JP2006118013A - Powder for thermal spraying, thermal spraying method and thermally sprayed coating - Google Patents

Powder for thermal spraying, thermal spraying method and thermally sprayed coating Download PDF

Info

Publication number
JP2006118013A
JP2006118013A JP2004308587A JP2004308587A JP2006118013A JP 2006118013 A JP2006118013 A JP 2006118013A JP 2004308587 A JP2004308587 A JP 2004308587A JP 2004308587 A JP2004308587 A JP 2004308587A JP 2006118013 A JP2006118013 A JP 2006118013A
Authority
JP
Japan
Prior art keywords
powder
thermal spraying
thermal
granulated
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004308587A
Other languages
Japanese (ja)
Other versions
JP4585832B2 (en
Inventor
Junya Kitamura
順也 北村
Isao Aoki
功 青木
Takeshi Itsukaichi
剛 五日市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2004308587A priority Critical patent/JP4585832B2/en
Publication of JP2006118013A publication Critical patent/JP2006118013A/en
Application granted granted Critical
Publication of JP4585832B2 publication Critical patent/JP4585832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide powder for thermal spraying capable of satisfactory forming a thermally sprayed coating comprising yttrium oxide. <P>SOLUTION: The powder for thermal spraying comprises the granulated-sintered powder of yttrium oxide. The granulated-sintered powder is composed of secondary particles obtained by granulating and sintering primary particles, and the average particle diameter of the primary particles after the sintering is 0.3 to 1.5 μm. The collapsing strength of the secondary particles is preferably 25 to 250 MPa. The dispersion index of the particle diameter in the primary particles after the sintering is preferably ≤0.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イットリウム酸化物の造粒−焼結粉末を含有する溶射用粉末に関する。本発明はまた、そうした溶射用粉末を用いた溶射方法、及びそうした溶射用粉末から形成される溶射皮膜に関する。   The present invention relates to a thermal spraying powder containing a granulated-sintered powder of yttrium oxide. The present invention also relates to a thermal spraying method using such a thermal spraying powder and a thermal spray coating formed from such thermal spraying powder.

半導体製造装置は、プラズマプロセスの際にプラズマによってエロージョン損傷を受ける虞のある部材を含む。こうした部材の多くは金属から主に構成されている。耐プラズマエロージョン性を備えていることから、イットリウム酸化物は、目的の部材のエロージョン損傷を防止するための有効な手段たりうる。しかしながら、部材自体をイットリウム酸化物で作製することは、イットリウム酸化物の加工の難しさからも、またコストが高くなるという点からも不適当である。そこで、目的の部材に耐プラズマエロージョン性を付与するための手段として、イットリウム酸化物を含むコーティングを目的の部材の表面に設けることが行われている。   The semiconductor manufacturing apparatus includes a member that may be subject to erosion damage due to plasma during the plasma process. Many of these members are mainly composed of metal. Since it has plasma erosion resistance, yttrium oxide can be an effective means for preventing erosion damage of a target member. However, it is inappropriate to manufacture the member itself with yttrium oxide from the viewpoint of difficulty in processing the yttrium oxide and the cost. Therefore, as a means for imparting plasma erosion resistance to the target member, a coating containing yttrium oxide is provided on the surface of the target member.

イットリウム酸化物コーティングの作製技術の一つとしてプラズマ溶射法はよく知られている。プラズマ溶射法は、物理気相成長法や化学気相成長法よりも皮膜を作製する速度が高く、また部材の材料が制限されないという利点を有する。イットリウム酸化物を含む溶射皮膜は、例えば特許文献1及び2に開示されるようなイットリウム酸化物の造粒−焼結粉末からなる溶射用粉末をプラズマ溶射して形成される。   Plasma spraying is a well-known technique for producing yttrium oxide coatings. The plasma spraying method has an advantage that the film is formed at a higher speed than the physical vapor deposition method and the chemical vapor deposition method, and the material of the member is not limited. The thermal spray coating containing yttrium oxide is formed, for example, by plasma spraying a thermal spraying powder made of granulated and sintered powder of yttrium oxide as disclosed in Patent Documents 1 and 2.

溶射用粉末は通常、内径が数mm程度の細いパウダーチューブを通じて原料粉末供給機から溶射ガンに供給される。従って、チューブ内での閉塞の発生防止及び粉末供給の不安定化防止のためには、溶射用粉末が良好な流動性を備えることが極めて重要である。その点、球形状の粒子から構成される造粒−焼結粉末は、溶融−粉砕粉末及び焼結−粉砕粉末に比べて良好な流動性を備えるため、溶射用粉末として好適である。   The thermal spraying powder is usually supplied from the raw material powder feeder to the thermal spraying gun through a thin powder tube having an inner diameter of about several millimeters. Accordingly, in order to prevent the occurrence of clogging in the tube and the destabilization of the powder supply, it is extremely important that the thermal spraying powder has good fluidity. In this respect, the granulated-sintered powder composed of spherical particles is suitable as a thermal spraying powder because it has better fluidity than the melt-ground powder and the sintered-ground powder.

