WO2022118958A1 - Thermal spray material, thermal spray method using same, and thermal spray coating film - Google Patents

Thermal spray material, thermal spray method using same, and thermal spray coating film Download PDF

Info

Publication number
WO2022118958A1
WO2022118958A1 PCT/JP2021/044472 JP2021044472W WO2022118958A1 WO 2022118958 A1 WO2022118958 A1 WO 2022118958A1 JP 2021044472 W JP2021044472 W JP 2021044472W WO 2022118958 A1 WO2022118958 A1 WO 2022118958A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal spray
particles
thermal
rare earth
thermal spraying
Prior art date
Application number
PCT/JP2021/044472
Other languages
French (fr)
Japanese (ja)
Inventor
和洋 小川
裕士 市川
宏輝 齋藤
敬也 益田
博之 伊部
Original Assignee
国立大学法人東北大学
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 株式会社フジミインコーポレーテッド filed Critical 国立大学法人東北大学
Publication of WO2022118958A1 publication Critical patent/WO2022118958A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • the present invention relates to a thermal spray material capable of improving the heat resistance stability of a thermal spray coating, a thermal spraying method using the same, and a thermal spray coating.
  • a dry coating technique of providing a thermal spray coating on the surface of the part is applied.
  • the thermal spraying method which is one of the dry coating technologies, melts a granular thermal spray material made of metal, ceramic, cermet, etc. with a heat source such as a combustion flame or electric energy, and accelerates the thermal spray particles to form a surface of the substrate. It is a method of forming a film by spraying and depositing.
  • Patent Document 1 proposes the use of a composite film containing a rare earth silicate.
  • the SiO 2 component in the coating volatilizes when the sprayed coating is formed and when the high temperature environment is maintained thereafter, and the composition changes (thickening of the coating) and the function as a coating is not satisfied.
  • the problem has arisen. This is because SiO 2 volatilizes when sprayed with a rare earth silicate, the crystal phase separates, and SiO 2 volatilizes even in an actual use environment, resulting in low stability when used in an actual environment for a long time. Because it will end up.
  • An object of the present invention is to provide a thermal spraying material that can maintain stability even when it is kept in an actual use environment for a long time when a rare earth silicate is sprayed.
  • the present invention uses a thermal spraying material containing a rare earth silicate and a compound that combines with Si oxide or oxygen to form a Si oxide, or a Si-based compound selected from a combination thereof, in order to achieve the above object. ..
  • This makes it possible to supplement the volatile content of the SiO 2 component by oxidizing the Si-based compound during the formation of the thermal spray coating and the subsequent high-temperature heating, and can solve the above-mentioned problems.
  • the rare earth silicate may be a compound represented by RE 2 Si 2 O 7 or RE 2 SiO 5 (RE is a rare earth element).
  • RE is a rare earth element
  • the rare earth silicate is preferably a rare earth disilicate.
  • Si oxide examples include SiO 2
  • examples of the compound that combines with oxygen to form a Si oxide examples include SiC, SiC, and SiCN.
  • the Si-based compound is preferably an oxide or carbide of Si.
  • Yb 2 Si 2 O 7 when Yb 2 Si 2 O 7 is used as a rare earth silicate in a thermal spray material to form a Yb 2 Si 2 O 7 thermal spray coating, the SiO component volatilizes during the thermal spray coating formation and high temperature heating, resulting in Yb 2 SiO. 5 is generated.
  • SiC is included as a compound that combines with oxygen to form a Si oxide in the sprayed material
  • the SiO 2 generated by the oxidation of SiC is volatile by the following reaction formula (1).
  • the reaction formula (2) makes it possible to retain the Yb 2 Si 2 O 7 component. SiC + 2O 2 ⁇ SiO 2 + CO 2 ... (1) Yb 2 SiO 5 + SiO 2 ⁇ Yb 2 Si 2 O 7 ... (2)
  • Yb 2 Si 2 O 7 when Yb 2 Si 2 O 7 is used as a rare earth silicate in the spray material and a Yb 2 Si 2 O 7 bulk sintered body is formed by a hot press method, SiC is contained in the spray material.
  • heat-treating the Yb 2 Si 2 O 7 bulk sintered body for example, holding it at 1250 ° C. for 5 hours, cracks formed on the surface of the sintered body due to the volatilization of SiO 2 can be repaired.
  • the reaction described above may also include, as the spraying material, a rare earth silicate compound other than Yb 2 Si 2 O 7 and a compound other than SiC or a compound that combines with oxygen to form a Si oxide, or a combination thereof. Since it is generated, cracks generated on the surface of the film due to the volatilization of SiO 2 can be repaired as in the case of SiC.
  • the electron micrographs of (a) the sprayed coating using the mixed powder of Example 1 and (b) the sprayed coating using the granulated powder of Example 6 in the state of being sprayed without heat treatment are shown. .. Regarding the sprayed coating of Example 6, (a) an electron microscope secondary electron image photograph after heat treatment and (b) an electron microscope reflected electron image photograph after heat treatment are shown. An electron micrograph of the surface of the sprayed coatings of (a) Example 6 and (b) Example 7 observed without heat treatment and an electron micrograph after heat treatment at 1300 ° C. for 100 hours are shown.
  • the rare earth silicate and Si-based compound in the thermal spray material can be particles, respectively.
  • Such particles may be composed of granulated particles obtained by granulating finer primary particles, or may be mainly composed of aggregates of primary particles (may include a form of agglomeration). It may be a powder. More preferably, it may be a granule composed of an aggregate of primary particles. Further, the granules may be composed of a composite granule composed of a collection of primary particles of a rare earth silicate and primary particles of a Si-based compound.
  • the thermal spray coating is formed of such a thermal spray material containing granules made of a composite granule, the amount of volatilization of the Si-based compound due to the thermal effect during film formation can be further suppressed.
  • the particle size of the rare earth silicate particles and Si-based compounds in the thermal spraying material is not particularly limited. It is preferable that the ratio DvR / DvSi of the volume-based average particle diameter DvSi of the Si-based compound particles to the volume-based average particle diameter DvR of the rare earth silicate particles is 1/10 or more and 4 or less. Within this range, the Si-based compound can more preferably supplement the volatile content of the SiO2 component during the formation of the sprayed coating and the subsequent high-temperature heating, and has the effect of containing a large amount of rare earth disilicate structure. There is.
  • the average particle size of the sprayed material particles is not particularly limited as long as it is about 10 ⁇ m or less, and the lower limit of the average particle size is also not particularly limited.
  • the volume-based average particle size of the Si-based compound particles is preferably 0.3 ⁇ m or more and 2 ⁇ m or less.
  • the average particle size of the rare earth silicate particles based on the volume is 1 ⁇ m or more and 3 ⁇ m or less.
  • the average particle size on a volume basis in the case of granules is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the Si-based compound can more preferably supplement the volatile matter of the SiO 2 component at the time of forming the thermal spray coating and at the time of subsequent high-temperature heating, and can contain a large amount of rare earth disilicate structure. There is an effect.
  • a laser diffraction / scattering type particle size distribution measuring device (Spectris Co., Ltd., laser diffraction type particle size distribution measuring device master sizer) is used for the average particle size of the sprayed particles.
  • the measured 50% integrated particle size (D50) in the volume-based particle size distribution can be adopted.
  • a sphere-equivalent diameter calculated based on the specific surface area can be adopted.
  • the specific surface area is, for example, a value calculated by the BET 1-point method from the amount of gas adsorbed such as N2 measured by the continuous flow method using a specific surface area measuring device (manufactured by Mountech, fully automatic specific surface area measuring device Macsorb). can do.
  • the critical value of the average particle size to which each measurement method is applied is not strictly defined in the above, and may be changed according to the accuracy of the analyzer used.
  • the content of the Si-based compound in the thermal spraying material is not particularly limited, but is preferably 1% by weight or more and 10% by weight or less. If it is less than 1% by weight, the effect of replenishing the SiO 2 volatile matter is not sufficient, and if it exceeds 10% by weight, when it is exposed to a high temperature environment after the thermal spray coating is formed, cracks occur on the film surface as the oxidation reaction progresses. Because there is a tendency. It is considered that this is because the effect of the addition of SiC reaches supersaturation, and the formation of SiO 2 causes volume expansion and cracks. More preferably, it is 5% by weight or more and 10% by weight or less.
  • the thermal spraying material may be a mixture of rare earth silicate particles and Si-based compound particles.
  • composite particles may be produced by a solid-phase sintering method such as an atomizing method, a melt-crushing method, or a sintering-crushing method and a granulation-sintering method. Can be done.
  • the atomizing method is obtained by melting a mixture of a rare earth silicate powder and a Si-based compound powder, spraying and cooling the mixture, and then classifying the mixture as necessary.
  • a mixture of a rare earth silicate powder and a Si-based compound powder is melted, cooled and solidified, then pulverized, and if necessary, classified thereafter.
  • the granulation-sintering method is obtained by preparing a granulation powder from a mixture of a rare earth silicate powder and a Si-based compound powder, sintering the granulation powder, and further crushing and classifying the granulation powder.
  • the sintering-crushing method is obtained by compression-molding a mixture of a rare earth silicate powder and a Si-based compound powder, sintering the mixture, and pulverizing and classifying the obtained sintered body.
  • a granulated powder by a granulation-sintering method in which a granulated powder is produced from a powder mixed with raw materials and the granulated powder is sintered.
  • the sprayed material produced by the granulation-sintering method is generally produced by another manufacturing method such as the sintering-sintering method, in which the raw material powder is compression-molded and then sintered, and the obtained sintered body is crushed. It has better fluidity than the fired material produced.
  • the pulverization step since the pulverization step is not included in the manufacturing process, impurities can be further suppressed during pulverization.
  • the method for spraying the thermal spraying material of the present embodiment may be high-speed flame spraying such as high-speed oxygen fuel (HVOF) spraying, plasma spraying such as atmospheric pressure plasma spraying (APS), or explosive spraying. You may. Alternatively, it may be cold process spraying such as cold spray, warm spray and high speed air fuel (HVAF) spraying.
  • HVOF high-speed oxygen fuel
  • APS atmospheric pressure plasma spraying
  • HVAC high speed air fuel
  • high-speed oxygen fuel (HVOF) spraying or plasma spraying is preferably applied. Even when a sprayed material having a relatively large average particle size is used, the sprayed particles can be sufficiently softened and melted and accelerated. As a result, even when a thermal spraying material containing particles having a large average particle size is used, it is possible to form a thermal sprayed coating that is dense and has a high pickers hardness.
