは7μm以上(より好ましくは粒子径が7μm以下の粒子の積算体積の比率が90%以下)である。 When the 90% particle diameter D 90 of the thermal spraying powder is smaller than 5 μm (that is, when the ratio of the cumulative volume of particles having a particle diameter of 5 μm or less is larger than 90%), more specifically, when it is smaller than 7 μm (that is, particles) In the case where the ratio of the cumulative volume of particles having a diameter of 7 μm or less is larger than 90%), the spraying powder has a fluidity because many particles having a particle diameter of 5 μm (or 7 μm) or less are contained in the spraying powder. Slightly lower. Accordingly, the 90% particle diameter D 90 of the thermal spraying powder is preferably 5 μm or more (preferably the ratio of the cumulative volume of particles having a particle diameter of 5 μm or less is 90% or less), and the 90% particle diameter D 90 of the thermal spraying powder is 90%. Is more preferably 7 μm or more (more preferably, the ratio of the cumulative volume of particles having a particle diameter of 7 μm or less is 90% or less).

溶射用粉末中の全粒子の積算体積に対する粒子径が1μm以下の粒子の積算体積の比率が2%よりも大きい場合(すなわち溶射用粉末の2%粒子径D2が1μmよりも小さい場合)には、粒子径が1μm以下の粒子が溶射用粉末に多く含まれるために溶射用粉末の流動性が大きく低下し、その結果、溶射時の溶射用粉末供給装置から溶射機への溶射用粉末の供給が不安定になる。また、溶射用粉末の凝集が起こり、その結果、溶射皮膜の均一性や緻密性が低下したり、溶射皮膜に貫通気孔が生じたり、溶射皮膜の表面粗さが増大したりする。従って、粒子径が1μm以下の粒子の積算体積の比率が2%以下であること(すなわち溶射用粉末の2%粒子径D2が1μm以上であること)は必須である。ただし、粒子径が1μm以下の粒子の積算体積の比率がたとえ2%以下であっても1.5%よりも大きい場合(すなわち溶射用粉末の1.5%粒子径D1.5が1μmよりも小さい場合)には、溶射時の溶射用粉末の供給安定性はそれほど改善されない。従って、粒子径が1μm以下の粒子の積算体積の比率は好ましくは1.5%以下(すなわち溶射用粉末の1.5%粒子径D1.5は1μm以下)である。 When the ratio of the cumulative volume of particles having a particle diameter of 1 μm or less to the cumulative volume of all particles in the thermal spraying powder is larger than 2% (that is, when the 2% particle diameter D 2 of the thermal spraying powder is smaller than 1 μm). Since the spraying powder contains many particles having a particle size of 1 μm or less, the fluidity of the spraying powder is greatly reduced. Supply becomes unstable. In addition, agglomeration of the thermal spraying powder occurs, and as a result, the uniformity and density of the thermal spray coating are reduced, through-holes are formed in the thermal spray coating, and the surface roughness of the thermal spray coating is increased. Therefore, it is essential that the ratio of the cumulative volume of particles having a particle diameter of 1 μm or less is 2% or less (that is, the 2% particle diameter D 2 of the thermal spraying powder is 1 μm or more). However, even if the ratio of the cumulative volume of particles having a particle diameter of 1 μm or less is 2% or less, the ratio is 1.5% or more (that is, the 1.5% particle diameter D 1.5 of the thermal spraying powder is smaller than 1 μm). ), The supply stability of the thermal spraying powder during thermal spraying is not improved so much. Therefore, the ratio of the cumulative volume of particles having a particle diameter of 1 μm or less is preferably 1.5% or less (that is, the 1.5% particle diameter D 1.5 of the thermal spraying powder is 1 μm or less).

溶射用粉末の粒度の分散指数が0.7よりも大きい場合、さらに言えば0.67よりも大きい場合には、溶射用粉末中に含まれる粒子径の小さい粒子の割合が高くなるために溶射用粉末の流動性がやや低下する。あるいは、溶射用粉末中に含まれる粒子径の大きい粒子の割合が高くなるために溶射用粉末から形成される溶射皮膜の緻密度がやや低下したり表面粗さがやや増大したりする虞がある。従って、溶射用粉末の粒度の分散指数は、好ましくは0.7以下、より好ましくは0.67以下である。   When the dispersion index of the particle size of the thermal spraying powder is larger than 0.7, more specifically, when it is larger than 0.67, the proportion of particles having a small particle size contained in the thermal spraying powder is increased, so that the thermal spraying is performed. The fluidity of the powder for use is slightly reduced. Alternatively, since the ratio of particles having a large particle size contained in the thermal spraying powder is increased, the density of the thermal spray coating formed from the thermal spraying powder may be slightly decreased or the surface roughness may be slightly increased. . Accordingly, the dispersion index of the particle size of the thermal spraying powder is preferably 0.7 or less, more preferably 0.67 or less.

