JPH08119632A - Production of hydroxide of rare earth element and production of oxide of rare earth element - Google Patents

Production of hydroxide of rare earth element and production of oxide of rare earth element

Info

Publication number
JPH08119632A
JPH08119632A JP6260392A JP26039294A JPH08119632A JP H08119632 A JPH08119632 A JP H08119632A JP 6260392 A JP6260392 A JP 6260392A JP 26039294 A JP26039294 A JP 26039294A JP H08119632 A JPH08119632 A JP H08119632A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
hydroxide
aqueous solution
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6260392A
Other languages
Japanese (ja)
Inventor
Masami Kaneyoshi
正実 金吉
Shigeru Sakai
酒井  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6260392A priority Critical patent/JPH08119632A/en
Publication of JPH08119632A publication Critical patent/JPH08119632A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To easily produce spherical particles of oxide of a rare earth element useful as powder for thermal spraying and bedding powder spread at the time of sintering a ceramic compact. CONSTITUTION: When an aq. soln. of a water-soluble salt of a rare earth element is mixed with an aq. soln. of ammonia or an alkali hydroxide and they are brought into a reaction to form a precipitate of hydroxide of the rare earth element, at least one of the aq. solns. is dispersed in an org. solvent which is not uniformly miscible with water before the mixing and the resultant precipitate is fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熔射用粉末、あるいはセ
ラミックス成形焼結体焼成時の敷き粉用として有用な球
状希土類元素酸化物の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spherical rare earth element oxide which is useful as a powder for thermal spraying or as a spread powder for firing a ceramics sintered body.

【0002】[0002]

【従来の技術】希土類元素酸化物の熔射膜を生成しよう
とする場合、バーナーに供給する粉末の流れ性が良い方
が均一な膜を得るために都合が良く、したがって球状の
粒子が好まれる。また、セラミックス成形体を焼結する
際に炉材との付着、反応を防ぐために敷く敷き粉として
も、流動性が良く接触面積の少なくて済む球状粒子が好
まれる。
2. Description of the Related Art When a sprayed film of a rare earth element oxide is to be produced, it is convenient that the flowability of the powder supplied to the burner is good to obtain a uniform film, and therefore spherical particles are preferred. . In addition, spherical particles that are good in fluidity and require a small contact area are also preferred as the spreading powder to be spread to prevent the adhesion and reaction with the furnace material when sintering the ceramic compact.

【0003】特開平 3-23214号には微粉状の希土類元素
酸化物を用いて造粒して球状粒子を得る方法が開示され
ているが、この方法では、一度溶液から沈殿生成、濾
別、焼成によって微粒子を製造した後でそれを用いて製
造するので手間がかかる。
Japanese Unexamined Patent Publication (Kokai) No. 3-23214 discloses a method of obtaining spherical particles by granulation using fine powdery rare earth element oxides. In this method, once a precipitate is formed from a solution, filtered, Since the fine particles are produced by firing and then the fine particles are produced, it is troublesome.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記欠点を解
決したもので、熔射用及び敷き粉用に適した希土類元素
酸化物球状粒子を水溶液から容易に得られる製造方法を
提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks, and an object of the present invention is to provide a method for easily producing spherical particles of rare earth element oxides suitable for spraying and spreading powder from an aqueous solution. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明者らは、かかる課
題を解決するために検討を重ね、生産性が良く簡便な工
程からなる熔射用及び敷き粉用に適した球状希土類元素
酸化物の製造方法を見出し、製造条件を確立して本発明
を完成させたもので、その要旨は、希土類元素の水溶性
塩の水溶液と、アンモニアまたは水酸化アルカリの水溶
液とを混合して反応させて希土類元素水酸化物の沈殿を
得る際に、該希土類元素水溶液と該アルカリ水溶液のう
ちの少なくとも一方を水と均一に混じり合わない有機溶
剤中に分散させて加えることを特徴とする希土類元素水
酸化物の製造方法、およびそれを焼成することによる希
土類元素酸化物の製造方法にある。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to solve such problems, and have a spherical rare earth element oxide suitable for thermal spraying and spread powder which has a high productivity and a simple process. The present invention has been completed by establishing a manufacturing method and establishing manufacturing conditions, and the gist thereof is that an aqueous solution of a water-soluble salt of a rare earth element and an aqueous solution of ammonia or an alkali hydroxide are mixed and reacted. In obtaining a precipitate of a rare earth element hydroxide, at least one of the rare earth element aqueous solution and the alkaline aqueous solution is dispersed and added in an organic solvent that is not uniformly mixed with water. And a method for producing a rare earth element oxide by firing the same.