イットリウム酸化物が高融点であるため、イットリウム酸化物を含む溶射用粉末は一般的に溶融しにくい性質を有する。しかし、溶射用粉末の溶射を高い付着効率(溶射歩留まり)で実現するためには、溶射用粉末が適度に溶融しやすいことが極めて重要である。その点、一次粒子を造粒及び焼結して得られる二次粒子からなる造粒−焼結粉末は、溶融−粉砕粉末及び焼結−粉砕粉末に比べて適度に溶融しやすい性質を有するため、溶射用粉末として好適である。造粒−焼結粉末はまた、溶融−粉砕粉末及び焼結−粉砕粉末に比べて製造過程での不純物の混入の虞が少ない点でも、溶射用粉末として好適である。   Since yttrium oxide has a high melting point, the thermal spraying powder containing yttrium oxide generally has a property that it is difficult to melt. However, in order to achieve thermal spraying of the thermal spraying powder with high adhesion efficiency (thermal spraying yield), it is extremely important that the thermal spraying powder is easily melted appropriately. In that respect, granulated-sintered powder composed of secondary particles obtained by granulating and sintering primary particles has a property of being easily melted as compared with melt-ground powder and sintered-ground powder. Suitable as a thermal spraying powder. The granulated-sintered powder is also suitable as a thermal spraying powder in that there is less risk of contamination by impurities during the production process compared to the melt-ground powder and the sintered-ground powder.

このように造粒−焼結粉末は、溶融−粉砕粉末及び焼結−粉砕粉末に比べて溶射用粉末として好適である。しかしながら、特許文献1及び2に記載の溶射用粉末の場合でも依然として、高い付着効率で溶射皮膜を形成することが難しかったり、溶射時にスピッティングと呼ばれる現象が起こりやすかったりする。従って、特許文献1及び2の溶射用粉末にはまだ改善の余地がある。
特開2002−302754号公報(段落[0018]、段落[0020]) 特開2002−363724号公報(段落[0068]〜段落[0070])
Thus, the granulated-sintered powder is more suitable as a thermal spraying powder than the melt-ground powder and the sintered-ground powder. However, even in the case of the thermal spraying powders described in Patent Documents 1 and 2, it is still difficult to form a thermal spray coating with high adhesion efficiency, or a phenomenon called spitting is likely to occur during thermal spraying. Therefore, the thermal spraying powders of Patent Documents 1 and 2 still have room for improvement.
JP 2002-302754 A (paragraph [0018], paragraph [0020]) JP 2002-363724 A (paragraph [0068] to paragraph [0070])

本発明の目的は、イットリウム酸化物を含む溶射皮膜を良好に形成可能な溶射用粉末を提供することにある。本発明の目的はまた、そうした溶射用粉末を用いた溶射方法、及びそうした溶射用粉末から形成される溶射皮膜を提供することにある。   An object of the present invention is to provide a thermal spraying powder that can satisfactorily form a thermal spray coating containing yttrium oxide. Another object of the present invention is to provide a thermal spraying method using such a thermal spraying powder and a thermal spray coating formed from such thermal spraying powder.

上記の目的を達成するために、請求項1に記載の発明は、イットリウム酸化物の造粒−焼結粉末を含有する溶射用粉末を提供する。造粒−焼結粉末は、一次粒子を造粒及び焼結して得られる二次粒子からなり、焼結後の一次粒子の平均粒子径は0.3〜1.5μmである。   In order to achieve the above object, the invention according to claim 1 provides a thermal spraying powder containing a granulated-sintered powder of yttrium oxide. The granulated-sintered powder is composed of secondary particles obtained by granulating and sintering primary particles, and the average particle size of the primary particles after sintering is 0.3 to 1.5 μm.

請求項2に記載の発明は、二次粒子の圧壊強度が25〜250MPaである請求項1に記載の溶射用粉末を提供する。
請求項3に記載の発明は、焼結後の一次粒子の粒度の分散指数が0.5以下である請求項1又は2に記載の溶射用粉末を提供する。
Invention of Claim 2 provides the powder for thermal spraying of Claim 1 whose crushing strength of a secondary particle is 25-250 MPa.
Invention of Claim 3 provides the powder for thermal spraying of Claim 1 or 2 whose dispersion index of the particle size of the primary particle after sintering is 0.5 or less.

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の溶射用粉末を溶射する溶射方法を提供する。
請求項5に記載の発明は、請求項1〜3のいずれか一項に記載の溶射用粉末を溶射して形成される溶射皮膜を提供する。
Invention of Claim 4 provides the thermal spraying method of thermally spraying the powder for thermal spraying as described in any one of Claims 1-3.
The invention according to claim 5 provides a thermal spray coating formed by thermal spraying the thermal spraying powder according to any one of claims 1 to 3.

本発明によれば、イットリウム酸化物を含む溶射皮膜を良好に形成可能な溶射用粉末が提供される。また本発明によれば、そうした溶射用粉末を用いた溶射方法、及びそうした溶射用粉末から形成される溶射皮膜も提供される。   ADVANTAGE OF THE INVENTION According to this invention, the thermal spraying powder which can form the thermal spray coating containing an yttrium oxide favorably is provided. The present invention also provides a thermal spraying method using such a thermal spraying powder and a thermal spray coating formed from such thermal spraying powder.

以下、本発明の一実施形態を説明する。
本実施形態に係る溶射用粉末はイットリウム酸化物(Y23)の造粒−焼結粉末からなる。イットリウム酸化物の造粒−焼結粉末は、一次粒子を造粒及び焼結して得られる二次粒子からなる。
Hereinafter, an embodiment of the present invention will be described.
The thermal spraying powder according to this embodiment is made of a granulated-sintered powder of yttrium oxide (Y 2 O 3 ). The yttrium oxide granulated-sintered powder consists of secondary particles obtained by granulating and sintering primary particles.