溶射用粉末を構成する材料の理論密度で溶射用粉末の嵩密度を除した値が0.15よりも小さい場合、さらに言えば0.17よりも小さい場合には、溶射時の溶射用粉末の供給安定性がやや低下する虞や、溶射用粉末から形成される溶射皮膜の緻密度がやや低下する虞がある。従って、溶射用粉末を構成する材料の理論密度で溶射用粉末の嵩密度を除した値は、好ましくは0.15以上、より好ましくは0.17以上である。   When the value obtained by dividing the bulk density of the thermal spraying powder by the theoretical density of the material constituting the thermal spraying powder is smaller than 0.15, more specifically, smaller than 0.17, the thermal spraying powder at the time of thermal spraying There is a possibility that the supply stability is slightly lowered and the density of the thermal spray coating formed from the thermal spraying powder is somewhat lowered. Therefore, the value obtained by dividing the bulk density of the thermal spraying powder by the theoretical density of the material constituting the thermal spraying powder is preferably 0.15 or more, more preferably 0.17 or more.

次に、本実施形態に係る溶射用粉末の製造方法、すなわちコバルト、クロム及びニッケルの少なくともいずれか一つと炭化タングステンから構成される造粒−焼結サーメット粉末の製造方法について説明する。まず、コバルト、クロム及びニッケルの少なくともいずれか一つからなる金属粉末と炭化タングステン粉末を分散媒に混合することによりスラリーが調製される。スラリーには適当なバインダを添加してもよい。次に、転動型造粒機、噴霧型造粒機又は圧縮造粒機を用いてスラリーから造粒粉末を作製する。こうして得られた造粒粉末を焼結し、さらに解砕及び分級することにより、コバルト、クロム及びニッケルの少なくともいずれか一つと炭化タングステンから構成される造粒−焼結サーメット粉末は製造される。なお、造粒粉末の焼結は、真空中及び不活性ガス雰囲気中のいずれで行ってもよく、電気炉及びガス炉のいずれを用いて行ってもよい。   Next, a method for producing a thermal spraying powder according to the present embodiment, that is, a method for producing a granulated-sintered cermet powder composed of at least one of cobalt, chromium and nickel and tungsten carbide will be described. First, a slurry is prepared by mixing a metal powder composed of at least one of cobalt, chromium, and nickel and a tungsten carbide powder in a dispersion medium. A suitable binder may be added to the slurry. Next, granulated powder is produced from the slurry using a rolling granulator, a spray granulator or a compression granulator. A granulated-sintered cermet powder composed of at least one of cobalt, chromium and nickel and tungsten carbide is produced by sintering the granulated powder thus obtained and further pulverizing and classifying it. Note that the granulated powder may be sintered in a vacuum or in an inert gas atmosphere, or using an electric furnace or a gas furnace.

本実施形態に係る溶射用粉末は、例えば高速フレーム溶射により溶射皮膜を形成する用途において使用される。本実施形態に係る溶射用粉末を高速フレーム溶射して形成される溶射皮膜は良好な耐摩耗性を有する。本実施形態に係る溶射用粉末を特に好適に溶射することができる高速フレーム溶射機としては、例えば、Praxair/TAFA社製の“JP−5000”、スルザーメテコ社製の“ダイヤモンドジェット(ハイブリッドタイプ)”、ウィテコジャパン社製の“θガン”等の高出力タイプの高速フレーム溶射機が挙げられる。   The thermal spraying powder according to the present embodiment is used in applications for forming a thermal spray coating by, for example, high-speed flame spraying. The thermal spray coating formed by high-speed flame spraying of the thermal spraying powder according to the present embodiment has good wear resistance. As a high-speed flame sprayer that can spray the powder for thermal spraying according to the present embodiment particularly preferably, for example, “JP-5000” manufactured by Praxair / TAFA, “Diamond Jet (hybrid type)” manufactured by Sulzer Metco High output type high-speed flame sprayers such as “θ gun” manufactured by Witeco Japan, Inc.

本実施形態は、以下の利点を有する。
・ 溶射用粉末の90%粒子径D90が15μm以下に設定されているため、本実施形態に係る溶射用粉末によれば、緻密で表面粗さの小さい溶射皮膜を形成可能である。
This embodiment has the following advantages.
Since the thermal spray 90% particle diameter D 90 of the powder is set to 15μm or less, according to the thermal spraying powder of this embodiment, it is possible to form small thermal spray coating dense and surface roughness.

・ さらに、溶射用粉末中の全粒子の積算体積に対する粒子径が1μm以下の粒子の積算体積の比率が2%以下に設定されているため、本実施形態に係る溶射用粉末によれば、溶射皮膜の形成を良好に行うことができる。   Furthermore, since the ratio of the cumulative volume of particles having a particle diameter of 1 μm or less to the cumulative volume of all particles in the thermal spraying powder is set to 2% or less, the thermal spraying powder according to the present embodiment provides thermal spraying. The film can be satisfactorily formed.

・ 溶射用粉末を構成する材料の理論密度で溶射用粉末の嵩密度を除した値が0.15以上に設定されているため、本実施形態に係る溶射用粉末によれば、溶射時の溶射用粉末の供給安定性の低下及び溶射用粉末から形成される溶射皮膜の緻密度の低下がより確実に防止される。   Since the value obtained by dividing the bulk density of the thermal spraying powder by the theoretical density of the material constituting the thermal spraying powder is set to 0.15 or more, according to the thermal spraying powder according to this embodiment, thermal spraying during thermal spraying It is possible to more reliably prevent a decrease in the supply stability of the coating powder and a decrease in the density of the thermal spray coating formed from the thermal spraying powder.