【0006】本願発明によると希土類元素の水溶性塩の
水溶液から容易に水酸化物が得られ、これを焼成するこ
とによって球状粒子状の希土類元素酸化物が簡単に得ら
れ経済的であるとともにこの粒子はほとんど全てが球状
粒子から成っており、安息角も小さく、熔射用粉末ある
いはセラミック焼結時の敷き粉として有用であることが
判った。
According to the present invention, a hydroxide can be easily obtained from an aqueous solution of a water-soluble salt of a rare earth element, and a spherical rare earth element oxide in the form of spherical particles can be easily obtained by firing the same, which is economical and It was found that almost all the particles were spherical particles, the angle of repose was small, and the particles were useful as a powder for thermal spraying or a spread powder during ceramic sintering.

【0007】以下、本発明を詳細に説明する。本発明の
適応範囲は、希土類元素としてイットリウムおよび原子
番号が57〜71のランタノイドである。
Hereinafter, the present invention will be described in detail. The applicable range of the present invention is yttrium as a rare earth element and a lanthanoid having an atomic number of 57 to 71.

【0008】本発明における球状とは真球、及び短径に
対する長径の比が 1.5以下の略々球形の粒子を意味す
る。これは用途上十分な範囲である。またこのような粒
子からなる酸化物は、流動性の良さを示す安息角(傾斜
法で測定)が通常の酸化物より小さい。平均粒径
(D50)は体積基準で表したもので、全粒子体積の50%
が平均粒径以下の粒子で占められる。測定法はコールタ
ーカウンター(コールター社製商品名)を用いた。
The term "spherical" in the present invention means a true sphere and a substantially spherical particle having a ratio of major axis to minor axis of 1.5 or less. This is a sufficient range for use. Further, the oxide composed of such particles has a repose angle (measured by a tilt method) showing good flowability smaller than that of a normal oxide. The average particle size (D 50 ) is expressed on a volume basis, and is 50% of the total particle volume.
Are occupied by particles having an average particle size or less. A Coulter counter (trade name, manufactured by Coulter, Inc.) was used for the measurement method.

【0009】本発明の球状希土類元素水酸化物の製造方
法としては、希土類元素の水溶性塩の水溶液と、アンモ
ニアまたは水酸化アルカリの水溶液とを反応させて沈殿
を析出させる際に、希土類元素水溶液とアルカリ水溶液
の少なくとも一方を、水と均一に混じり合わない有機溶
剤中に分散させ、有機溶剤の連続相の中に水相が分散し
たいわゆるw/o型エマルジョンとして加える。希土類
元素の水溶性塩としては、硝酸塩、塩化物等が用いられ
る。希土類元素の種類は1種でも、2種以上でも良く、
また全希土類元素濃度はあまり低いと液量が増えて不経
済でまた、あまり高いと沈殿生成後に粘度が上がりすぎ
るので 0.1〜2.0mol/lが良い。
As the method for producing the spherical rare earth element hydroxide of the present invention, when the aqueous solution of the water soluble salt of the rare earth element is reacted with the aqueous solution of ammonia or the alkali hydroxide to precipitate the precipitate, the rare earth element aqueous solution is used. And at least one of the alkaline aqueous solutions are dispersed in an organic solvent that is not uniformly mixed with water, and a so-called w / o type emulsion in which an aqueous phase is dispersed in a continuous phase of the organic solvent is added. As the water-soluble salt of rare earth element, nitrate, chloride and the like are used. The rare earth element may be of one type, two or more types,
Further, if the total rare earth element concentration is too low, the liquid amount increases and it is uneconomical. If it is too high, the viscosity increases too much after precipitation is formed, so 0.1 to 2.0 mol / l is preferable.

【0010】希土類元素を沈殿させるために水酸化ナト
リウム、水酸化カリウム、水酸化バリウム等、またはア
ンモニアの水溶液を用いるが、アルカリ金属等の混入を
嫌う場合には、アンモニア水を用いるのがよい。この濃
度も希土類元素溶液の所で述べたのと同じ理由で 0.2〜
5.0mol/lが良い。量としては、希土類元素1mol に対し
3〜5mol が適当で、3mol 未満では収率が悪く、5mo
l を超えても効果はなく不経済である。
An aqueous solution of sodium hydroxide, potassium hydroxide, barium hydroxide, or ammonia is used for precipitating the rare earth element, but ammonia water is preferably used when mixing of alkali metals or the like is disliked. This concentration is also 0.2 ~ for the same reason as described in the rare earth element solution.
5.0 mol / l is good. The amount is preferably 3 to 5 mol per 1 mol of the rare earth element, and if the amount is less than 3 mol, the yield is poor and 5 mol.
Even if it exceeds l, it is uneconomical with no effect.