  • HVOF high-speed oxygen fuel
  • the HVOF thermal spraying method is a type of frame thermal spraying method that uses a combustion flame obtained by mixing fuel and oxygen and burning them at high pressure as a heat source for thermal spraying. By increasing the pressure in the combustion chamber, a high-speed (including supersonic) high-temperature gas flow is ejected from the nozzle even though it is a continuous combustion flame.
  • the HVOF thermal spraying method includes a general coating method for obtaining a thermal spray coating by putting a thermal spray material into this gas flow, heating and accelerating it, and depositing it on a substrate.
  • the sprayed particles are based at a high speed of 500 m / s to 1000 m / s. It can be deposited by colliding with the material.
  • the fuel used in the high-speed frame spraying may be a gas fuel of a hydrocarbon such as acetylene, ethylene, propane or propylene, or a liquid fuel such as kerosene or ethanol. Further, it is preferable that the temperature of the supersonic combustion flame is higher as the melting point of the thermal spray material is higher, and from this viewpoint, it is preferable to use gas fuel.
  • the plasma spraying method is a thermal spraying method that uses a plasma flame as a thermal spraying heat source for softening or melting the thermal spraying material.
  • a plasma flame as a thermal spraying heat source for softening or melting the thermal spraying material.
  • the plasma spraying method includes a general coating method for obtaining a thermal spray coating by charging a thermal spray material into this plasma jet, heating and accelerating it, and depositing it on a substrate.
  • the plasma spraying method includes atmospheric plasma spraying (APS: atmospheric plasma spraying) performed in the atmosphere, reduced pressure plasma spraying (LPS: low pressure plasma spraying) performed at a pressure lower than atmospheric pressure, and application higher than atmospheric pressure.
  • APS atmospheric plasma spraying
  • LPS reduced pressure plasma spraying
  • plasma spraying for example, by melting and accelerating the thermal spraying material with a plasma jet of about 5000 ° C to 10000 ° C, the thermal spray particles collide with the substrate at a speed of about 300 m / s to 600 m / s. Can be deposited.
  • the type of the base material for which the thermal spray coating is formed is not particularly limited, and examples thereof include metal materials, simple ceramic materials, composite ceramic materials, and ceramic matrix composites such as SiC / SiC.
  • Specific examples of the base material include aluminum alloys such as Al 2 O 3 , zirconium alloys such as ZrO 2 , iron, steel, copper, copper alloys, nickel, nickel alloys, gold, silver, bismuth, manganese, zinc, and the like.
  • Examples include metal materials such as zinc alloys and cobalt.
  • steel include various SUS (stainless steel) materials used as corrosion-resistant structural steel.
  • Examples of the aluminum alloy include A1000 series to A7000 series aluminum alloys that are useful as lightweight structural materials and the like.
  • Corrosion-resistant alloys include, for example, Hasteroy (manufactured by Haynes), which is an alloy in which molybdenum, chromium, etc. are added to a nickel group, and Inconel (manufactured by Special Metals), which is an alloy in which iron, chromium, niobium, molybdenum, etc. are added to a nickel group.
  • Hasteroy manufactured by Haynes
  • Inconel manufactured by Special Metals
  • iron, chromium, niobium, molybdenum, etc. are added to a nickel group.
  • sterite manufactured by Delorosterite Group
  • Inver which is an alloy obtained by adding nickel, manganese, carbon, etc. to iron.
  • Example 1 Yb 2 Si 2 O particles having an average particle diameter (D50) of 32 ⁇ m and ⁇ -SiC particles having an average particle diameter (D50) of 2.3 ⁇ m were used as ⁇ -SiC particles for the entire thermal spraying material.
  • the sprayed material was produced by putting them in a bag so that the amount of SiC particles added was 10% by weight and mixing them well.
  • Yb 2 Si 2 O7 particles and ⁇ -SiC particles having an average particle size shown in Table 1 are added, and the amount of ⁇ -SiC particles added to the entire thermal spraying material is 10.
  • the sprayed material was produced by putting the particles in a bag so as to have a weight of% by weight and mixing them well.
  • Example 4 a solvent and ⁇ -SiC particles having an average particle diameter (D50) of 0.351 ⁇ m were used for Yb 2 Si 2 O 7 particles having an average particle diameter (D50) of 1.2 ⁇ m. Then, water is used as a solvent to mix and slurry so that the amount of ⁇ -SiC particles added to the entire sprayed material is 10% by weight, and spray-dried using a spray dryer to form a composite granulated powder. As a result, the spray material was manufactured.
  • D50 average particle diameter
  • Yb 2 Si 2 O 7 particles and ⁇ -SiC particles having an average particle size shown in Table 1 are added, and the amount of ⁇ -SiC particles added to the entire thermal spraying material is 10.
  • a thermal spraying material was produced by forming a composite granulated powder according to the same procedure as in Example 4 by mixing so as to have a weight of% by weight. Further, in Examples 8 and 9, the silicate compound particles were replaced with Y 2 Si 2 O 7 (itrium silicate) and Gd 2 Si 2 O 7 (gadrinium silicate), respectively, and the silicates having the particle diameters shown in Table 1 were substituted.
  • the compound particles and the ⁇ -SiC particles are mixed so that the amount of the ⁇ -SiC particles added to the entire sprayed material is 10% by weight, and a composite granulated powder is formed according to the same procedure as in Example 4. By doing so, the thermal spraying material was produced.
  • Yb 2 Si 2 O 7 particles having an average particle diameter (D50) of 32 ⁇ m were used as a thermal spray material.
  • Example 8 after holding at a high temperature of 1300 ° C. for 5 hours, the peak intensity of the sprayed coating was analyzed by X-ray diffraction, and in Example 8, the peak intensity ratio of YSi 2 O 7 to Y 2 SiO 5 was determined.
  • the peak intensity ratio of Gd 2 Si 2 O 7 to Gd 2 SiO 5 is shown in Table 4.
  • Maxima XRD-7000 device manufactured by Shimadzu Corporation under the conditions of tube voltage: 40 kV, tube current: 30 mA, scanning speed: 2.000 deg./min, scanning step: 0.0200 deg. I went below.
  • the peak intensity and the peak intensity ratio the peak corresponding to each crystal structure obtained by X-ray diffraction was selected, normalized, and calculated as the intensity peak and the intensity peak ratio. The same method was used for the following examples.
  • the Yb 2 Si 2 O 7 / Yb 2 SiO 5 intensity ratios after holding at 1300 ° C. for 5 hours and 50 hours were higher in Examples 1 to 7 than in Comparative Examples. It can be seen that in 1 to 7, more Yb 2 Si 2 O 7 was formed by the repair reaction than in the comparative example. Further, after holding at 1300 ° C. for 5 hours, the Yb 2 Si 2 O 7 of the thermal spray coating when the thermal spray material composed of the composite granulated powder of Yb 2 Si 2 O 7 particles and SiC particles of Examples 4 to 7 was used.
  • the / Yb 2 SiO 5 intensity ratio is the Yb 2 Si 2 O 7 / Yb 2 SiO of the thermal spray coating when a thermal spray material composed of a mixed powder of Yb 2 Si 2 O 7 particles and SiC particles of Examples 1 to 3 is used. It can be seen that the intensity ratio tends to be higher than 5 . This is because the use of composite granulated powder as a raw material has less SiC volatilization, more SiC is left in the sprayed coating, and Yb 2 Si 2 O 7 is produced by the repair reaction. It shows that more were formed.
  • the peak intensity ratio of YSi 2 O 7 to Y 2 SiO 5 of Example 8 and the peak intensity ratio of Gd 2 Si 2 O 7 to Gd 2 SiO 5 of Example 9 are also compared. It was confirmed that the same effect was obtained even if the silicate compound particles were replaced, which was higher than the Yb 2 Si 2 O 7 / Yb 2 SiO 5 intensity ratio of the example.
  • Example 3 it was obtained by Example 1 in which 10% by weight of ⁇ -SiC having the same particle size of 2.3 ⁇ m was added and a mixed powder was used, and Example 6 in which granules made of a composite granulated powder were used. Comparing the peak intensity ratio of Yb 2 Si 2 O 7 to Yb 2 SiO 5 of the sprayed coating, Example 6 using granules made of composite granulated powder was more than Example 1 using mixed powder. , Yb 2 Si 2 O 7 has a high peak intensity ratio to Yb 2 SiO 5 , and the sprayed film formed using the composite granulated powder has more Yb 2 Si 2 O 7 components than the simply mixed one, and is repaired. It can be seen that the effect is great.
  • FIGS. 1 (a) and 1 (b) the operation-type electron micrographs of the sprayed coatings of Examples 1 and 6 in the state of being sprayed without heat treatment are shown in FIGS. 1 (a) and 1 (b), respectively.
  • the electron micrograph was taken using a scanning electron microscope SU-70 manufactured by Hitachi High-Tech, and the surface of the sprayed coating sample was observed.
  • the sprayed coating formed by using the granulated powder of Example 6 shown in (b) has more SiC crystals than the sprayed coating formed by using the mixed powder of Example 1 shown in (a). It can be seen that there are many particles. It is considered that this is because the mixed powder has a larger amount of SiC volatilized during the thermal spraying film formation than the granulated powder, and the amount of SiC formed as crystal grains in the thermal sprayed film is smaller.
  • Example 6 an electron microscope secondary electron image photograph after heat treatment at 1300 ° C. for 5 hours and an electron microscope backscattered electron image photograph of the same region of the secondary electron image photograph are taken. It is shown in (a) and (b) of FIG. 2, respectively.
  • the electron microscope secondary electron image photograph (a) it can be seen that black SiC particles are deposited on the YbxSiyOz substrate, which is a gray region, and in the electron microscope reflected electron image photograph (b), the black SiC particles are observed.
  • a new gray area appears around it, which is formed by the oxidation of SiC to form SiO 2 , and the repair reaction between SiO 2 and Yb 2 SiO 5 (bright area) causes the gray area of Yb 2 Si 2 O 7 . Is considered to have been formed.
  • FIG. 3 After forming the thermal spray coatings of Examples 6 and 7, an electron micrograph of the surface observed without heat treatment by the same method as described above and an electron micrograph after heat treatment at 1300 ° C. for 100 hours are shown in FIG. 3, respectively.
  • rice field. (A) is the thermal spray coating of Example 6, and (b) is the thermal spray coating of Example 7, respectively, and an electron micrograph of the state in which the thermal spray coating is still formed is shown on the left side, and the same is shown on the right side. An electron micrograph of the test piece observed after heat treatment at 1300 ° C. for 100 hours is shown.
  • the sprayed coating of Example 6 is heat-treated for a long time by comparing the X-ray diffraction pattern over time with respect to the sprayed coating and the coating after heat treatment at 1300 ° C. for 5, 50 hours and 100 hours. It was confirmed that the peak of Yb 2 Si 2 O 7 decreased and the peak of Yb 2 Si 2 O 7 increased due to the progress of the oxidation reaction due to the above, and the composition of the single layer film of Yb 2 Si 2 O 7 was almost approached. .. X-ray diffraction was performed using Maxima XRD-7000 manufactured by Shimadzu Corporation. It was confirmed that the longer the heat treatment time, the more the composition restoration progressed due to the oxidation reaction caused by the long heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