・ 溶射用粉末の粒度の分散指数が0.7以下に設定されているため、本実施形態に係る溶射用粉末によれば、溶射用粉末中の粒子のサイズが不揃いなことに起因する弊害の発生が抑制される。   -Since the dispersion index of the particle size of the thermal spraying powder is set to 0.7 or less, according to the thermal spraying powder according to the present embodiment, there is an adverse effect caused by the irregular size of the particles in the thermal spraying powder. Occurrence is suppressed.

・ 造粒−焼結粉末は一般に、溶融−粉砕粉末及び焼結−粉砕粉末に比べて、流動性が良好であり、製造過程での不純物の混入の虞も少ない。従って、造粒−焼結粉末からなる本実施形態に係る溶射用粉末もこれらの利点を有する。   The granulated-sintered powder generally has better fluidity than the melt-ground powder and the sintered-ground powder, and is less likely to be contaminated with impurities during the production process. Therefore, the thermal spraying powder according to this embodiment made of granulated-sintered powder also has these advantages.

・ 本実施形態に係る溶射用粉末中の各粒子はサーメットからなる。そのため、本実施形態に係る溶射用粉末によれば、良好な耐摩耗性を有する溶射皮膜を形成可能である。
前記実施形態は以下のように変更されてもよい。
-Each particle | grain in the powder for thermal spraying which concerns on this embodiment consists of cermets. Therefore, according to the thermal spraying powder according to the present embodiment, it is possible to form a thermal spray coating having good wear resistance.
The embodiment may be modified as follows.

・ 溶射用粉末中の各粒子は、炭化クロムなどの炭化タングステン以外のセラミックスを炭化タングステンの代わりかあるいは炭化タングステンに加えてさらに含有してもよい。   Each particle in the thermal spraying powder may further contain ceramics other than tungsten carbide such as chromium carbide instead of tungsten carbide or in addition to tungsten carbide.

・ 溶射用粉末中の各粒子は、コバルト、クロム及びニッケル以外の金属をコバルト、クロム及びニッケルの代わりかあるいはコバルト、クロム及びニッケルに加えてさらに含有してもよい。   Each particle in the thermal spraying powder may further contain a metal other than cobalt, chromium and nickel instead of cobalt, chromium and nickel or in addition to cobalt, chromium and nickel.

・ 溶射用粉末は、コバルト、クロム及びニッケルの少なくともいずれか一つと炭化タングステンから構成されるサーメットの造粒−焼結粉末以外の成分を含有してもよい。ただし、溶射用粉末中の当該造粒−焼結粉末の含有量は、好ましくは50質量%以上、より好ましくは80質量%以上である。   The thermal spraying powder may contain components other than cermet granulated and sintered powder composed of at least one of cobalt, chromium and nickel and tungsten carbide. However, the content of the granulated-sintered powder in the thermal spraying powder is preferably 50% by mass or more, more preferably 80% by mass or more.

・ 溶射用粉末は、造粒−焼結サーメット粉末の代わりに溶融−粉砕サーメット粉末又は焼結−粉砕サーメット粉末であってもよい。この場合、溶射用粉末中の各粒子は、コバルト、クロム及びニッケルの少なくともいずれか一つと炭化タングステンから構成されてもよいし、それ以外であってもよい。なお、溶融−粉砕粉末は、原料粉末を溶融して冷却固化した後に粉砕及び分級して製造され、焼結−粉砕粉末は、原料粉末を焼結した後に粉砕及び分級して製造される。   The powder for thermal spraying may be a melt-ground cermet powder or a sintered-ground cermet powder instead of the granulated-sintered cermet powder. In this case, each particle in the thermal spraying powder may be composed of at least one of cobalt, chromium and nickel and tungsten carbide, or may be other than that. The melt-pulverized powder is manufactured by pulverizing and classifying the raw material powder after cooling and solidifying, and the sintered-ground powder is manufactured by pulverizing and classifying the raw material powder after sintering.

・ 本実施形態に係る溶射用粉末は、高速フレーム溶射以外の溶射方法により溶射皮膜を形成する用途において使用されてもよい。
次に、本発明の実施例及び比較例を説明する。
-The powder for thermal spraying which concerns on this embodiment may be used in the use which forms a thermal spray coating by thermal spraying methods other than high-speed flame spraying.
Next, examples and comparative examples of the present invention will be described.

実施例1〜7及び比較例1〜4においては、炭化タングステンを主成分として、コバルトが12重量%含まれる造粒−焼結サーメット粉末を溶射用粉末として用意した。実施例8においては、炭化タングステンとコバルトから構成される溶融−粉砕サーメット粉末を溶射用粉末として用意した。実施例9及び比較例5においては、炭化タングステンを主成分として、コバルトが10重量%とクロムが4重量%含まれる造粒−焼結サーメット粉末を溶射用粉末として用意した。実施例1〜9及び比較例1〜5に係る各溶射用粉末の詳細は表1に示すとおりである。   In Examples 1 to 7 and Comparative Examples 1 to 4, a granulated-sintered cermet powder containing tungsten carbide as a main component and 12% by weight of cobalt was prepared as a thermal spraying powder. In Example 8, a melt-pulverized cermet powder composed of tungsten carbide and cobalt was prepared as a thermal spraying powder. In Example 9 and Comparative Example 5, a granulated / sintered cermet powder containing tungsten carbide as a main component and containing 10% by weight of cobalt and 4% by weight of chromium was prepared as a thermal spraying powder. The details of each thermal spraying powder according to Examples 1 to 9 and Comparative Examples 1 to 5 are as shown in Table 1.