【0011】有機溶剤としては、水と均一に混じり合わ
ないものなら良いが、例として、トルエン等の芳香族炭
化水素、n−ヘキサン等の直鎖脂肪族炭化水素、シクロ
ヘキサン等の環状脂肪族炭化水素、ケロシン等の石油の
分留によって得られる混合物が挙げられる。中で、引火
点の高さ、人体への安全性、価格等を考慮して、ケロシ
ン、シクロヘキサン等が好ましい。量としては、分散さ
せる水溶液に対し、体積で2〜5倍の量を用いるのが、
w/oエマルジョンの生成に好都合である。
Any organic solvent may be used as long as it does not mix uniformly with water, but examples thereof include aromatic hydrocarbons such as toluene, straight-chain aliphatic hydrocarbons such as n-hexane, and cycloaliphatic hydrocarbons such as cyclohexane. Examples include mixtures obtained by fractional distillation of petroleum such as hydrogen and kerosene. Among them, kerosene, cyclohexane and the like are preferable in consideration of the high flash point, safety to human body, price and the like. The amount used is 2 to 5 times the volume of the aqueous solution to be dispersed.
It is convenient for the production of w / o emulsions.

【0012】また、この際ソルビタンモノオレエート、
ポリオキシエチレンソルビタンモノステアレート、ソル
ビタントリオレエート等の、比較的油溶性の乳化剤を有
機溶剤に対して 0.5〜 5.0重量%加える。
Further, at this time, sorbitan monooleate,
A relatively oil-soluble emulsifier such as polyoxyethylene sorbitan monostearate or sorbitan trioleate is added in an amount of 0.5 to 5.0% by weight based on the organic solvent.

【0013】溶液の混合方法としては、アルカリ溶液お
よび希土類元素溶液のうち、エマルジョンにして加える
ものを先ず乳化剤を溶かした有機溶剤と、振り混ぜ、撹
拌等によって混合して、乳化する。w/oエマルジョン
がうまくできたかどうかは、光学顕微鏡で油溶性、或は
水溶性の色素を加える等の方法で確認できる。希土類元
素水溶液とアルカリ水溶液の両方をエマルジョンにする
場合は、エマルジョンの同士の混合順序はどちらでも良
いが、片方は水溶液のみで混合する場合は、エマルジョ
ンの方を水溶液に加えるのが良い。この混合に要する時
間は任意でよい。溶液を混合する際の温度は室温がよ
い。低温にしても効果はなく、高温にするのは有機溶剤
を使っているので安全上好ましくない。
As a method of mixing the solution, one of an alkali solution and a rare earth element solution to be added as an emulsion is first mixed with an organic solvent in which an emulsifier is dissolved by shaking, stirring or the like to emulsify. Whether or not the w / o emulsion was successfully prepared can be confirmed by a method such as adding an oil-soluble or water-soluble dye with an optical microscope. When both the rare earth element aqueous solution and the alkaline aqueous solution are made into emulsions, the emulsions may be mixed in either order, but when one is mixed only with the aqueous solution, the emulsion is preferably added to the aqueous solution. The time required for this mixing may be arbitrary. The temperature when mixing the solutions is preferably room temperature. Even if the temperature is low, there is no effect, and it is not preferable to increase the temperature because it uses an organic solvent.

【0014】すべての溶液を加え終わったら、反応を完
全に進行させる為に10分以上おく。沈殿の生成が終了し
たら、ブフナー漏斗で濾別し、水洗する。これで球状希
土類元素水酸化物が得られた。得られた水酸化物を 600
℃以上 1,500℃以下で焼成することにより、球状希土類
元素酸化物が得られる。
When all the solutions have been added, the reaction is allowed to proceed for 10 minutes or more to complete the reaction. When the formation of precipitate is complete, it is filtered off with a Buchner funnel and washed with water. A spherical rare earth hydroxide was thus obtained. The obtained hydroxide is 600
Spherical rare earth element oxides can be obtained by firing at temperatures above ℃ 1,500 ℃.

【0015】[0015]