造粒−焼結粉末中のイットリウム酸化物の含有量が95質量%よりも少ない場合、さらに言えば99質量%よりも少ない場合、もっと言えば99.9質量%よりも少ない場合には、溶射用粉末から形成される溶射皮膜は良好な耐プラズマエロージョン性を備えない虞がある。従って、造粒−焼結粉末中のイットリウム酸化物の含有量は、好ましくは95質量%以上、より好ましくは99質量%以上、最も好ましくは99.9質量%以上である。本実施形態に係る溶射用粉末の場合、造粒−焼結粉末中のイットリウム酸化物の含有量は、溶射用粉末中のイットリウム酸化物の含有量に換言可能である。   When the content of yttrium oxide in the granulated-sintered powder is less than 95% by mass, more specifically less than 99% by mass, more specifically less than 99.9% by mass, thermal spraying is performed. The thermal spray coating formed from the powder for use may not have good plasma erosion resistance. Therefore, the content of yttrium oxide in the granulated-sintered powder is preferably 95% by mass or more, more preferably 99% by mass or more, and most preferably 99.9% by mass or more. In the case of the thermal spraying powder according to the present embodiment, the content of yttrium oxide in the granulated-sintered powder can be restated as the content of yttrium oxide in the thermal spraying powder.

焼結後の一次粒子の平均粒子径が0.3μmよりも小さい場合には、溶射用粉末の溶射時にスピッティングがよく発生して実用上支障がある。従って、少なくとも実用上支障がない程度にまでスピッティングの発生を抑制するためには、焼結後の一次粒子の平均粒子径は0.3μm以上であることが必須である。ただし、たとえ0.3μm以上であっても0.5μmよりも小さい場合には、スピッティングの発生は大して抑制されないことがある。従って、焼結後の一次粒子の平均粒子径は0.5μm以上であることが好ましい。   When the average particle diameter of the primary particles after sintering is smaller than 0.3 μm, spitting often occurs at the time of thermal spraying of the thermal spraying powder, which causes a practical problem. Therefore, in order to suppress the occurrence of spitting to the extent that there is no practical problem, it is essential that the average particle diameter of the primary particles after sintering is 0.3 μm or more. However, even if it is 0.3 μm or more, if it is smaller than 0.5 μm, the occurrence of spitting may not be greatly suppressed. Therefore, the average particle diameter of the primary particles after sintering is preferably 0.5 μm or more.

スピッティングは、過溶融した溶射用粉末が溶射機のノズルの内壁に堆積し、その堆積物が脱離して塊のまま基材に向かって吐き出される現象をいう。この堆積物が溶射皮膜に混入すると、溶射皮膜の組織構造が不均一となるため、溶射皮膜の品質が著しく低下する。さらには、過溶融した溶射用粉末がノズルの内壁に大量に堆積した場合には、堆積物によりノズルが閉塞されて溶射が行えなくこともある。スピッティングの発生は、溶射の際に溶射用粉末が過溶融することによって引き起こされる。従って、焼結後の一次粒子の平均粒子径を比較的大きく設定することは、溶射用粉末の過溶融が抑制されるという点で、スピッティングの発生防止に対して極めて有効である。   Spitting refers to a phenomenon in which overmelted thermal spraying powder accumulates on the inner wall of the nozzle of the thermal sprayer, and the deposit is detached and discharged toward the substrate as a lump. When this deposit is mixed into the thermal spray coating, the structure of the thermal spray coating becomes non-uniform, so that the quality of the thermal spray coating is significantly deteriorated. Furthermore, when a large amount of the overmelted thermal spraying powder is deposited on the inner wall of the nozzle, the nozzle may be blocked by deposits, making it impossible to perform thermal spraying. The occurrence of spitting is caused by overmelting of the thermal spraying powder during thermal spraying. Therefore, setting the average particle size of the primary particles after sintering to be relatively large is extremely effective in preventing spitting from the viewpoint that overmelting of the thermal spraying powder is suppressed.

焼結後の一次粒子の平均粒子径が1.5μmよりも大きい場合には、溶射用粉末の付着効率が極度に低下して実用上支障がある。従って、少なくとも実用上支障がない程度の付着効率を実現するためには、焼結後の一次粒子の平均粒子径は1.5μm以下であることが必須である。ただし、たとえ1.5μm以下であっても1.3μmよりも大きい場合には、あまり高い付着効率は期待できない。従って、焼結後の一次粒子の平均粒子径は1.3μm以下であることが好ましい。   When the average particle diameter of the primary particles after sintering is larger than 1.5 μm, the deposition efficiency of the thermal spraying powder is extremely lowered, which causes a practical problem. Therefore, in order to realize an adhesion efficiency that is at least practically satisfactory, it is essential that the average particle diameter of the primary particles after sintering is 1.5 μm or less. However, even if it is 1.5 μm or less, if it is larger than 1.3 μm, a very high deposition efficiency cannot be expected. Therefore, the average particle diameter of the primary particles after sintering is preferably 1.3 μm or less.

付着効率の低下は、溶射の際に溶射用粉末が十分に軟化又は溶融しないことによって引き起こされる。溶射の際に溶射用粉末が十分に軟化又は溶融しないまま基材に衝突すると、溶射用粉末が基材に堆積しないで跳ね返るため、付着効率は低下する。従って、焼結後の一次粒子の平均粒子径を比較的小さく設定することは、溶射用粉末の軟化不足又は溶融不足が抑制されるという点で、付着効率の低下防止に対して極めて有効である。   The reduction in the deposition efficiency is caused by the fact that the thermal spraying powder does not sufficiently soften or melt during the thermal spraying. When the thermal spraying powder collides with the base material without being sufficiently softened or melted during the thermal spraying, the thermal spraying powder bounces without being deposited on the base material, so that the adhesion efficiency is lowered. Therefore, setting the average particle size of the primary particles after sintering to be relatively small is extremely effective for preventing a decrease in adhesion efficiency in that the softening or melting of the thermal spraying powder is suppressed. .