表1の“粒子径が1μm以下の粒子の比率”欄には、各溶射用粉末中の全粒子の積算体積に対する粒子径が1μm以下の粒子の積算体積の比率を示す。この比率は、(株)堀場製作所製のレーザー回析/散乱式粒度測定機“LA−300”を用いて測定した。   The “ratio of particles having a particle diameter of 1 μm or less” in Table 1 shows the ratio of the integrated volume of particles having a particle diameter of 1 μm or less to the integrated volume of all particles in each thermal spraying powder. This ratio was measured using a laser diffraction / scattering type particle size analyzer “LA-300” manufactured by Horiba, Ltd.

表1の“10%粒子径D10”、“50%粒子径D50”及び“90%粒子径D90”欄には、(株)堀場製作所製のレーザー回折/散乱式粒度測定機“LA−300”を用いて測定した各溶射用粉末の10%粒子径D10、50%粒子径D50及び90%粒子径D90をそれぞれ示す。なお、溶射用粉末の10%粒子径D10は、積算体積が溶射用粉末中の全粒子の体積の合計の10%以上になるまで粒子径の小さい粒子から順に溶射用粉末中の粒子の体積を積算したときに最後に積算される粒子の粒子径である。溶射用粉末の50%粒子径D50は、積算体積が溶射用粉末中の全粒子の体積の合計の50%以上になるまで粒子径の小さい粒子から順に溶射用粉末中の粒子の体積を積算したときに最後に積算される粒子の粒子径である。溶射用粉末の90%粒子径D90は、積算体積が溶射用粉末中の全粒子の体積の合計の90%以上になるまで粒子径の小さい粒子から順に溶射用粉末中の粒子の体積を積算したときに最後に積算される粒子の粒子径である。 In the column of “10% particle diameter D 10 ”, “50% particle diameter D 50 ” and “90% particle diameter D 90 ” in Table 1, the laser diffraction / scattering type particle size measuring device “LA” manufactured by Horiba, Ltd. 10% particle diameter D 10 , 50% particle diameter D 50 and 90% particle diameter D 90 of each thermal spraying powder measured using −300 ″ are shown. Incidentally, the 10% particle size D 10 of the thermal spraying powder, the volume of the integrated volume of particles in the thermal spraying powder from small particles of the particle size until more than 10% of the total volume of all particles in the thermal spraying powder in this order Is the particle diameter of the particles that are accumulated last. 50% particle size D 50 of the thermal spraying powder is accumulated volume of the integrated volume particles in the thermal spraying powder from small particles of particle size in the order until the 50% of the total volume of all particles in the thermal spraying powder It is the particle diameter of the particles accumulated last. 90% particle diameter D 90 of the thermal spraying powder is accumulated volume of the integrated volume of particles in the thermal spraying powder from small particles of the particle size to a more than 90% of the total volume of all particles in the thermal spraying powder in this order It is the particle diameter of the particles accumulated last.

表1の“分散指数”欄には、式:D=(D90−D10)/(D90+D10)に従って算出される各溶射用粉末の粒度の分散指数Dを示す。式中、D90は溶射用粉末の90%粒子径を表し、D10は溶射用粉末の10%粒子径を表する。 In the “dispersion index” column of Table 1, the dispersion index D of the particle size of each thermal spraying powder calculated according to the formula: D = (D 90 −D 10 ) / (D 90 + D 10 ) is shown. Wherein, D 90 represents the 90% particle diameter of the thermal spraying powder, D 10 is respectful 10% particle size of the thermal spraying powder.

表1の“嵩密度/理論密度”欄には、嵩比重測定機(JIS Z2504参照)を用いて測定した各溶射用粉末の嵩密度を、溶射用粉末を構成する材料の理論密度で除した値を示す。   In the "bulk density / theoretical density" column of Table 1, the bulk density of each thermal spraying powder measured using a bulk specific gravity measuring machine (see JIS Z2504) is divided by the theoretical density of the material constituting the thermal spraying powder. Indicates the value.

厚さ200μmの溶射皮膜を形成するべく、実施例1〜4,6〜9及び比較例1〜5に係る各溶射用粉末を表2に示す第1溶射条件で高速フレーム溶射し、実施例5に係る溶射用粉末を表2に示す第2溶射条件で高速フレーム溶射した。そして、溶射皮膜を形成することができたか否かに基づいて、良(○)、不良(×)の二段階で各溶射用粉末を評価した。すなわち、溶射皮膜を形成することができた場合には良、溶射用粉末供給装置から溶射機への溶射用粉末の供給が停止して溶射皮膜を形成することができなかった場合には不良と評価した。この評価の結果を表1の“皮膜形成”欄に示す。   In order to form a sprayed coating having a thickness of 200 μm, each of the thermal spraying powders according to Examples 1 to 4, 6 to 9 and Comparative Examples 1 to 5 was subjected to high-speed flame spraying under the first thermal spraying conditions shown in Table 2, and Example 5 The powder for thermal spraying according to the above was subjected to high-speed flame spraying under the second spraying conditions shown in Table 2. Then, based on whether or not a sprayed coating could be formed, each thermal spraying powder was evaluated in two stages: good (◯) and defective (×). That is, when the thermal spray coating can be formed, it is good, and when the supply of the thermal spraying powder from the thermal spraying powder supply device to the thermal spraying machine is stopped and the thermal spray coating cannot be formed, it is regarded as defective. evaluated. The results of this evaluation are shown in the “film formation” column of Table 1.