In order to provide a thermal spray material that can maintain stability even when held for a long period of time in an actual use environment when a rare earth silicate is thermally sprayed, a thermal spray material is used which contains: a rare earth silicate; and a Si-based compound selected from a Si oxide, a compound that is combined with oxygen to form a Si oxide, or a combination thereof. Thus, the Si-based compound is oxidized during the formation of a thermal spray coating film and during subsequent high-temperature heating to supplement the volatile content of a SiO2 component.

Description

溶射材料、それを用いた溶射方法、溶射皮膜Thermal spray material, thermal spraying method using it, thermal spray coating
 本発明は、溶射皮膜の耐熱安定性を向上できる溶射材料、それを用いた溶射方法、溶射皮膜に関する。 The present invention relates to a thermal spray material capable of improving the heat resistance stability of a thermal spray coating, a thermal spraying method using the same, and a thermal spray coating.
 例えば、各種産業機械の金属製の部品等の基材に耐熱性等の耐久性を付与するために、当該部品の表面に溶射皮膜を設けるドライコーティング技術が適用されている。ドライコーティング技術の一つである溶射法は、金属、セラミック、サーメット等からなる粒状の溶射材を燃焼炎又は電気エネルギー等の熱源により溶融させるとともにその溶射粒子を加速させて、基材の表面に吹き付け、堆積させることで、皮膜を形成する手法である。 For example, in order to impart durability such as heat resistance to a base material such as a metal part of various industrial machines, a dry coating technique of providing a thermal spray coating on the surface of the part is applied. The thermal spraying method, which is one of the dry coating technologies, melts a granular thermal spray material made of metal, ceramic, cermet, etc. with a heat source such as a combustion flame or electric energy, and accelerates the thermal spray particles to form a surface of the substrate. It is a method of forming a film by spraying and depositing.
 これらの手法の中で、1300℃~1400℃程度の温度範囲における燃焼環境下又は水蒸気環境下で使用される航空機/タービンの皮膜として、希土類シリケートからなる対環境コーティングが行われている。例えば、特許文献1では、希土類シリケートを含む複合皮膜の使用が提案されている。 Among these methods, an environmental coating made of rare earth silicate is applied as a film of an aircraft / turbine used in a combustion environment or a steam environment in a temperature range of about 1300 ° C to 1400 ° C. For example, Patent Document 1 proposes the use of a composite film containing a rare earth silicate.
 しかしながら、希土類シリケート材料を用いた溶射皮膜では、溶射皮膜形成時及びその後の高温環境保持時に皮膜中のSiO成分が揮発して、組成変化(皮膜の減肉)し皮膜としての機能を満たさなくなるという問題が生じている。これは、希土類シリケートを溶射した際にSiOが揮発し、結晶相が分離すると共に、実使用環境下でおいてもSiOが揮発するため長時間実環境下使用で安定性が低くなってしまうからである。 However, in the sprayed coating using a rare earth silicate material, the SiO 2 component in the coating volatilizes when the sprayed coating is formed and when the high temperature environment is maintained thereafter, and the composition changes (thickening of the coating) and the function as a coating is not satisfied. The problem has arisen. This is because SiO 2 volatilizes when sprayed with a rare earth silicate, the crystal phase separates, and SiO 2 volatilizes even in an actual use environment, resulting in low stability when used in an actual environment for a long time. Because it will end up.
特開2008-308374号公報Japanese Unexamined Patent Publication No. 2008-308374
 本発明の目的は、希土類シリケートを溶射した際に、実使用環境下に長時間保持しても安定性を維持できる溶射材料を提供することにある。 An object of the present invention is to provide a thermal spraying material that can maintain stability even when it is kept in an actual use environment for a long time when a rare earth silicate is sprayed.
 本発明は、上記の目的を達成するために、希土類シリケートと、Si酸化物又は酸素と化合しSi酸化物を形成する化合物又はこれらの組み合わせから選択されるSi系化合物とを含む溶射材料を用いる。これによりSi系化合物が溶射皮膜形成時及びその後の高温加熱時に酸化することによって、SiO成分の揮発分を補うことを可能とし、上記課題を解決することができる。 The present invention uses a thermal spraying material containing a rare earth silicate and a compound that combines with Si oxide or oxygen to form a Si oxide, or a Si-based compound selected from a combination thereof, in order to achieve the above object. .. This makes it possible to supplement the volatile content of the SiO 2 component by oxidizing the Si-based compound during the formation of the thermal spray coating and the subsequent high-temperature heating, and can solve the above-mentioned problems.
 希土類シリケートとしては、RESiまたはRESiO(REは希土類元素)で表される化合物あってもよい。例えば、YbSi、YbSiO、ErSi、ErSiO、HoSi、HoSiO、DySi、DySiO5、GdSiO、GdSiなどが挙げられる。希土類シリケートとしては、希土類ダイシリケートであることが好ましい。 The rare earth silicate may be a compound represented by RE 2 Si 2 O 7 or RE 2 SiO 5 (RE is a rare earth element). For example, Yb 2 Si 2 O 7 , Yb 2 SiO 5 , ErSi 2 O 7 , Er 2 SiO 5 , Ho 2 Si 2 O 7 , Ho 2 SiO 5 , Dy 2 Si 2 O 7 , Dy 2 SiO 5, Gd 2 Examples thereof include SiO 5 , Gd 2 Si 2 O 7 . The rare earth silicate is preferably a rare earth disilicate.
 Si酸化物としては、SiO、などが挙げられ、酸素と化合しSi酸化物を形成する化合物としては、SiC、SiN、SiCNなどが挙げられる。Si系化合物はSiの酸化物又は炭化物であることが好ましい。 Examples of the Si oxide include SiO 2 , and examples of the compound that combines with oxygen to form a Si oxide include SiC, SiC, and SiCN. The Si-based compound is preferably an oxide or carbide of Si.
 例えば、溶射材料中の希土類シリケートとしてYbSi使用して、YbSi溶射皮膜を形成した場合、溶射皮膜形成時および高温加熱時にSiO成分が揮発して、YbSiOが生成する。このとき、溶射材料中に、酸素と化合しSi酸化物を形成する化合物として、例えばSiCを含めておけば、次の反応式(1)によって、SiCの酸化で発生したSiOが、揮発分を補い、反応式(2)によって、YbSi成分の保持が可能となる。
   SiC + 2O → SiO +CO・・・・(1)
   YbSiO + SiO → YbSi・・・・(2)
For example, when Yb 2 Si 2 O 7 is used as a rare earth silicate in a thermal spray material to form a Yb 2 Si 2 O 7 thermal spray coating, the SiO component volatilizes during the thermal spray coating formation and high temperature heating, resulting in Yb 2 SiO. 5 is generated. At this time, if, for example, SiC is included as a compound that combines with oxygen to form a Si oxide in the sprayed material, the SiO 2 generated by the oxidation of SiC is volatile by the following reaction formula (1). The reaction formula (2) makes it possible to retain the Yb 2 Si 2 O 7 component.
SiC + 2O 2 → SiO 2 + CO 2 ... (1)
Yb 2 SiO 5 + SiO 2 → Yb 2 Si 2 O 7 ... (2)
 また、例えば、溶射材料中の希土類シリケートとしてYbSi使用して、ホットプレス法により、YbSiバルク焼結体を形成した場合、溶射材料中にSiCを含めておくと、YbSiバルク焼結体の熱処理、例えば、1250℃で5時間保持することにより、SiOの揮発により焼結体表面にできた亀裂を修復することができる。 Further, for example, when Yb 2 Si 2 O 7 is used as a rare earth silicate in the spray material and a Yb 2 Si 2 O 7 bulk sintered body is formed by a hot press method, SiC is contained in the spray material. By heat-treating the Yb 2 Si 2 O 7 bulk sintered body, for example, holding it at 1250 ° C. for 5 hours, cracks formed on the surface of the sintered body due to the volatilization of SiO 2 can be repaired.
 上記で述べた反応は、溶射材料として、YbSi以外の希土類シリケート化合物と、SiC以外のSi酸化物又は酸素と化合しSi酸化物を形成する化合物又はこれらの組み合わせを含む場合も生じるため、SiCと同様にSiOの揮発により皮膜表面に生じる亀裂を修復することができる。 The reaction described above may also include, as the spraying material, a rare earth silicate compound other than Yb 2 Si 2 O 7 and a compound other than SiC or a compound that combines with oxygen to form a Si oxide, or a combination thereof. Since it is generated, cracks generated on the surface of the film due to the volatilization of SiO 2 can be repaired as in the case of SiC.
(a)実施例1の混合粉を用いた溶射皮膜について、(b)実施例6の造粒粉を用いた溶射皮膜について、それぞれ、熱処理をしないで溶射したままの状態における電子顕微鏡写真を示す。The electron micrographs of (a) the sprayed coating using the mixed powder of Example 1 and (b) the sprayed coating using the granulated powder of Example 6 in the state of being sprayed without heat treatment are shown. .. 実施例6の溶射皮膜について、(a)熱処理後の電子顕微鏡2次電子像写真と、(b)熱処理後の電子顕微鏡反射電子像写真を示す。Regarding the sprayed coating of Example 6, (a) an electron microscope secondary electron image photograph after heat treatment and (b) an electron microscope reflected electron image photograph after heat treatment are shown. (a)実施例6、及び(b)実施例7の溶射皮膜について、それぞれ熱処理をしないまま表面を観察した電子顕微鏡写真と、1300℃、100時間熱処理した後の電子顕微鏡写真を示す。An electron micrograph of the surface of the sprayed coatings of (a) Example 6 and (b) Example 7 observed without heat treatment and an electron micrograph after heat treatment at 1300 ° C. for 100 hours are shown.
 溶射材料中の希土類シリケート及びSi系化合物はそれぞれ粒子であることができる。このような粒子は、より微細な一次粒子が造粒されてなる造粒粒子で構成されていてもよいし、主として一次粒子の集合(凝集の形態が含まれても良い。)から構成される粉末であってもよい。より好ましくは、一次粒子の集合から構成される顆粒であってもよい。また、希土類シリケートの一次粒子とSi系化合物の一次粒子の集合から構成される複合造粒物からなる顆粒であってもよい。このような、複合造粒物からなる顆粒を含む溶射材料により溶射皮膜を形成した場合、製膜時の熱影響によるSi系化合物の揮発量をより抑制することができる。 The rare earth silicate and Si-based compound in the thermal spray material can be particles, respectively. Such particles may be composed of granulated particles obtained by granulating finer primary particles, or may be mainly composed of aggregates of primary particles (may include a form of agglomeration). It may be a powder. More preferably, it may be a granule composed of an aggregate of primary particles. Further, the granules may be composed of a composite granule composed of a collection of primary particles of a rare earth silicate and primary particles of a Si-based compound. When the thermal spray coating is formed of such a thermal spray material containing granules made of a composite granule, the amount of volatilization of the Si-based compound due to the thermal effect during film formation can be further suppressed.
 溶射材料中の希土類シリケート粒子、Si系化合物はそれぞれ粒子及びこれらの混合複合粒子(顆粒)の粒子径は特に限定されない。希土類シリケート粒子の体積基準の平均粒子径DvRに対するSi系化合物粒子の体積基準の平均粒子径DvSiの比DvR/DvSiが1/10以上、4以下であることが好ましい。この範囲内であることにより、Si系化合物が溶射皮膜形成時及びその後の高温加熱時に、SiO2成分の揮発分をより好適に補うことができ、希土類ダイシリケートの組織を多く含むことができるという効果がある。 The particle size of the rare earth silicate particles and Si-based compounds in the thermal spraying material is not particularly limited. It is preferable that the ratio DvR / DvSi of the volume-based average particle diameter DvSi of the Si-based compound particles to the volume-based average particle diameter DvR of the rare earth silicate particles is 1/10 or more and 4 or less. Within this range, the Si-based compound can more preferably supplement the volatile content of the SiO2 component during the formation of the sprayed coating and the subsequent high-temperature heating, and has the effect of containing a large amount of rare earth disilicate structure. There is.