焼結前の一次粒子の平均粒子径が0.3μmよりも大きい場合、さらに言えば0.1μmよりも大きい場合には、焼結後の一次粒子の平均粒子径を0.3〜1.5μmの範囲内に設定することが容易でない。従って、焼結前の一次粒子の平均粒子径は、0.3μm以下であることが好ましく、0.1μm以下であることがより好ましい。   When the average particle diameter of primary particles before sintering is larger than 0.3 μm, more specifically, when larger than 0.1 μm, the average particle diameter of primary particles after sintering is 0.3 to 1.5 μm. It is not easy to set within the range. Therefore, the average particle diameter of primary particles before sintering is preferably 0.3 μm or less, and more preferably 0.1 μm or less.

二次粒子の圧壊強度が25MPaよりも小さい場合、さらに言えば40MPaよりも小さい場合、もっと言えば50MPaよりも小さい場合には、溶射時に軽度のスピッティングが発生する虞がある。この場合のスピッティングの発生は、造粒−焼結粉末が、原料粉末供給機からパウダーチューブを通じて溶射ガンに供給される時や溶射フレームに供給される時の衝撃により崩壊し、その結果生じる微粒子が過溶融することに起因する。また、造粒−焼結粉末の崩壊によって生じる微粒子は、溶射フレーム中に取り込まれにくいため、溶射用粉末の付着効率が軽度に低下する原因ともなる。従って、スピッティングの発生及び付着効率の低下をより確実に防ぐためには、二次粒子の圧壊強度は25MPa以上であることが好ましく、40MPa以上であることがより好ましく、50MPa以上であることが最も好ましい。   When the crushing strength of the secondary particles is less than 25 MPa, more specifically less than 40 MPa, and more specifically less than 50 MPa, there is a possibility that mild spitting may occur during thermal spraying. In this case, spitting occurs when the granulated-sintered powder collapses due to an impact when it is supplied from the raw material powder feeder through the powder tube to the thermal spray gun or when it is supplied to the thermal spray frame. Due to overmelting. Moreover, since the fine particles generated by the collapse of the granulated-sintered powder are difficult to be taken into the thermal spray frame, the adhesion efficiency of the thermal spray powder is slightly reduced. Therefore, in order to more reliably prevent the occurrence of spitting and the decrease in adhesion efficiency, the crushing strength of the secondary particles is preferably 25 MPa or more, more preferably 40 MPa or more, and most preferably 50 MPa or more. preferable.

二次粒子の圧壊強度が250MPaよりも大きい場合、さらに言えば200MPaよりも大きい場合、もっと言えば170MPaよりも大きい場合には、溶射用粉末の付着効率が軽度に低下する虞がある。従って、付着効率の低下をより確実に防ぐためには、二次粒子の圧壊強度は250MPa以下であることが好ましく、200MPa以下であることがより好ましく、170MPa以下であることが最も好ましい。   If the crushing strength of the secondary particles is greater than 250 MPa, more specifically greater than 200 MPa, more specifically greater than 170 MPa, the deposition efficiency of the thermal spraying powder may be slightly reduced. Therefore, in order to more reliably prevent a decrease in adhesion efficiency, the crushing strength of the secondary particles is preferably 250 MPa or less, more preferably 200 MPa or less, and most preferably 170 MPa or less.

焼結後の一次粒子の粒度の分散指数が0.5よりも大きい場合、さらに言えば0.4よりも大きい場合には、付着効率が軽度に低下する虞がある。この場合の付着効率の低下は、一次粒子のサイズが不揃いなせいで造粒−焼結粉末の溶融が一様に進行しないことに起因する。従って、付着効率の低下をより確実に防ぐためには、分散指数は0.5以下であることが好ましく、0.4以下であることがより好ましい。   When the dispersion index of the particle size of the primary particles after sintering is larger than 0.5, more specifically, when larger than 0.4, the adhesion efficiency may be slightly lowered. The decrease in the adhesion efficiency in this case is caused by the fact that the sizes of the primary particles are not uniform and the melting of the granulated-sintered powder does not proceed uniformly. Therefore, the dispersion index is preferably 0.5 or less, and more preferably 0.4 or less, in order to more reliably prevent a decrease in adhesion efficiency.

造粒−焼結粉末の粒度分布は、溶射時に使用される溶射機の種類や溶射条件に応じて適宜設定されることが好ましい。具体的には、造粒−焼結粉末の粒度分布は、5〜75μm、10〜45μm、15〜45μm、20〜63μm、あるいは25〜75μmであってもよい。粒度分布の下限の値は、造粒−焼結粉末中に占めるその値以下の粒子径を有する粒子の割合が5%以下であることを意味しており、例えば(株)堀場製作所製のレーザー回折式粒度測定機LA−300を用いて求められる。粒度分布の上限の値は、造粒−焼結粉末中に占めるその値以上の粒子径を有する粒子の割合が5%以下であることを意味しており、例えばロータップ試験機(JIS R6002参照)を用いて求められる。例えば粒度分布が5〜75μmである造粒−焼結粉末であれば、5μm以下の粒子径を有する粒子の割合は5%以下であり、かつ、75μm以上の粒子径を有する粒子の割合は5%以下である。本実施形態に係る溶射用粉末の場合、造粒−焼結粉末の粒度分布は、溶射用粉末の粒度分布に換言可能である。   The particle size distribution of the granulated-sintered powder is preferably set as appropriate according to the type of thermal sprayer used during thermal spraying and the thermal spraying conditions. Specifically, the particle size distribution of the granulated-sintered powder may be 5 to 75 μm, 10 to 45 μm, 15 to 45 μm, 20 to 63 μm, or 25 to 75 μm. The lower limit value of the particle size distribution means that the proportion of particles having a particle diameter equal to or less than that value in the granulated-sintered powder is 5% or less. For example, a laser manufactured by Horiba, Ltd. It is determined using a diffraction particle size analyzer LA-300. The upper limit value of the particle size distribution means that the proportion of particles having a particle diameter equal to or larger than that value in the granulated-sintered powder is 5% or less, for example, a low tap tester (see JIS R6002). It is calculated using. For example, if the granulated-sintered powder has a particle size distribution of 5 to 75 μm, the proportion of particles having a particle size of 5 μm or less is 5% or less, and the proportion of particles having a particle size of 75 μm or more is 5 % Or less. In the case of the thermal spraying powder according to this embodiment, the particle size distribution of the granulated-sintered powder can be paraphrased as the particle size distribution of the thermal spraying powder.