実施例1〜9及び比較例1〜5に係る各溶射用粉末を高速フレーム溶射して形成した溶射皮膜上の任意の15カ所の表面粗さRaを表3に示す条件で測定した。このとき測定された15カ所の表面粗さRaの平均値に基づいて、優(◎)、良(○)、不良(×)の三段階で各溶射用粉末を評価した。すなわち、表面粗さRaの平均値が1.3μm未満の場合には優、1.3μm以上1.6μm未満の場合には良、1.6μm以上の場合には不良と評価した。この評価の結果を表1の“研磨前の溶射皮膜の表面粗さ”欄に示す。また、測定された15カ所の表面粗さRaの標準偏差に基づいて、優(◎)、良(○)、不良(×)の三段階で各溶射用粉末を評価した。すなわち、表面粗さRaの標準偏差が0.3未満の場合には優、0.3以上0.45未満の場合には良、0.45以上の場合には不良と評価した。この評価の結果を表1の“表面粗さのばらつき”欄に示す。   The surface roughness Ra at any 15 locations on the thermal spray coating formed by high-speed flame spraying of the respective thermal spraying powders according to Examples 1 to 9 and Comparative Examples 1 to 5 was measured under the conditions shown in Table 3. Based on the average value of the surface roughness Ra at 15 locations measured at this time, each thermal spraying powder was evaluated in three stages of excellent (◎), good (◯), and poor (x). That is, when the average value of the surface roughness Ra was less than 1.3 μm, it was evaluated as good, when it was 1.3 μm or more and less than 1.6 μm, and when it was 1.6 μm or more, it was evaluated as bad. The results of this evaluation are shown in the column “Surface Roughness of Sprayed Coating Before Polishing” in Table 1. Further, based on the measured standard deviation of the surface roughness Ra at 15 locations, each thermal spraying powder was evaluated in three stages: excellent (◎), good (◯), and poor (x). That is, when the standard deviation of the surface roughness Ra was less than 0.3, it was evaluated as good, when it was 0.3 or more and less than 0.45, good, and when it was 0.45 or more, it was evaluated as bad. The results of this evaluation are shown in the “Surface roughness variation” column of Table 1.

実施例1〜9及び比較例1〜5に係る各溶射用粉末を高速フレーム溶射して形成した溶射皮膜上の任意の15カ所の表面粗さRaを、溶射皮膜を鏡面研磨した後に表3に示す条件で再び測定した。このとき測定された15カ所の表面粗さRaの平均値に基づいて、優(◎)、良(○)、不良(×)の三段階で各溶射用粉末を評価した。すなわち、表面粗さRaの平均値が0.006μm未満の場合には優、0.006μm以上0.010μm未満の場合には良、0.010μm以上の場合には不良と評価した。この評価の結果を表1の“研磨後の溶射皮膜の表面粗さ”欄に示す。   The surface roughness Ra at any 15 locations on the thermal spray coating formed by high-speed flame spraying of the respective thermal spraying powders according to Examples 1 to 9 and Comparative Examples 1 to 5 is shown in Table 3 after the thermal spray coating is mirror-polished. It was measured again under the conditions shown. Based on the average value of the surface roughness Ra at 15 locations measured at this time, each thermal spraying powder was evaluated in three stages of excellent (◎), good (◯), and poor (x). That is, when the average value of the surface roughness Ra was less than 0.006 μm, it was evaluated as good, when it was 0.006 μm or more and less than 0.010 μm, and when it was 0.010 μm or more, it was evaluated as bad. The results of this evaluation are shown in the column “Surface Roughness of Polished Coating after Polishing” in Table 1.

実施例1〜9及び比較例1〜5に係る各溶射用粉末を高速フレーム溶射して基材上に形成した厚さ50μmの溶射皮膜を塩水噴霧試験(JIS Z 2371参照)に供し、その後、基材に赤錆が発生しているか否かを目視により確認した。塩水噴霧試験後の赤錆の発生状況に基づいて、優(◎)、良(○)、不良(×)の三段階で各溶射用粉末を評価した。すなわち、24時間の塩水噴霧後に赤錆が認められる場合には不良、24時間の塩水噴霧後には赤錆が認められないが48時間の塩水噴霧後には赤錆が認められる場合には良、48時間の塩水噴霧後にも赤錆が認められない場合には優と評価した。この評価の結果を表1の“緻密さ”欄に示す。   Each of the thermal spraying powders according to Examples 1 to 9 and Comparative Examples 1 to 5 was subjected to high-speed flame spraying and a 50 μm thick sprayed coating was subjected to a salt spray test (see JIS Z 2371). It was visually confirmed whether red rust was generated on the substrate. Based on the occurrence of red rust after the salt spray test, each thermal spraying powder was evaluated in three stages: excellent ()), good (◯), and poor (x). That is, when red rust is observed after 24 hours of salt water spray, it is not good. After 24 hours of salt water spray, red rust is not observed, but after 48 hours of salt water spray, red rust is observed, and 48 hours of salt water. When red rust was not observed even after spraying, it was evaluated as excellent. The results of this evaluation are shown in the “Dense” column of Table 1.