 溶射材料粒子の平均粒子径は、10μm程度以下であれば特に制限されず、平均粒子径の下限についても特に制限はない。ただし、Si系化合物粒子の体積基準の平均粒子径は0.3μm以上2μm以下であることが好ましい。また、希土類シリケート粒子の体積基準の平均粒子径が1μm以上3μm以下であることが好ましい。さらに、顆粒にした場合の体積基準の平均粒子径は10μm以上、50μm以下であることが好ましい。これらの範囲であることにより、Si系化合物が溶射皮膜形成時時及びその後の高温加熱時に、SiO成分の揮発分をより好適に補うことができ、希土類ダイシリケートの組織を多く含むことができるという効果がある。 The average particle size of the sprayed material particles is not particularly limited as long as it is about 10 μm or less, and the lower limit of the average particle size is also not particularly limited. However, the volume-based average particle size of the Si-based compound particles is preferably 0.3 μm or more and 2 μm or less. Further, it is preferable that the average particle size of the rare earth silicate particles based on the volume is 1 μm or more and 3 μm or less. Further, the average particle size on a volume basis in the case of granules is preferably 10 μm or more and 50 μm or less. Within these ranges, the Si-based compound can more preferably supplement the volatile matter of the SiO 2 component at the time of forming the thermal spray coating and at the time of subsequent high-temperature heating, and can contain a large amount of rare earth disilicate structure. There is an effect.
 溶射粒子の平均粒子径は、平均粒子径がおおよそ1μm以上の粒子については、例えば、レーザ回折・散乱式の粒度分布測定装置(スペクトリス社製、レーザ回折式粒度分布測定装置マスターサイザー)を用いて測定された、体積基準の粒度分布における積算50%粒径(D50)を採用することができる。 For particles with an average particle size of approximately 1 μm or more, for example, a laser diffraction / scattering type particle size distribution measuring device (Spectris Co., Ltd., laser diffraction type particle size distribution measuring device master sizer) is used for the average particle size of the sprayed particles. The measured 50% integrated particle size (D50) in the volume-based particle size distribution can be adopted.
 なお、平均粒子径がおおよそ1μm未満の粒子については、比表面積に基づき算出される球相当径を採用することができる。比表面積は、例えば、比表面積測定装置(マウンテック社製、全自動比表面積測定装置Macsorb)を用い、連続流動法により測定されたN等のガス吸着量から、BET1点法により算出した値とすることができる。なお、上記で各測定方法を適用する平均粒子径の臨界値は厳密に規定されるものではなく、使用する分析器の精度等に応じて変更することもできる。 For particles having an average particle diameter of less than about 1 μm, a sphere-equivalent diameter calculated based on the specific surface area can be adopted. The specific surface area is, for example, a value calculated by the BET 1-point method from the amount of gas adsorbed such as N2 measured by the continuous flow method using a specific surface area measuring device (manufactured by Mountech, fully automatic specific surface area measuring device Macsorb). can do. The critical value of the average particle size to which each measurement method is applied is not strictly defined in the above, and may be changed according to the accuracy of the analyzer used.
 溶射材料中のSi系化合物の含有量は、特に限定されるものではないが、1重量%以上、10重量%以下であることが好ましい。1重量%未満では、SiO揮発分を補充する効果が十分ではなく、10重量%を超えると、溶射皮膜形成後に高温環境下にさらされると、酸化反応の進行に伴い皮膜表に亀裂が生じる傾向にあるからである。これは、SiC添加の効果が過飽和に達し、SiOの生成によって体積膨張が生じて亀裂を発生するためであると考えられる。より好ましくは5重量%以上10重量%以下であるとよい。 The content of the Si-based compound in the thermal spraying material is not particularly limited, but is preferably 1% by weight or more and 10% by weight or less. If it is less than 1% by weight, the effect of replenishing the SiO 2 volatile matter is not sufficient, and if it exceeds 10% by weight, when it is exposed to a high temperature environment after the thermal spray coating is formed, cracks occur on the film surface as the oxidation reaction progresses. Because there is a tendency. It is considered that this is because the effect of the addition of SiC reaches supersaturation, and the formation of SiO 2 causes volume expansion and cracks. More preferably, it is 5% by weight or more and 10% by weight or less.
 溶射材料は、希土類シリケート粒子とSi系化合物粒子の混合物であってもよい。あるいは、希土類シリケート粒子とSi系化合物粒子を使用して、アトマイズ法、溶融-粉砕法、又は焼結-粉砕法及び造粒-焼結法等の固相焼結法により複合粒子を製造することができる。 The thermal spraying material may be a mixture of rare earth silicate particles and Si-based compound particles. Alternatively, using rare earth silicate particles and Si-based compound particles, composite particles may be produced by a solid-phase sintering method such as an atomizing method, a melt-crushing method, or a sintering-crushing method and a granulation-sintering method. Can be done.
 アトマイズ法は、希土類シリケート粉末とSi系化合物粉末との混合物を融して噴霧及び冷却し、必要に応じてその後分級することにより得られる。溶融-粉砕法では、希土類シリケート粉末とSi系化合物粉末の混合物を溶融して冷却凝固させた後に粉砕し、必要に応じてその後分級することにより得られる。造粒-焼結法は、希土類シリケート粉末とSi系化合物粉末の混合物から造粒粉末を作製し、その造粒粉末を焼結してさらに解砕及び分級することにより得られる。焼結-粉砕法は、希土類シリケート粉末とSi系化合物粉末の混合物を圧縮成形してから焼結し、得られた焼結体を粉砕及び分級することにより得られる。 The atomizing method is obtained by melting a mixture of a rare earth silicate powder and a Si-based compound powder, spraying and cooling the mixture, and then classifying the mixture as necessary. In the melt-pulverization method, a mixture of a rare earth silicate powder and a Si-based compound powder is melted, cooled and solidified, then pulverized, and if necessary, classified thereafter. The granulation-sintering method is obtained by preparing a granulation powder from a mixture of a rare earth silicate powder and a Si-based compound powder, sintering the granulation powder, and further crushing and classifying the granulation powder. The sintering-crushing method is obtained by compression-molding a mixture of a rare earth silicate powder and a Si-based compound powder, sintering the mixture, and pulverizing and classifying the obtained sintered body.
 これらの中で、原料を混合した粉末から造粒粉末を作製し、その造粒粉末を焼結する工程を経る造粒-焼結法により製造されることが好ましい。造粒-焼結法により製造される溶射材料は一般に、原料粉末を圧縮成形してから焼結し、得られた焼結体を粉砕する工程を経る焼結-粉砕法等のその他の製法により製造される溶射材料に比べて流動性により優れる。しかも造粒-焼結法の場合には、製造過程に粉砕工程を含まないので、粉砕中に不純物が混入をより抑制することができる。 Among these, it is preferable to produce a granulated powder by a granulation-sintering method in which a granulated powder is produced from a powder mixed with raw materials and the granulated powder is sintered. The sprayed material produced by the granulation-sintering method is generally produced by another manufacturing method such as the sintering-sintering method, in which the raw material powder is compression-molded and then sintered, and the obtained sintered body is crushed. It has better fluidity than the fired material produced. Moreover, in the case of the granulation-sintering method, since the pulverization step is not included in the manufacturing process, impurities can be further suppressed during pulverization.
 本実施形態の溶射材料を溶射する方法は、高速酸素燃料(HVOF)溶射のような高速フレーム溶射であってもよいし、あるいは大気圧プラズマ溶射(APS)等のプラズマ溶射、又は爆発溶射であってもよい。あるいは、コールドスプレー、ウォームスプレー及び高速空気燃料(HVAF)溶射のような低温プロセス溶射であってもよい。 The method for spraying the thermal spraying material of the present embodiment may be high-speed flame spraying such as high-speed oxygen fuel (HVOF) spraying, plasma spraying such as atmospheric pressure plasma spraying (APS), or explosive spraying. You may. Alternatively, it may be cold process spraying such as cold spray, warm spray and high speed air fuel (HVAF) spraying.
 これらの中で高速酸素燃料(HVOF)溶射又はプラズマ溶射が好ましく適用される。平均粒子径の比較的大きな溶射材料を用いた場合であっても、溶射粒子を十分に軟化溶融し、加速させることができる。これにより、平均粒子径の大きな粒子を含む溶射材料を用いた場合であっても、緻密でピッカーズ硬度の高い溶射皮膜を形成することができる。 Among these, high-speed oxygen fuel (HVOF) spraying or plasma spraying is preferably applied. Even when a sprayed material having a relatively large average particle size is used, the sprayed particles can be sufficiently softened and melted and accelerated. As a result, even when a thermal spraying material containing particles having a large average particle size is used, it is possible to form a thermal sprayed coating that is dense and has a high pickers hardness.
 HVOF溶射法とは、燃料と酸素とを混合して高圧で燃焼させた燃焼炎を溶射のための熱源として利用するフレーム溶射法の一種である。燃焼室の圧力を高めることにより、連続した燃焼炎でありながらノズルから高速(超音速を含む)の高温ガス流を噴出させる。HVOF溶射法は、このガス流中に溶射材料を投入し、加熱、加速して基材に堆積させることで溶射皮膜を得るコーティング手法一般を包含する。HVOF溶射法によると、例えば、一例として、溶射材料を2000℃~3000℃の超音速燃焼炎のジェットにより溶融及び加速させることで、溶射粒子を500m/s~1000m/sという高速度にて基材へ衝突させて堆積させることができる。高速フレーム溶射で使用する燃料は、アセチレン、エチレン、プロパン、プロピレン等の炭化水素のガス燃料であってもよいし、灯油やエタノール等の液体燃料であってもよい。また、溶射材料の融点が高いほど超音速燃焼炎の温度が高い方が好ましく、この観点では、ガス燃料を用いることが好ましい。 The HVOF thermal spraying method is a type of frame thermal spraying method that uses a combustion flame obtained by mixing fuel and oxygen and burning them at high pressure as a heat source for thermal spraying. By increasing the pressure in the combustion chamber, a high-speed (including supersonic) high-temperature gas flow is ejected from the nozzle even though it is a continuous combustion flame. The HVOF thermal spraying method includes a general coating method for obtaining a thermal spray coating by putting a thermal spray material into this gas flow, heating and accelerating it, and depositing it on a substrate. According to the HVOF spraying method, for example, by melting and accelerating the sprayed material with a jet of a supersonic combustion flame at 2000 ° C to 3000 ° C, the sprayed particles are based at a high speed of 500 m / s to 1000 m / s. It can be deposited by colliding with the material. The fuel used in the high-speed frame spraying may be a gas fuel of a hydrocarbon such as acetylene, ethylene, propane or propylene, or a liquid fuel such as kerosene or ethanol. Further, it is preferable that the temperature of the supersonic combustion flame is higher as the melting point of the thermal spray material is higher, and from this viewpoint, it is preferable to use gas fuel.