本実施形態に係る溶射用粉末、すなわちイットリウム酸化物の造粒−焼結粉末を製造する際には、まず、イットリウム酸化物粉末と適当な分散媒とを混合することによりスラリーが調製される。スラリーには適当なバインダを添加してもよい。調製されたスラリーを噴霧乾燥造粒機を用いて乾燥することにより造粒粉末が作製される。得られた造粒粉末を焼結し、さらに解砕及び分級をすることによりイットリウム酸化物の造粒−焼結粉末は得られる。   When producing the thermal spraying powder according to the present embodiment, that is, the yttrium oxide granulated-sintered powder, first, a slurry is prepared by mixing the yttrium oxide powder with an appropriate dispersion medium. A suitable binder may be added to the slurry. The prepared slurry is dried using a spray drying granulator to produce a granulated powder. The obtained granulated powder is sintered, and further pulverized and classified to obtain a yttrium oxide granulated-sintered powder.

造粒粉末の焼結は、大気中、真空中及び不活性ガス雰囲気中のいずれで行ってもよいが、大気中で行うことが好ましい。また造粒粉末の焼結は、電気炉又はガス炉を用いて行ってもよい。焼結温度は、好ましくは1200〜1700℃、より好ましくは1300〜1700℃である。焼結時における最高温度保持時間は、好ましくは30分〜5時間、より好ましくは2〜4時間である。   The granulated powder may be sintered in the air, in a vacuum, or in an inert gas atmosphere, but preferably in the air. Further, the granulated powder may be sintered using an electric furnace or a gas furnace. The sintering temperature is preferably 1200 to 1700 ° C, more preferably 1300 to 1700 ° C. The maximum temperature holding time during sintering is preferably 30 minutes to 5 hours, more preferably 2 to 4 hours.

本実施形態に係る溶射用粉末を溶射する方法は、プラズマ溶射が好ましい。本実施形態に係る溶射用粉末をプラズマ溶射して形成される溶射皮膜は、良好な耐プラズマエロージョン性を有する。本実施形態に係る溶射用粉末を溶射フレームに供給する方法は内部送給が好ましい。内部送給では、溶射機のフレーム噴出ノズルの中で溶射フレームに溶射用粉末が供給される。内部送給により溶射フレームに溶射用粉末を供給するようにした場合には、溶射用粉末が溶射フレーム中に取り込まれやすいため、溶射用粉末の付着効率が向上する。   Plasma spraying is preferable as the method for spraying the thermal spraying powder according to the present embodiment. The thermal spray coating formed by plasma spraying the thermal spraying powder according to this embodiment has good plasma erosion resistance. The method of supplying the thermal spraying powder according to this embodiment to the thermal spray frame is preferably internal feeding. In the internal feeding, the thermal spraying powder is supplied to the thermal spray frame in the flame spray nozzle of the thermal sprayer. When the thermal spraying powder is supplied to the thermal spraying frame by internal feeding, the thermal spraying powder is easily taken into the thermal spraying frame, so that the deposition efficiency of the thermal spraying powder is improved.

本実施形態は、以下の利点を有する。
・ 本実施形態に係る溶射用粉末では、焼結後の一次粒子の平均粒子径が0.3〜1.5μmに設定されている。そのため、本実施形態に係る溶射用粉末によれば、スピッティングの発生及び付着効率の低下が良好に抑制される。従って、本実施形態に係る溶射用粉末によれば、イットリウム酸化物を含む溶射皮膜を良好に形成可能である。
This embodiment has the following advantages.
In the thermal spraying powder according to the present embodiment, the average particle diameter of primary particles after sintering is set to 0.3 to 1.5 μm. Therefore, according to the thermal spraying powder according to the present embodiment, the occurrence of spitting and the decrease in the adhesion efficiency are satisfactorily suppressed. Therefore, according to the thermal spraying powder according to the present embodiment, it is possible to satisfactorily form a thermal spray coating containing yttrium oxide.

・ 造粒−焼結粉末は一般に、溶融−粉砕粉末及び焼結−粉砕粉末に比べて、流動性が良好であり、付着効率も高い。加えて、造粒−焼結粉末は、溶融−粉砕粉末及び焼結−粉砕粉末に比べて、製造過程での不純物の混入の虞が少ない。従って、造粒−焼結粉末からなる本実施形態に係る溶射用粉末もこれらの利点を有する。なお、イットリウム酸化物の溶融−粉砕粉末は、例えば、イットリウム酸化物粉末を電気炉で溶融し、冷却固化の後に粉砕及び分級して製造される。イットリウム酸化物の焼結−粉砕粉末は、例えば、イットリウム酸化物粉末を焼結した後に粉砕及び分級して製造される。   -Granulated-sintered powder generally has better fluidity and higher adhesion efficiency than melt-ground powder and sintered-ground powder. In addition, the granulated-sintered powder is less likely to be contaminated with impurities during the production process than the melt-ground powder and the sintered-ground powder. Therefore, the thermal spraying powder according to this embodiment made of granulated-sintered powder also has these advantages. The melt-ground powder of yttrium oxide is produced, for example, by melting yttrium oxide powder in an electric furnace, cooling and solidifying, and then pulverizing and classifying the powder. The sintered and pulverized powder of yttrium oxide is produced, for example, by sintering and classifying yttrium oxide powder.