Figure 2006176818
Figure 2006176818

Figure 2006176818
Figure 2006176818

Figure 2006176818
表1に示すように、実施例1〜9においては、研磨前の溶射皮膜の表面粗さ及び緻密さに関する評価がいずれも優又は良であった。この結果から、実施例1〜9に係る溶射用粉末によれば緻密で表面粗さの小さい溶射皮膜を形成可能であることが分かる。
Figure 2006176818
As shown in Table 1, in Examples 1 to 9, the evaluations regarding the surface roughness and the denseness of the sprayed coating before polishing were both excellent or good. From this result, it can be seen that the thermal spray coating according to Examples 1 to 9 can form a thermal spray coating having a high density and a small surface roughness.

前記実施形態より把握できる技術的思想について以下に記載する。
・ 溶射用粉末中のセラミックス成分の含有量が92質量%以下であることを特徴とする請求項5に記載の溶射用粉末。
The technical idea that can be grasped from the embodiment will be described below.
The thermal spraying powder according to claim 5, wherein the content of the ceramic component in the thermal spraying powder is 92% by mass or less.

・ 溶射用粉末中の金属成分の含有量が8質量%以上であることを特徴とする請求項5に記載の溶射用粉末。
・ 前記サーメットが炭化タングステンを含むことを特徴とする請求項5に記載の溶射用粉末。
The thermal spraying powder according to claim 5, wherein the content of the metal component in the thermal spraying powder is 8% by mass or more.
The thermal spraying powder according to claim 5, wherein the cermet contains tungsten carbide.

・ 前記サーメットがコバルト、クロム及びニッケルの少なくともいずれか一つを含むことを特徴とする請求項5に記載の溶射用粉末。
・ 高速フレーム溶射により溶射皮膜を形成する用途において使用されることを特徴とする請求項1〜5のいずれか一項に記載の溶射用粉末。
The thermal spraying powder according to claim 5, wherein the cermet contains at least one of cobalt, chromium, and nickel.
The thermal spraying powder according to any one of claims 1 to 5, wherein the thermal spraying powder is used in an application in which a thermal spray coating is formed by high-speed flame spraying.

・ 請求項1〜5のいずれか一項に記載の溶射用粉末を溶射することを特徴とする溶射方法。
・ 請求項1〜5のいずれか一項に記載の溶射用粉末を溶射して形成されることを特徴とする溶射皮膜。
A thermal spraying method characterized by spraying the thermal spraying powder according to any one of claims 1 to 5.
A thermal spray coating formed by thermal spraying the thermal spraying powder according to any one of claims 1 to 5.

Claims (5)

溶射用粉末の90%粒子径D90が15μm以下であり、かつ、溶射用粉末中の全粒子の積算体積に対する粒子径が1μm以下の粒子の積算体積の比率が2%以下であることを特徴とする溶射用粉末。 The 90% particle diameter D 90 of the thermal spraying powder is 15 μm or less, and the ratio of the cumulative volume of particles having a particle diameter of 1 μm or less to the cumulative volume of all particles in the thermal spraying powder is 2% or less. Thermal spray powder. 溶射用粉末を構成する材料の理論密度で溶射用粉末の嵩密度を除した値が0.15以上であることを特徴とする請求項1に記載の溶射用粉末。   The thermal spraying powder according to claim 1, wherein a value obtained by dividing the bulk density of the thermal spraying powder by the theoretical density of the material constituting the thermal spraying powder is 0.15 or more. 溶射用粉末の粒度の分散指数が0.7以下であることを特徴とする請求項1又は2に記載の溶射用粉末。   The thermal spraying powder according to claim 1 or 2, wherein a dispersion index of a particle size of the thermal spraying powder is 0.7 or less. 溶射用粉末が造粒−焼結粉末であることを特徴とする請求項1〜3のいずれか一項に記載の溶射用粉末。   The thermal spraying powder according to any one of claims 1 to 3, wherein the thermal spraying powder is a granulated-sintered powder. 溶射用粉末中の各粒子がサーメットからなることを特徴とする請求項1〜4のいずれか一項に記載の溶射用粉末。   The thermal spraying powder according to any one of claims 1 to 4, wherein each particle in the thermal spraying powder is made of cermet.
JP2004370262A 2004-12-21 2004-12-21 Thermal spray powder Active JP4885445B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004370262A JP4885445B2 (en) 2004-12-21 2004-12-21 Thermal spray powder
KR1020050123259A KR101241244B1 (en) 2004-12-21 2005-12-14 Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
US11/311,217 US20060134343A1 (en) 2004-12-21 2005-12-19 Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
EP05027976A EP1674589A2 (en) 2004-12-21 2005-12-20 Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
CNA2005101339593A CN1792469A (en) 2004-12-21 2005-12-20 Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370262A JP4885445B2 (en) 2004-12-21 2004-12-21 Thermal spray powder