 プラズマ溶射法とは、溶射材料を軟化又は溶融するための溶射熱源としてプラズマ炎を利用する溶射方法である。電極間にアークを発生させ、かかるアークにより作動ガスをプラズマ化すると、かかるプラズマ流はノズルから高温高速のプラズマジェットとなって噴出する。プラズマ溶射法は、このプラズマジェットに溶射材料を投入し、加熱、加速して基材に堆積させることで溶射皮膜を得るコーティング手法一般を包含する。なお、プラズマ溶射法は、大気中で行う大気プラズマ溶射(APS:atmospheric plasma spraying)や、大気圧よりも低い気圧で溶射を行う減圧プラズマ溶射(LPS:low pressure plasma spraying)、大気圧より高い加圧容器内でプラズマ溶射を行う加圧プラズマ溶射(high pressure plasma spraying)等の態様であり得る。プラズマ溶射によると、例えば、一例として、溶射材料を5000℃~10000℃程度のプラズマジェットにより溶融及び加速させることで、溶射粒子を300m/s~600m/s程度の速度にて基材へ衝突させて堆積させることができる。 The plasma spraying method is a thermal spraying method that uses a plasma flame as a thermal spraying heat source for softening or melting the thermal spraying material. When an arc is generated between the electrodes and the working gas is turned into plasma by the arc, the plasma flow is ejected from the nozzle as a high-temperature and high-speed plasma jet. The plasma spraying method includes a general coating method for obtaining a thermal spray coating by charging a thermal spray material into this plasma jet, heating and accelerating it, and depositing it on a substrate. The plasma spraying method includes atmospheric plasma spraying (APS: atmospheric plasma spraying) performed in the atmosphere, reduced pressure plasma spraying (LPS: low pressure plasma spraying) performed at a pressure lower than atmospheric pressure, and application higher than atmospheric pressure. It may be an embodiment such as high pressure plasma spraying in which plasma spraying is performed in a pressure vessel. According to plasma spraying, for example, by melting and accelerating the thermal spraying material with a plasma jet of about 5000 ° C to 10000 ° C, the thermal spray particles collide with the substrate at a speed of about 300 m / s to 600 m / s. Can be deposited.
 溶射皮膜形成の対象となる基材の種類は特に制限されず、例えば金属材料、単純セラミック材料、複合セラミック材料、SiC/SiC等のセラミックスマトリックスコンポジット等が挙げられる。基材の具体例としては、例えば、Alなどのアルミニウム合金、ZrOなどのジルコニウム合金、鉄、鉄鋼、銅、銅合金、ニッケル、ニッケル合金、金、銀、ビスマス、マンガン、亜鉛、亜鉛合金、コバルト等の金属材料が挙げられる。鉄鋼としては、例えば耐食性構造用鋼として使用されている各種SUS(ステンレス鋼)材が挙げられる。アルミニウム合金としては、例えば、軽量構造材等として有用なA1000系~A7000系アルミニウム合金が挙げられる。耐食性合金として、例えばニッケル基にモリブデン、クロム等を加えた合金であるハステロイ(ヘインズ社製)、ニッケル基に鉄、クロム、ニオブ、モリブデン等を加えた合金であるインコネル(スペシャルメタルズ社製)、コバルトを主成分とし、クロム、タングステン等を加えた合金であるステライト(デロロステライトグループ社製)、鉄にニッケル、マンガン、炭素等を加えた合金であるインバー等が挙げられる。 The type of the base material for which the thermal spray coating is formed is not particularly limited, and examples thereof include metal materials, simple ceramic materials, composite ceramic materials, and ceramic matrix composites such as SiC / SiC. Specific examples of the base material include aluminum alloys such as Al 2 O 3 , zirconium alloys such as ZrO 2 , iron, steel, copper, copper alloys, nickel, nickel alloys, gold, silver, bismuth, manganese, zinc, and the like. Examples include metal materials such as zinc alloys and cobalt. Examples of steel include various SUS (stainless steel) materials used as corrosion-resistant structural steel. Examples of the aluminum alloy include A1000 series to A7000 series aluminum alloys that are useful as lightweight structural materials and the like. Corrosion-resistant alloys include, for example, Hasteroy (manufactured by Haynes), which is an alloy in which molybdenum, chromium, etc. are added to a nickel group, and Inconel (manufactured by Special Metals), which is an alloy in which iron, chromium, niobium, molybdenum, etc. are added to a nickel group. Examples thereof include sterite (manufactured by Delorosterite Group), which is an alloy containing cobalt as a main component and added chromium, tungsten, etc., and Inver, which is an alloy obtained by adding nickel, manganese, carbon, etc. to iron.
 次に、実施例及び比較例を挙げて本発明をさらに具体的に説明する。
<溶射材料の作成>
 表1に示されるように、実施例1では平均粒子径(D50)32μmのYbSiO粒子と平均粒子径(D50)2.3μmのα-SiC粒子とを、溶射材料全体に対するα-SiC粒子の添加量が10重量%となるように袋に入れて、十分混合して溶射材料を製造した。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.
<Creation of thermal spray material>
As shown in Table 1, in Example 1, Yb 2 Si 2 O particles having an average particle diameter (D50) of 32 μm and α-SiC particles having an average particle diameter (D50) of 2.3 μm were used as α-SiC particles for the entire thermal spraying material. The sprayed material was produced by putting them in a bag so that the amount of SiC particles added was 10% by weight and mixing them well.
 同様に、実施例2及び3についても、それぞれ表1に記載される平均粒子径のYbSi粒子とα-SiC粒子とを、溶射材料全体に対するα-SiC粒子の添加量が10重量%となるように袋に入れて、十分混合して溶射材料を製造した。 Similarly, in Examples 2 and 3, Yb 2 Si 2 O7 particles and α-SiC particles having an average particle size shown in Table 1 are added, and the amount of α-SiC particles added to the entire thermal spraying material is 10. The sprayed material was produced by putting the particles in a bag so as to have a weight of% by weight and mixing them well.
 下記表1に示されるように、実施例4では平均粒子径(D50)1.2μmのYbSi粒子に溶媒と平均粒子径(D50)0.351μmのα-SiC粒子とを使用して、溶射材料全体に対するα-SiC粒子の添加量が10重量%となるように水を溶媒として用いて混合してスラリー化し、スプレードライヤーを用いて噴霧乾燥を行い、複合造粒粉を形成することにより溶射材料を製造した。 As shown in Table 1 below, in Example 4, a solvent and α-SiC particles having an average particle diameter (D50) of 0.351 μm were used for Yb 2 Si 2 O 7 particles having an average particle diameter (D50) of 1.2 μm. Then, water is used as a solvent to mix and slurry so that the amount of α-SiC particles added to the entire sprayed material is 10% by weight, and spray-dried using a spray dryer to form a composite granulated powder. As a result, the spray material was manufactured.
 同様に、実施例5~7についても、それぞれ表1に記載される平均粒子径のYbSi粒子とα-SiC粒子とを、溶射材料全体に対するα-SiC粒子の添加量が10重量%となるように混合して、実施例4と同様の手順に沿って、複合造粒粉を形成することにより溶射材料を製造した溶射材料を製造した。また、実施例8及び9では、シリケート化合物粒子をそれぞれ、YSi(イットリウムシリケート)、GdSi(ガドリニウムシリケート)にそれぞれ代えて、表1に示される粒子径のシリケート化合物粒とα-SiC粒子とを、溶射材料全体に対するα-SiC粒子の添加量が10重量%となるように混合して、実施例4と同様の手順に沿って、複合造粒粉を形成することにより溶射材料を製造した溶射材料を製造した。 Similarly, in Examples 5 to 7, Yb 2 Si 2 O 7 particles and α-SiC particles having an average particle size shown in Table 1 are added, and the amount of α-SiC particles added to the entire thermal spraying material is 10. A thermal spraying material was produced by forming a composite granulated powder according to the same procedure as in Example 4 by mixing so as to have a weight of% by weight. Further, in Examples 8 and 9, the silicate compound particles were replaced with Y 2 Si 2 O 7 (itrium silicate) and Gd 2 Si 2 O 7 (gadrinium silicate), respectively, and the silicates having the particle diameters shown in Table 1 were substituted. The compound particles and the α-SiC particles are mixed so that the amount of the α-SiC particles added to the entire sprayed material is 10% by weight, and a composite granulated powder is formed according to the same procedure as in Example 4. By doing so, the thermal spraying material was produced.
 下記表1に示されるように、比較例では平均粒子径(D50)32μmのYbSi粒子を用いて溶射材料とした。 As shown in Table 1 below, in the comparative example, Yb 2 Si 2 O 7 particles having an average particle diameter (D50) of 32 μm were used as a thermal spray material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<溶射皮膜の形成>
 上記のように製造された実施例1~9及び比較例の溶射材料を使用して、表2に示される条件で、SG-100(プラックスエアー社製)(装置)を用いて、大気圧プラズマ溶射法により、実施例1~3及び比較例1ではAl基板上に、また、実施例4~9ではZrO2基板上に溶射皮膜を形成した。
<Formation of thermal spray coating>
Atmospheric pressure plasma using SG-100 (manufactured by Plax Air Co., Ltd.) (equipment) under the conditions shown in Table 2 using the sprayed materials of Examples 1 to 9 and Comparative Examples manufactured as described above. By the thermal spraying method, a thermal spray coating was formed on the Al 2 O 3 substrate in Examples 1 to 3 and Comparative Example 1, and on the ZrO 2 substrate in Examples 4 to 9.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<ピーク強度比の測定>
 実施例1~7及び比較例の溶射皮膜を1300℃、5時間高温保持後、溶射皮膜をX線回折によりピーク強度を分析し、実施例1~7及び比較例ではYbSiのYbSiO対するピーク強度比を算出し結果を表3に示した。また、実施例4~7及び比較例の溶射皮膜を1300℃、50時間高温保持後、溶射皮膜をX線回折によりピーク強度を分析し、YbSiのYbSiO対するピーク強度比を算出し結果を表3に示した。同様に、実施例8及び9において、1300℃、5時間高温保持後、溶射皮膜をX線回折によりピーク強度を分析し、実施例8ではYSiのYSiO対するピーク強度比を、実施例9ではGdSiのGdSiO5に対するピーク強度比を表4に示した。なお、X線回折は島津製作所製 Maxima XRD-7000(装置)を使用して管球電圧: 40kV、管球電流: 30mA、走査速度: 2.000 deg./min、走査ステップ: 0.0200 deg.の条件の下で行った。
<Measurement of peak intensity ratio>
After the sprayed coatings of Examples 1 to 7 and Comparative Examples were held at a high temperature of 1300 ° C. for 5 hours, the peak intensities of the sprayed coatings were analyzed by X-ray diffraction. The peak intensity ratio to Yb 2 SiO 5 was calculated and the results are shown in Table 3. Further, after the sprayed coatings of Examples 4 to 7 and Comparative Examples were held at a high temperature of 1300 ° C. for 50 hours, the peak intensities of the sprayed coatings were analyzed by X-ray diffraction, and the peak intensities of Yb 2 Si 2 O 7 with respect to Yb 2 SiO 5 were analyzed. The ratio was calculated and the results are shown in Table 3. Similarly, in Examples 8 and 9, after holding at a high temperature of 1300 ° C. for 5 hours, the peak intensity of the sprayed coating was analyzed by X-ray diffraction, and in Example 8, the peak intensity ratio of YSi 2 O 7 to Y 2 SiO 5 was determined. In Example 9, the peak intensity ratio of Gd 2 Si 2 O 7 to Gd 2 SiO 5 is shown in Table 4. For X-ray diffraction, use Maxima XRD-7000 (device) manufactured by Shimadzu Corporation under the conditions of tube voltage: 40 kV, tube current: 30 mA, scanning speed: 2.000 deg./min, scanning step: 0.0200 deg. I went below.