前記実施形態は以下のように変更されてもよい。
・ 溶射用粉末は、造粒−焼結粉末以外の粉末を含有してもよい。ただし、溶射用粉末中の造粒−焼結粉末の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、最も好ましくは98質量%以上である。
The embodiment may be modified as follows.
The thermal spraying powder may contain a powder other than the granulated-sintered powder. However, the content of the granulated and sintered powder in the thermal spraying powder is preferably 90% by mass or more, more preferably 95% by mass or more, and most preferably 98% by mass or more.

・ 溶射用粉末を溶射する方法は、プラズマ溶射以外の方法であってもよい。
・ 溶射用粉末を溶射フレームに供給する方法は、内部送給の代わりに外部送給であってもよい。外部送給では、溶射機のフレーム噴出ノズルの外で溶射フレームに溶射用粉末が供給される。換言すれば、外部送給では、溶射機のフレーム噴出ノズルから噴出された溶射フレームに溶射用粉末が供給される。
-The method of spraying the thermal spraying powder may be a method other than plasma spraying.
-The method of supplying the thermal spraying powder to the thermal spray frame may be external feeding instead of internal feeding. In the external feeding, the thermal spraying powder is supplied to the thermal spraying frame outside the flame spray nozzle of the thermal sprayer. In other words, in the external feeding, the thermal spray powder is supplied to the thermal spray frame ejected from the flame spray nozzle of the thermal sprayer.

次に、本発明の実施例及び比較例を説明する。
実施例1〜19及び比較例1〜2においては、イットリウム酸化物の造粒−焼結粉末からなる溶射用粉末を調製した。比較例3においては、イットリウム酸化物の溶融−粉砕粉末からなる溶射用粉末を調製した。比較例4においては、イットリウム酸化物の造粒粉末からなる溶射用粉末を調製した。実施例1〜19及び比較例1〜4に係る各溶射用粉末の詳細は表1に示すとおりである。
Next, examples and comparative examples of the present invention will be described.
In Examples 1-19 and Comparative Examples 1-2, thermal spraying powders comprising yttrium oxide granulated-sintered powders were prepared. In Comparative Example 3, a thermal spraying powder comprising a melt-ground powder of yttrium oxide was prepared. In Comparative Example 4, a thermal spraying powder comprising a yttrium oxide granulated powder was prepared. The details of each thermal spraying powder according to Examples 1 to 19 and Comparative Examples 1 to 4 are as shown in Table 1.

表1の“一次粒子の平均粒子径”欄中の数値は、電界放射型走査電子顕微鏡(FE−SEM)を用いて測定した一次粒子の定方向径(Feret径)の平均値である。同欄中の数値は、実施例1〜19及び比較例1〜2の場合は焼結後の一次粒子の平均粒子径を表し、比較例4の場合は未焼結の一次粒子の平均粒子径を表す。定方向径の測定は、各溶射用粉末中から任意に選択した10個の二次粒子のそれぞれに含まれる50個の一次粒子について行った。定方向径は、粒子をはさむ定方向の二本の平行線の間隔である。   The numerical values in the column “Average particle diameter of primary particles” in Table 1 are average values of the unidirectional diameters (Feret diameters) of primary particles measured using a field emission scanning electron microscope (FE-SEM). The numerical values in the same column represent the average particle size of the primary particles after sintering in Examples 1 to 19 and Comparative Examples 1 and 2, and in the case of Comparative Example 4, the average particle size of unsintered primary particles. Represents. The measurement of the fixed direction diameter was performed on 50 primary particles included in each of 10 secondary particles arbitrarily selected from the respective powders for thermal spraying. The constant direction diameter is a distance between two parallel lines in a constant direction between the particles.

表1の“二次粒子の圧壊強度”欄中の数値は、式:σ=2.8×L/π/d2に従って算出される値σである。式中、σは二次粒子の圧壊強度[MPa]を表し、Lは臨界荷重[N]を表し、dは二次粒子の平均粒子径[mm]を表す。臨界荷重は、圧子により造粒−焼結粉末に一定速度で増加する圧縮荷重を加えたときに、圧子の変位量が急激に増加する時点において造粒−焼結粉末に加えられていた圧縮荷重の大きさである。この臨界荷重の測定は、(株)島津製作所社製の微小圧縮試験装置“MCTE−500”を用いて行った。 The numerical value in the “secondary particle crushing strength” column of Table 1 is a value σ calculated according to the formula: σ = 2.8 × L / π / d 2 . In the formula, σ represents the crushing strength [MPa] of the secondary particles, L represents the critical load [N], and d represents the average particle diameter [mm] of the secondary particles. The critical load is the compressive load applied to the granulated-sintered powder when the displacement of the indenter increases rapidly when a compressive load increasing at a constant speed is applied to the granulated-sintered powder by the indenter. Is the size of This critical load was measured using a micro compression test apparatus “MCTE-500” manufactured by Shimadzu Corporation.