Publications (2)

Publication Number Publication Date
JP2006176818A true JP2006176818A (en) 2006-07-06
JP4885445B2 JP4885445B2 (en) 2012-02-29

Family

ID=36123340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370262A Active JP4885445B2 (en) 2004-12-21 2004-12-21 Thermal spray powder

Country Status (5)

Country Link
US (1) US20060134343A1 (en)
EP (1) EP1674589A2 (en)
JP (1) JP4885445B2 (en)
KR (1) KR101241244B1 (en)
CN (1) CN1792469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065512A1 (en) * 2009-11-27 2011-06-03 独立行政法人物質・材料研究機構 Cermet coating, spraying particles for forming same, method for forming cermet coating, and article with coating

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039346B2 (en) * 2006-09-12 2012-10-03 株式会社フジミインコーポレーテッド Thermal spray powder and thermal spray coating
EP1911858B1 (en) * 2006-10-02 2012-07-11 Sulzer Metco AG Process of manufacturing of a coating with columnar structure
JP4586823B2 (en) * 2007-06-21 2010-11-24 トヨタ自動車株式会社 Film forming method, heat transfer member, power module, vehicle inverter, and vehicle
JP2011017079A (en) * 2009-06-10 2011-01-27 Fujimi Inc Powder for thermal spraying and method for forming thermal-spray film
DE102011052121A1 (en) * 2011-07-25 2013-01-31 Eckart Gmbh Coating process using special powder coating materials and use of such coating materials
FR2999457B1 (en) * 2012-12-18 2015-01-16 Commissariat Energie Atomique METHOD FOR COATING A SUBSTRATE WITH A CERAMIC ABRADABLE MATERIAL, AND COATING THUS OBTAINED
KR102106486B1 (en) 2018-07-25 2020-05-07 안동대학교 산학협력단 Thermal spraying powder, method of forming a thermal sprayed coating layer using the same and Grate bar with thermally sprayed coating layer
CN112639155B (en) * 2018-08-27 2023-03-14 东华隆株式会社 Method for forming thermal spray coating
CN114226713B (en) * 2021-12-17 2023-07-25 武汉苏泊尔炊具有限公司 Thermal spraying powder, preparation method thereof and cooking utensil