 なお、ピーク強度及びピーク強度比は、X線回折により得られたそれぞれの結晶構造に該当するピークを選択し、正規化して強度ピーク、強度ピーク比として算出した。以下の、実施例についても同様の方法によった。 For the peak intensity and the peak intensity ratio, the peak corresponding to each crystal structure obtained by X-ray diffraction was selected, normalized, and calculated as the intensity peak and the intensity peak ratio. The same method was used for the following examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3の結果に示されるように、1300℃で5時間及び50時間保持後のYbSi/YbSiO強度比はいずれも実施例1~7が比較例より高く、実施例1~7では修復反応により比較例に比べてYbSiが多く形成されていることが分かる。また、1300℃で5時間保持後における、実施例4~7のYbSi粒子とSiC粒子の複合造粒粉からなる溶射材料を用いた場合の溶射皮膜のYbSi/YbSiO強度比は、実施例1~3のYbSi粒子とSiC粒子の混合粉からなる溶射材料を用いた場合の溶射皮膜のYbSi/YbSiO強度比より高い傾向にあることがわかる。これは、原料材料として、混合粉を用いるより、複合造粒粉を用いるほうが、SiCの揮発が少なく、溶射皮膜中にSiCがより多くれ残されて、修復反応によりYbSiがより多く形成されたことを示している。また、高温で長時間(1300℃、50時間)保持するほど、YbSi/YbSiO強度比高くなり、修復反応によりYbSiが占める割合が高くなっていることが分かる。 As shown in the results of Table 3, the Yb 2 Si 2 O 7 / Yb 2 SiO 5 intensity ratios after holding at 1300 ° C. for 5 hours and 50 hours were higher in Examples 1 to 7 than in Comparative Examples. It can be seen that in 1 to 7, more Yb 2 Si 2 O 7 was formed by the repair reaction than in the comparative example. Further, after holding at 1300 ° C. for 5 hours, the Yb 2 Si 2 O 7 of the thermal spray coating when the thermal spray material composed of the composite granulated powder of Yb 2 Si 2 O 7 particles and SiC particles of Examples 4 to 7 was used. The / Yb 2 SiO 5 intensity ratio is the Yb 2 Si 2 O 7 / Yb 2 SiO of the thermal spray coating when a thermal spray material composed of a mixed powder of Yb 2 Si 2 O 7 particles and SiC particles of Examples 1 to 3 is used. It can be seen that the intensity ratio tends to be higher than 5 . This is because the use of composite granulated powder as a raw material has less SiC volatilization, more SiC is left in the sprayed coating, and Yb 2 Si 2 O 7 is produced by the repair reaction. It shows that more were formed. Further, the longer the temperature is kept at high temperature (1300 ° C., 50 hours), the higher the strength ratio of Yb 2 Si 2 O 7 / Yb 2 SiO 5 becomes, and the ratio of Yb 2 Si 2 O 7 increases due to the repair reaction. You can see that.
 また、表4に示されるように、実施例8のYSiのYSiO対するピーク強度比、実施例9のGdSiのGdSiO5に対するピーク強度比も、比較例のYbSi/YbSiO強度比より高く、シリケート化合物粒子を代えても、同様の効果が得られることが確認できた。 Further, as shown in Table 4, the peak intensity ratio of YSi 2 O 7 to Y 2 SiO 5 of Example 8 and the peak intensity ratio of Gd 2 Si 2 O 7 to Gd 2 SiO 5 of Example 9 are also compared. It was confirmed that the same effect was obtained even if the silicate compound particles were replaced, which was higher than the Yb 2 Si 2 O 7 / Yb 2 SiO 5 intensity ratio of the example.
 表3に示されるように、同じ粒子径2.3μmのα-SiCを10重量%添加して、混合粉を用いる実施例1と、複合造粒粉からなる顆粒を用いる実施例6により得られた溶射皮膜のYbSiのYbSiO対するピーク強度比を比較すると、複合造粒粉からなる顆粒を用いた実施例6の方が、混合粉を用いた実施例1よりも、YbSiO対するYbSiのピーク強度比が高く、単に混合したものより複合造粒粉を用いて形成した溶射皮膜の方が、YbSi成分が多く、修復効果が大きいことが分かる。 As shown in Table 3, it was obtained by Example 1 in which 10% by weight of α-SiC having the same particle size of 2.3 μm was added and a mixed powder was used, and Example 6 in which granules made of a composite granulated powder were used. Comparing the peak intensity ratio of Yb 2 Si 2 O 7 to Yb 2 SiO 5 of the sprayed coating, Example 6 using granules made of composite granulated powder was more than Example 1 using mixed powder. , Yb 2 Si 2 O 7 has a high peak intensity ratio to Yb 2 SiO 5 , and the sprayed film formed using the composite granulated powder has more Yb 2 Si 2 O 7 components than the simply mixed one, and is repaired. It can be seen that the effect is great.
<走査型電子顕微鏡写真の観察>
 次に、実施例1と実施例6の溶射皮膜について、熱処理しないで、溶射したままの状態における操作型電子顕微鏡写真をそれぞれ図1の(a)及び(b)に示した。電子顕微鏡写真は日立ハイテク社製走査電子顕微鏡SU-70を使用して撮影し、溶射皮膜試料の表面を観察した。(b)に示される実施例6の造粒粉を用いて形成した溶射皮膜の方が、(a)に示される実施例1の混合粉を用いて形成した溶射皮膜よりも、SiCの結晶の粒子が多く存在していることがわかる。これは、造粒粉より混合粉の方が溶射製膜時におけるSiCの揮発量が多く、溶射皮膜中に結晶粒として形成されるSiCの量が少なくなるためと考えられる。
<Observation of scanning electron micrograph>
Next, the operation-type electron micrographs of the sprayed coatings of Examples 1 and 6 in the state of being sprayed without heat treatment are shown in FIGS. 1 (a) and 1 (b), respectively. The electron micrograph was taken using a scanning electron microscope SU-70 manufactured by Hitachi High-Tech, and the surface of the sprayed coating sample was observed. The sprayed coating formed by using the granulated powder of Example 6 shown in (b) has more SiC crystals than the sprayed coating formed by using the mixed powder of Example 1 shown in (a). It can be seen that there are many particles. It is considered that this is because the mixed powder has a larger amount of SiC volatilized during the thermal spraying film formation than the granulated powder, and the amount of SiC formed as crystal grains in the thermal sprayed film is smaller.
 次に、実施例6の溶射皮膜について、1300℃、5時間の熱処理を行った後の電子顕微鏡二次電子像写真と、当該二次電子像写真の同領域の電子顕微鏡反射電子像写真を、それぞれ図2の(a)及び(b)に示した。電子顕微鏡二次電子像写真(a)では、灰色の領域であるYbxSiyOz素地に対して黒いSiC粒子が析出している様子が見られ、電子顕微鏡反射電子像写真(b)では、黒いSiC粒子の周囲に新たに灰色の領域が現れており、これはSiCの酸化によってSiOが形成されて、SiOとYbSiO(明るい領域)の修復反応により、YbSiの灰色領域が形成されたものと考えられる。 Next, with respect to the sprayed coating of Example 6, an electron microscope secondary electron image photograph after heat treatment at 1300 ° C. for 5 hours and an electron microscope backscattered electron image photograph of the same region of the secondary electron image photograph are taken. It is shown in (a) and (b) of FIG. 2, respectively. In the electron microscope secondary electron image photograph (a), it can be seen that black SiC particles are deposited on the YbxSiyOz substrate, which is a gray region, and in the electron microscope reflected electron image photograph (b), the black SiC particles are observed. A new gray area appears around it, which is formed by the oxidation of SiC to form SiO 2 , and the repair reaction between SiO 2 and Yb 2 SiO 5 (bright area) causes the gray area of Yb 2 Si 2 O 7 . Is considered to have been formed.
 実施例6及び7の溶射皮膜の形成後、上記と同様の方法により、熱処理をしないまま表面を観察した電子顕微鏡写真と、1300℃、100時間熱処理した後の電子顕微鏡写真をそれぞれ図3に示した。(a)は実施例6の溶射皮膜、(b)は実施例7の溶射皮膜であるが、それぞれ、左側には溶射皮膜を形成したままの状態の電子顕微鏡写真が示され、右側には同じ試験片を1300℃、100時間の熱処理理後に観察した電子顕微鏡写真が示されている。(a)および(b)ともに、溶射皮膜を形成したままでの写真(左側)では、丸で囲った領域に亀裂が見られたが、熱処理後の写真(右側)では、ほとんど亀裂がなくなっていることがわかる。両皮膜ともに、100時間の熱処理による酸化によって、亀裂が修復されていること分かる。実施例6及び7とも、比較的粒径の大きいSiC粒子の添加によって、SiCの揮発を抑制して、皮膜内にSiC粒子を残すことに有効に働いていることが確認された。 After forming the thermal spray coatings of Examples 6 and 7, an electron micrograph of the surface observed without heat treatment by the same method as described above and an electron micrograph after heat treatment at 1300 ° C. for 100 hours are shown in FIG. 3, respectively. rice field. (A) is the thermal spray coating of Example 6, and (b) is the thermal spray coating of Example 7, respectively, and an electron micrograph of the state in which the thermal spray coating is still formed is shown on the left side, and the same is shown on the right side. An electron micrograph of the test piece observed after heat treatment at 1300 ° C. for 100 hours is shown. In both (a) and (b), cracks were seen in the circled area in the photograph (left side) with the sprayed coating still formed, but in the photograph after heat treatment (right side), almost no cracks were found. You can see that there is. It can be seen that the cracks of both films have been repaired by oxidation by heat treatment for 100 hours. In both Examples 6 and 7, it was confirmed that the addition of SiC particles having a relatively large particle size effectively suppressed the volatilization of SiC and left the SiC particles in the film.
 実施例6の溶射皮膜について、溶射したままの状態と、1300℃、5時間、50時間、100時間熱処理後の皮膜について、時間経過におけるX線回折パターンを比較することによって、長時間熱処理することによる酸化反応の進行によって、YbSiOのピークが減少し、YbSiのピークが増加して、ほとんどYbSiの単層皮膜の組成に近づくことが確認された。X線回折は島津製作所製 Maxima XRD-7000を使用して行った。熱処理時間が長くなるほど、長時間の熱処理による酸化反応により組成の修復が進行することが確認された。 The sprayed coating of Example 6 is heat-treated for a long time by comparing the X-ray diffraction pattern over time with respect to the sprayed coating and the coating after heat treatment at 1300 ° C. for 5, 50 hours and 100 hours. It was confirmed that the peak of Yb 2 Si 2 O 7 decreased and the peak of Yb 2 Si 2 O 7 increased due to the progress of the oxidation reaction due to the above, and the composition of the single layer film of Yb 2 Si 2 O 7 was almost approached. .. X-ray diffraction was performed using Maxima XRD-7000 manufactured by Shimadzu Corporation. It was confirmed that the longer the heat treatment time, the more the composition restoration progressed due to the oxidation reaction caused by the long heat treatment.
 実施例4~7の溶射皮膜について、上記と同様の方法により、それぞれ、熱処理をしないまま表面を観察した電子顕微鏡写真と、1300℃、100時間水蒸気酸化処理した後に観察した電子顕微鏡写真を比較したところ、実施例5~7の1.4~2.9μmのSiC粒子を使用した場合には、水蒸気酸化後ほとんど亀裂がなくなっていることが確認された(電子顕微鏡写真は省略する)。水蒸気酸化においても、比較的粒径の大きいSiC粒子の添加によって、SiCの揮発を抑制して、皮膜内にSiC粒子を残すことにより亀裂の修復に有効に働いていることが確認された。 For the spray coatings of Examples 4 to 7, the electron micrographs of the surfaces observed without heat treatment and the electron micrographs observed after steam oxidation treatment at 1300 ° C. for 100 hours were compared by the same method as described above. However, when the 1.4 to 2.9 μm SiC particles of Examples 5 to 7 were used, it was confirmed that almost no cracks were observed after the water vapor oxidation (electron micrographs are omitted). It was confirmed that even in steam oxidation, the addition of SiC particles having a relatively large particle size suppresses the volatilization of SiC and leaves the SiC particles in the film, thereby effectively repairing cracks.