表1の“分散指数”欄中の数値は、式:D=[Σ(d−dS)/n}/dSに従って算出される値Dである。式中、Dは分散指数を表し、dは一次粒子の粒子径[μm]を表し、dsは一次粒子の平均粒子径[μm]を表し、nは粒子径を測定した一次粒子の個数を表す。同欄中の数値は、実施例1〜19及び比較例1〜2の場合は焼結後の一次粒子の粒度の分散指数を表し、比較例4の場合は未焼結の一次粒子の粒度の分散指数を表す。 The numerical value in the “dispersion index” column of Table 1 is a value D calculated according to the formula: D = [Σ (d−d S ) / n} / d S. In the formula, D represents the dispersion index, d represents the particle diameter [μm] of the primary particles, d s represents the average particle diameter [μm] of the primary particles, and n represents the number of primary particles whose particle diameter was measured. To express. The numerical values in the same column represent the dispersion index of the particle size of the primary particles after sintering in Examples 1 to 19 and Comparative Examples 1 and 2, and in the case of Comparative Example 4, the particle size of unsintered primary particles. Represents the dispersion index.

実施例1〜19及び比較例1〜4に係る各溶射用粉末を表2に示す溶射条件に従ってプラズマ溶射して膜厚200μmの溶射皮膜を基材上に形成した。
基材上に設けられた溶射皮膜の重量を測定し、溶射に使用した溶射用粉末の重量に対する溶射皮膜の重量の比率を付着効率として算出した。付着効率の算出値に基づいて、実施例1〜19及び比較例1〜4に係る各溶射用粉末の付着効率を優(◎)、良(○)、可(△)、不良(×)の四段階で評価した。すなわち、付着効率が55%以上の場合には優、50%以上55%未満の場合には良、45%以上50%未満の場合には可、45%未満の場合には不良である。付着効率の算出値と、それに基づく評価の結果を表1の“付着効率”欄に示す。
Each thermal spraying powder according to Examples 1 to 19 and Comparative Examples 1 to 4 was plasma sprayed according to the thermal spraying conditions shown in Table 2 to form a thermal sprayed coating having a thickness of 200 μm on the substrate.
The weight of the thermal spray coating provided on the substrate was measured, and the ratio of the weight of the thermal spray coating to the weight of the thermal spraying powder used for thermal spraying was calculated as the adhesion efficiency. Based on the calculated value of the adhesion efficiency, the adhesion efficiency of each thermal spraying powder according to Examples 1 to 19 and Comparative Examples 1 to 4 is excellent (◎), good (◯), acceptable (Δ), and defective (×). Evaluation was made in four stages. That is, it is excellent when the adhesion efficiency is 55% or more, good when it is 50% or more and less than 55%, acceptable when it is 45% or more and less than 50%, and poor when it is less than 45%. The calculated value of the adhesion efficiency and the result of the evaluation based thereon are shown in the “Adhesion efficiency” column of Table 1.

溶射中のスピッティングの発生の有無に基づいて、実施例1〜19及び比較例1〜4に係る各溶射用粉末を良(○)、不良(×)の二段階で評価した。すなわち、溶射皮膜への堆積物の混入が目視により認められる場合には不良、溶射皮膜への堆積物の混入が目視により認められない場合には良である。この評価の結果を表1の“スピッティング”欄に示す。   Based on the presence or absence of spitting during thermal spraying, each thermal spraying powder according to Examples 1 to 19 and Comparative Examples 1 to 4 was evaluated in two stages: good (◯) and poor (×). In other words, it is not good when the deposition of deposits on the thermal spray coating is visually recognized, and is good when the deposition of deposits on the thermal spray coating is not visually recognized. The results of this evaluation are shown in the “Spitting” column of Table 1.

Figure 2006118013
Figure 2006118013

Figure 2006118013
表1に示すように、実施例1〜19においては、付着効率及びスピッティングのいずれの評価も可以上と良好である。この結果は、実施例1〜19に係る溶射用粉末によればイットリウム酸化物を含む溶射皮膜が良好に形成されることを示唆するものである。
Figure 2006118013
As shown in Table 1, in Examples 1 to 19, both evaluations of adhesion efficiency and spitting are as good as possible. This result suggests that the thermal spray coating containing yttrium oxide is well formed according to the thermal spraying powders according to Examples 1 to 19.

前記実施形態より把握できる技術的思想について以下に記載する。
・ 請求項1〜3のいずれか一項に記載の溶射用粉末をプラズマ溶射することを特徴とする溶射方法。
The technical idea that can be grasped from the embodiment will be described below.
A thermal spraying method characterized by plasma spraying the thermal spraying powder according to any one of claims 1 to 3.

・ 請求項1〜3のいずれか一項に記載の溶射用粉末をプラズマ溶射して形成されることを特徴とする溶射皮膜。   A thermal spray coating formed by plasma spraying the thermal spraying powder according to any one of claims 1 to 3.

Claims (5)