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347957A (en) * 1989-07-14 1991-02-28 Nippon Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0586452A (en) * 1991-09-27 1993-04-06 Kobe Steel Ltd Powder material for thermal spraying
JPH06184724A (en) * 1992-12-18 1994-07-05 Onoda Cement Co Ltd Composite thermal-spraying material and thermally sprayed film and production thereof
JPH08311635A (en) * 1995-05-12 1996-11-26 Sumitomo Metal Mining Co Ltd Tungsten carbide-base cermet powder for high-speed powder flame spraying
JP2585540B2 (en) * 1986-07-15 1997-02-26 バブコツク日立株式会社 Spray method
JPH11256303A (en) * 1998-03-10 1999-09-21 Tocalo Co Ltd Soft non-ferrous metal member excellent in wear resistance, and method for reforming surface of soft non-ferrous metal member
JP2002309364A (en) * 2001-04-12 2002-10-23 Tocalo Co Ltd Low-temperature thermal spray coated member and manufacturing method thereof
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
JP2002363724A (en) * 2001-03-08 2002-12-18 Shin Etsu Chem Co Ltd Spherical particle for thermal spraying and thermal spraying member
JP2003129212A (en) * 2001-10-15 2003-05-08 Fujimi Inc Thermal spray method
JP2004169080A (en) * 2002-11-19 2004-06-17 Jfe Steel Kk Wc cermet-sprayed roll and manufacturing method therefor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195267A (en) * 1988-01-29 1989-08-07 Mazda Motor Corp Manufacture of sprayed deposit, thermally sprayed article, and powder for thermal spraying
US4865252A (en) * 1988-05-11 1989-09-12 The Perkin-Elmer Corporation High velocity powder thermal spray gun and method
US4925626A (en) * 1989-04-13 1990-05-15 Vidhu Anand Method for producing a Wc-Co-Cr alloy suitable for use as a hard non-corrosive coating
US5075129A (en) * 1989-11-27 1991-12-24 Union Carbide Coatings Service Technology Corporation Method of producing tungsten chromium carbide-nickel coatings having particles containing three times by weight more chromium than tungsten
CA2129874C (en) * 1993-09-03 1999-07-20 Richard M. Douglas Powder for use in thermal spraying
US5419976A (en) * 1993-12-08 1995-05-30 Dulin; Bruce E. Thermal spray powder of tungsten carbide and chromium carbide
US5789077A (en) * 1994-06-27 1998-08-04 Ebara Corporation Method of forming carbide-base composite coatings, the composite coatings formed by that method, and members having thermally sprayed chromium carbide coatings
US5580833A (en) * 1994-10-11 1996-12-03 Industrial Technology Research Institute High performance ceramic composites containing tungsten carbide reinforced chromium carbide matrix
US5763106A (en) * 1996-01-19 1998-06-09 Hino Motors, Ltd. Composite powder and method for forming a self-lubricating composite coating and self-lubricating components formed thereby
JP2990655B2 (en) * 1996-05-21 1999-12-13 東京タングステン株式会社 Composite carbide powder and method for producing the same
JPH1088311A (en) * 1996-09-17 1998-04-07 Showa Denko Kk Tungsten carbide/cobalt thermal spraying powder and its production
JP3605281B2 (en) * 1998-03-18 2004-12-22 ペンタックス株式会社 Progressive multifocal lens
US6004372A (en) * 1999-01-28 1999-12-21 Praxair S.T. Technology, Inc. Thermal spray coating for gates and seats
JP2001234320A (en) * 2000-02-17 2001-08-31 Fujimi Inc Thermal spraying powder material, and thermal spraying method and sprayed coating film using the same
US6410470B1 (en) * 2000-04-24 2002-06-25 Saint-Gobain Industrial Ceramics, Inc. Thermal spray powder process
JP3523216B2 (en) * 2001-04-06 2004-04-26 信越化学工業株式会社 Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
JP3672833B2 (en) 2000-06-29 2005-07-20 信越化学工業株式会社 Thermal spray powder and thermal spray coating
JP3952252B2 (en) * 2001-01-25 2007-08-01 株式会社フジミインコーポレーテッド Powder for thermal spraying and high-speed flame spraying method using the same
US6916534B2 (en) * 2001-03-08 2005-07-12 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
US6596397B2 (en) * 2001-04-06 2003-07-22 Shin-Etsu Chemical Co., Ltd. Thermal spray particles and sprayed components
US7017677B2 (en) * 2002-07-24 2006-03-28 Smith International, Inc. Coarse carbide substrate cutting elements and method of forming the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585540B2 (en) * 1986-07-15 1997-02-26 バブコツク日立株式会社 Spray method
JPH0347957A (en) * 1989-07-14 1991-02-28 Nippon Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0586452A (en) * 1991-09-27 1993-04-06 Kobe Steel Ltd Powder material for thermal spraying
JPH06184724A (en) * 1992-12-18 1994-07-05 Onoda Cement Co Ltd Composite thermal-spraying material and thermally sprayed film and production thereof
JPH08311635A (en) * 1995-05-12 1996-11-26 Sumitomo Metal Mining Co Ltd Tungsten carbide-base cermet powder for high-speed powder flame spraying
JPH11256303A (en) * 1998-03-10 1999-09-21 Tocalo Co Ltd Soft non-ferrous metal member excellent in wear resistance, and method for reforming surface of soft non-ferrous metal member
JP2002363724A (en) * 2001-03-08 2002-12-18 Shin Etsu Chem Co Ltd Spherical particle for thermal spraying and thermal spraying member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
JP2002309364A (en) * 2001-04-12 2002-10-23 Tocalo Co Ltd Low-temperature thermal spray coated member and manufacturing method thereof
JP2003129212A (en) * 2001-10-15 2003-05-08 Fujimi Inc Thermal spray method
JP2004169080A (en) * 2002-11-19 2004-06-17 Jfe Steel Kk Wc cermet-sprayed roll and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065512A1 (en) * 2009-11-27 2011-06-03 独立行政法人物質・材料研究機構 Cermet coating, spraying particles for forming same, method for forming cermet coating, and article with coating
JP5769255B2 (en) * 2009-11-27 2015-08-26 国立研究開発法人物質・材料研究機構 Cermet film and spray particles for forming the same, cermet film forming method, film forming product

Also Published As

Publication number Publication date
JP4885445B2 (en) 2012-02-29
CN1792469A (en) 2006-06-28
US20060134343A1 (en) 2006-06-22
KR20060071320A (en) 2006-06-26
EP1674589A2 (en) 2006-06-28
KR101241244B1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
KR101241244B1 (en) Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
EP0771884B1 (en) Boron nitride and aluminum thermal spray powder
KR102032579B1 (en) Cermet powder
CN105209178B (en) Ternary ceramics hot spray powder and painting method
EP2933535B1 (en) Piston ring with sprayed coating and method for producing piston ring with sprayed coating
TWI415972B (en) Spray powder and spray spray film
MXPA04008463A (en) Corrosion resistant powder and coating.
JP5597786B1 (en) Cutting tools
JP2004300555A (en) Thermal spraying powder, and method for forming thermal sprayed film using he same
CA2567089C (en) Wear resistant alloy powders and coatings
JP2020186165A (en) Titanium carbide overlay and method for producing the same
JP2008231527A (en) Powder for cold spray, and film formation method
WO2011065512A1 (en) Cermet coating, spraying particles for forming same, method for forming cermet coating, and article with coating
JP2013136814A (en) Ceramic spray deposit and method for manufacturing the same
JP2012031443A (en) Metal powder for cold spray
JP4346883B2 (en) Thermal spray powder
JP2005155711A (en) Spray piston ring and its manufacturing method
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JP4547253B2 (en) Thermal spray powder
CN109234659A (en) Plasma sprayed ceramic powder, ceramic composite coating and preparation method thereof
JP2006336091A (en) Powder for thermal spray, thermally sprayed coating, and layered body
JP2001234323A (en) Thermal spraying powder material, and thermal spraying method and sprayed coating film using the same
JP2014074231A (en) Spray coating powder
JPH11323470A (en) Wear resistant bimetallic material for resin machine, its production, bimetallic cylinder and bimetallic screw

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250