Claims (12)

  1.  希土類シリケートと、Si酸化物又は酸素と化合しSi酸化物を形成する化合物又はこれらの組み合わせから選択されるSi系化合物とを含む溶射材料。 A thermal spraying material containing a rare earth silicate and a compound that combines with Si oxide or oxygen to form a Si oxide, or a Si-based compound selected from a combination thereof.
  2.  前記希土類シリケート及び前記Si系化合物はそれぞれ粒子である、請求項1記載の溶射材料。 The thermal spraying material according to claim 1, wherein the rare earth silicate and the Si-based compound are particles, respectively.
  3.  前記粒子は顆粒を構成していることを特徴とする請求項2記載の溶射材料。 The thermal spraying material according to claim 2, wherein the particles constitute granules.
  4.  前記希土類シリケート粒子の体積基準の平均粒子径DvRに対する前記Si系化合物粒子の体積基準の平均粒子径DvSiの比DvR/DvSiが1/10以上、2以下であることを特徴とする請求項2又は3に記載の溶射材料。 2. The thermal spraying material according to 3.
  5.  前記Si系化合物粒子の体積基準の平均粒子径が0.3μm以上2μm以下であることを特徴とする請求項2~4のいずれか一項に記載の溶射材料。 The thermal spraying material according to any one of claims 2 to 4, wherein the volume-based average particle diameter of the Si-based compound particles is 0.3 μm or more and 2 μm or less.
  6.  前記希土類シリケート粒子の体積基準の平均粒子径が1μm以上、3μm以下であることを特徴とする請求項2~5いずれか一項に記載の溶射材料。 The thermal spraying material according to any one of claims 2 to 5, wherein the volume-based average particle diameter of the rare earth silicate particles is 1 μm or more and 3 μm or less.
  7.  前記顆粒の体積基準の平均粒子径は10μm以上、50μm以下であることを特徴とする請求項3に記載の溶射材料。 The thermal spraying material according to claim 3, wherein the average particle size of the granules based on the volume is 10 μm or more and 50 μm or less.
  8.  溶射材料中の前記Si系化合物の含有量が1重量%以上、10重量%以下であることを特徴とする請求項1~7いずれか一項に記載の溶射材料。 The thermal spraying material according to any one of claims 1 to 7, wherein the content of the Si-based compound in the thermal spraying material is 1% by weight or more and 10% by weight or less.
  9.  前記希土類シリケートは希土類ダイシリケートであり、前記Si系化合物はSiの酸化物又は炭化物であることを特徴とする請求項1~8いずれか一項に記載の溶射材料。 The thermal spraying material according to any one of claims 1 to 8, wherein the rare earth silicate is a rare earth disilicate, and the Si-based compound is an oxide or carbide of Si.
  10.  請求項1~9のいずれか一項に記載の溶射材料を使用して、溶射皮膜を形成する方法。 A method for forming a thermal spray coating using the thermal spray material according to any one of claims 1 to 9.
  11.  プラズマ溶射法により溶射皮膜を形成する請求項10に記載の方法。 The method according to claim 10, wherein a thermal spray coating is formed by a plasma spraying method.
  12.  請求項1~9のいずれか一項に記載の溶射材料により形成された溶射皮膜。 A thermal spray coating formed by the thermal spray material according to any one of claims 1 to 9.
PCT/JP2021/044472 2020-12-03 2021-12-03 Thermal spray material, thermal spray method using same, and thermal spray coating film WO2022118958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-201300 2020-12-03
JP2020201300A JP2022089069A (en) 2020-12-03 2020-12-03 Thermal spray material, thermal spray method using the same, and thermal spray coating