イットリウム酸化物の造粒−焼結粉末を含有する溶射用粉末であって、前記造粒−焼結粉末は、一次粒子を造粒及び焼結して得られる二次粒子からなり、焼結後の一次粒子の平均粒子径が0.3〜1.5μmであることを特徴とする溶射用粉末。   A powder for thermal spraying containing granulated-sintered powder of yttrium oxide, wherein the granulated-sintered powder consists of secondary particles obtained by granulating and sintering primary particles, and after sintering An average particle diameter of primary particles of 0.3 to 1.5 μm. 二次粒子の圧壊強度が25〜250MPaであることを特徴とする請求項1に記載の溶射用粉末。   The thermal spraying powder according to claim 1, wherein the crushing strength of the secondary particles is 25 to 250 MPa. 焼結後の一次粒子の粒度の分散指数が0.5以下であることを特徴とする請求項1又は2に記載の溶射用粉末。   The thermal spraying powder according to claim 1 or 2, wherein the dispersion index of the particle size of the primary particles after sintering is 0.5 or less. 請求項1〜3のいずれか一項に記載の溶射用粉末を溶射することを特徴とする溶射方法。   The thermal spraying method characterized by spraying the thermal spraying powder as described in any one of Claims 1-3. 請求項1〜3のいずれか一項に記載の溶射用粉末を溶射して形成されることを特徴とする溶射皮膜。   A thermal spray coating formed by thermal spraying the thermal spraying powder according to claim 1.
JP2004308587A 2004-10-22 2004-10-22 Thermal spray powder, thermal spraying method and thermal spray coating Expired - Lifetime JP4585832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308587A JP4585832B2 (en) 2004-10-22 2004-10-22 Thermal spray powder, thermal spraying method and thermal spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308587A JP4585832B2 (en) 2004-10-22 2004-10-22 Thermal spray powder, thermal spraying method and thermal spray coating

Publications (2)

Publication Number Publication Date
JP2006118013A true JP2006118013A (en) 2006-05-11
JP4585832B2 JP4585832B2 (en) 2010-11-24

Family

ID=36536163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308587A Expired - Lifetime JP4585832B2 (en) 2004-10-22 2004-10-22 Thermal spray powder, thermal spraying method and thermal spray coating

Country Status (1)

Country Link
JP (1) JP4585832B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225689A (en) * 2005-02-15 2006-08-31 Fujimi Inc Thermal spraying powder
GB2430671A (en) * 2005-09-30 2007-04-04 Fujimi Inc Thermal spray powder including yttria
JP2013136814A (en) * 2011-12-28 2013-07-11 Fujimi Inc Ceramic spray deposit and method for manufacturing the same
JP2016528392A (en) * 2013-08-22 2016-09-15 コミコ カンパニー リミテッドKomico Co.,Ltd. Aerosol coating method and plasma-resistant member formed thereby
KR102348171B1 (en) * 2021-08-12 2022-01-06 최진식 Manufacturing method of yttrium oxide powder for plasma spray

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080954A (en) * 2000-06-29 2002-03-22 Shin Etsu Chem Co Ltd Thermal-spraying powder and thermal-sprayed film
JP2002302754A (en) * 2001-04-06 2002-10-18 Shin Etsu Chem Co Ltd Rare earth containing particle for thermal spraying, and thermal spray coated member therewith
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363724A (en) * 2001-03-08 2002-12-18 Shin Etsu Chem Co Ltd Spherical particle for thermal spraying and thermal spraying member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080954A (en) * 2000-06-29 2002-03-22 Shin Etsu Chem Co Ltd Thermal-spraying powder and thermal-sprayed film
JP2002363724A (en) * 2001-03-08 2002-12-18 Shin Etsu Chem Co Ltd Spherical particle for thermal spraying and thermal spraying member
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002302754A (en) * 2001-04-06 2002-10-18 Shin Etsu Chem Co Ltd Rare earth containing particle for thermal spraying, and thermal spray coated member therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225689A (en) * 2005-02-15 2006-08-31 Fujimi Inc Thermal spraying powder
GB2430671A (en) * 2005-09-30 2007-04-04 Fujimi Inc Thermal spray powder including yttria
US8075860B2 (en) 2005-09-30 2011-12-13 Fujimi Incorporated Thermal spray powder and method for forming a thermal spray coating
KR101352873B1 (en) 2005-09-30 2014-01-20 가부시키가이샤 후지미인코퍼레이티드 Thermal spraying powder and method for forming thermal spray coating
JP2013136814A (en) * 2011-12-28 2013-07-11 Fujimi Inc Ceramic spray deposit and method for manufacturing the same
JP2016528392A (en) * 2013-08-22 2016-09-15 コミコ カンパニー リミテッドKomico Co.,Ltd. Aerosol coating method and plasma-resistant member formed thereby
KR102348171B1 (en) * 2021-08-12 2022-01-06 최진식 Manufacturing method of yttrium oxide powder for plasma spray

Also Published As

Publication number Publication date
JP4585832B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
TWI427188B (en) Thermal spray powder, method for forming thermal spray coating, and plasma resistant member
US20060116274A1 (en) Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
US9388485B2 (en) Thermal spray material and process for preparing same
US6916534B2 (en) Thermal spray spherical particles, and sprayed components
US7837967B2 (en) Thermal spray powder and method for forming thermal spray coating
US7279221B2 (en) Thermal spraying powder
JP2006037238A (en) Method for producing spherical particle for thermal spraying
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP2008231527A (en) Powder for cold spray, and film formation method
KR102405683B1 (en) thermal spray material
JP4642487B2 (en) Thermal spray powder
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
TW202222737A (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
TW202223119A (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP4585832B2 (en) Thermal spray powder, thermal spraying method and thermal spray coating
KR102395660B1 (en) Powder for thermal spray and thermal spray coating using the same
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
WO2022118958A1 (en) Thermal spray material, thermal spray method using same, and thermal spray coating film
JP2012188677A (en) Powder for thermal spraying
JP2006144094A (en) Powder for thermal spraying, and manufacturing method therefor
JP2002332558A (en) Spherical particle for thermal spraying, its manufacturing method, and spray coated member
US20230062876A1 (en) Method of manufacturing high-density yf3 coating layer by using hvof, and high-density yf3 coating layer manufactured through same
JP4547253B2 (en) Thermal spray powder
CN116060612B (en) Spherical yttrium oxyfluoride-based powder, preparation method thereof and yttrium oxyfluoride-based coating
JP2010031384A (en) Optical thin film and optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250