Publications (1)

Publication Number Publication Date
WO2022118958A1 true WO2022118958A1 (en) 2022-06-09

Family

ID=81853406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044472 WO2022118958A1 (en) 2020-12-03 2021-12-03 Thermal spray material, thermal spray method using same, and thermal spray coating film

Country Status (2)

Country Link
JP (1) JP2022089069A (en)
WO (1) WO2022118958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369348A (en) * 2022-08-03 2022-11-22 中国科学院上海硅酸盐研究所 Environmental barrier coating with good high-temperature stability and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129591A1 (en) * 2015-02-09 2016-08-18 三菱重工航空エンジン株式会社 Coated member and method for producing coated member
JP2020097784A (en) * 2018-12-14 2020-06-25 信越化学工業株式会社 Particle for spray coating and method of manufacturing the same
US20200331817A1 (en) * 2017-10-05 2020-10-22 Safran Component protected by an environmental barrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129591A1 (en) * 2015-02-09 2016-08-18 三菱重工航空エンジン株式会社 Coated member and method for producing coated member
US20200331817A1 (en) * 2017-10-05 2020-10-22 Safran Component protected by an environmental barrier
JP2020097784A (en) * 2018-12-14 2020-06-25 信越化学工業株式会社 Particle for spray coating and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369348A (en) * 2022-08-03 2022-11-22 中国科学院上海硅酸盐研究所 Environmental barrier coating with good high-temperature stability and preparation method thereof
CN115369348B (en) * 2022-08-03 2024-02-06 中国科学院上海硅酸盐研究所 Environment barrier coating with good high-temperature stability and preparation method thereof

Also Published As

Publication number Publication date
JP2022089069A (en) 2022-06-15

Similar Documents

Publication Publication Date Title
Li et al. Laser remelting of plasma-sprayed conventional and nanostructured Al2O3–13 wt.% TiO2 coatings on titanium alloy
Liu et al. Spraying power influence on microstructure and bonding strength of ZrSi2 coating for SiC coated carbon/carbon composites
JP6926096B2 (en) Material for thermal spraying
JP2002220652A (en) Powder for thermal spraying and manufacturing method therefor
CN109332695B (en) Selective laser melting preparation method of molybdenum-based alloy with enhanced oxidation resistance
WO2017115662A1 (en) Film - forming material
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
CN114044674B (en) Yttrium-based particle powder for thermal spraying, method for producing same, and thermal spraying film
JP3523216B2 (en) Rare earth-containing compound particles for thermal spraying, thermal spraying member sprayed with the same
CN107815633A (en) A kind of high-performance thermal barrier coating and its ceramic layer
CN112358293A (en) Powder for thermal barrier coating, preparation method and application thereof, and composite material with thermal barrier coating
WO2022118958A1 (en) Thermal spray material, thermal spray method using same, and thermal spray coating film
JP6926095B2 (en) Material for thermal spraying
Li et al. Microstructure evolution of laser remelted Al2O3–13 wt.% TiO2 coatings
US9028583B2 (en) Process for producing refractory metal alloy powders
Lu et al. Phase evolution of plasma sprayed Al2O3− 13% TiO2 coatings derived from nanocrystalline powders
CN115231954B (en) Preparation method of multi-component ultrahigh-temperature oxidation-resistant ablation-resistant ceramic coating
CN108530062B (en) Hollow structure powder for ultrahigh-temperature thermal barrier coating, preparation method and application thereof, and ultrahigh-temperature thermal barrier coating
JP2012112012A (en) Powder for hvaf thermal spraying, and method for forming thermal-sprayed film
TW202231605A (en) Thermal spray material, thermal spray film, method for forming thermal spray film, and component for plasma etching device
JP7393166B2 (en) Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating
Hou et al. Preparation of Mo (Si, Al) 2 feedstock used for air plasma spraying
Zhang et al. Ablation resistance of (Hf⅓Zr⅓Ta⅓) C solid solution ceramic coating for carbon/carbon composites at 2100° C
Debasish et al. Improvement of microstructural and mechanical properties of plasma sprayed Mo coatings deposited on Al-Si substrates by pre-mixing of Mo with TiN powder
JP2017071843A (en) Filming material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900707

Country of ref document: EP

Kind code of ref document: A1