【実施例】以下、本発明の実施態様を実施例を挙げて説
明するが、本発明はこれらに限定されるものではない。 実施例1 ケロシン 200mlにソルビタンモノオレエート1.5gを加え
て溶解したものを分液漏斗に入れた。ここに、1.5mol/l
の硝酸イットリウム水溶液80mlを加え、密栓をして振と
う機で振り混ぜ、w/oエマルジョンとした。これは、
次の反応までの間分相しないように撹拌しておいた。こ
れとは別に、ケロシン 200mlにソルビタンモノオレエー
ト1.5gを溶解し、これを分液漏斗に入れ、28%アンモニ
ア水40mlと純水20mlを加えて、密栓をして振とう機で振
り混ぜてw/oエマルジョンとしたのち、1リットルビ
ーカーに移し、モーターに取り付けた撹拌翼で撹拌し
た。ここに、先に前述の硝酸イットリウムのエマルジョ
ンを30秒間で注ぎ込んだ。さらに30分間撹拌を行った
後、ブフナー漏斗で濾別した。沈殿物を 500mlの水で洗
浄したのち、磁性坩堝にとり、電気炉中で大気雰囲気下
900℃まで1時間かけて昇温し、 900℃に1時間保った
後放冷した。13.4gの酸化イットリウムが得られた。平
均粒径は22.5μmであり、安息角は39度、電子顕微鏡で
観察したところ、ほとんど全てが球状粒子からなってい
た。
EXAMPLES The embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto. Example 1 To 200 ml of kerosene, 1.5 g of sorbitan monooleate was added and dissolved and placed in a separating funnel. Where 1.5mol / l
80 ml of the yttrium nitrate aqueous solution was added, and the container was sealed and shaken with a shaker to give a w / o emulsion. this is,
The mixture was stirred until the next reaction so as not to separate the phases. Separately, dissolve 1.5 ml of sorbitan monooleate in 200 ml of kerosene, put it in a separatory funnel, add 40 ml of 28% ammonia water and 20 ml of pure water, close the cap, and shake with a shaker. After a w / o emulsion, it was transferred to a 1 liter beaker and stirred with a stirring blade attached to a motor. The above-mentioned yttrium nitrate emulsion was poured into this for 30 seconds. After stirring for a further 30 minutes, it was filtered off with a Buchner funnel. After washing the precipitate with 500 ml of water, place it in a magnetic crucible and place it in an electric furnace in the atmosphere.
The temperature was raised to 900 ° C over 1 hour, kept at 900 ° C for 1 hour, and then allowed to cool. 13.4 g of yttrium oxide was obtained. The average particle size was 22.5 μm, the angle of repose was 39 degrees, and when observed with an electron microscope, almost all were spherical particles.

【0016】実施例2 アンモニア水をエマルジョンにして反応させることをせ
ず、実施例1と同様にして生成した硝酸イットリウム水
溶液のエマルジョンを、28%アンモニア水40mlと 460ml
の純水を混合して得た水溶液中に、撹拌しながら、30秒
間で注ぎ込んだ。以下実施例1と同様にして、 13.3gの
酸化イットリウムを得た。平均粒径は14.7μmであり、
安息角は41度、電子顕微鏡で観察したところ、ほとんど
全てが球状粒子からなっていた。
EXAMPLE 2 An emulsion of an aqueous yttrium nitrate solution produced in the same manner as in Example 1 was prepared by reacting 28% ammonia water with 40 ml and 460 ml without reacting the ammonia water with the emulsion.
While stirring, the mixture was poured into an aqueous solution obtained by mixing pure water of 30. Thereafter, in the same manner as in Example 1, 13.3 g of yttrium oxide was obtained. The average particle size is 14.7 μm,
The angle of repose was 41 degrees, and when observed by an electron microscope, almost all of them consisted of spherical particles.

【0017】実施例3 硝酸イットリウム水溶液の代わりに1.5mol/lの硝酸ガド
リニウム水溶液を用いることの他は実施例1と同様にし
て、 21.5gの酸化ガドリニウムを得た。平均粒径は30.8
μmであり、安息角は36度、電子顕微鏡で観察したとこ
ろ、ほとんど全てが球状粒子からなっていた。
Example 3 21.5 g of gadolinium oxide was obtained in the same manner as in Example 1 except that a 1.5 mol / l gadolinium nitrate aqueous solution was used instead of the yttrium nitrate aqueous solution. Average particle size is 30.8
The angle of repose was 36 degrees, and when observed by an electron microscope, almost all of them consisted of spherical particles.

【0018】実施例4 硝酸イットリウム水溶液の代わりに1.5mol/lの硝酸ネオ
ジム水溶液を用いることの他は実施例1と同様にして、
19.8gの酸化ネオジムを得た。平均粒径は25.8μmであ
り、安息角は38度、電子顕微鏡で観察したところ、ほと
んど全てが球状粒子からなっていた。
Example 4 In the same manner as in Example 1 except that a 1.5 mol / l neodymium nitrate aqueous solution was used instead of the yttrium nitrate aqueous solution,
19.8 g of neodymium oxide was obtained. The average particle size was 25.8 μm, the angle of repose was 38 degrees, and when observed by an electron microscope, almost all were spherical particles.

【0019】実施例5 28%アンモニア水40mlと純水20mlを加える代わりに、 1
0mol/lの水酸化ナトリウム水溶液 180mlを用いることの
他は実施例1と同様にして、 13.3gの酸化イットリウム
を得た。平均粒径は19.6μmであり、安息角は40度、電
子顕微鏡で観察したところ、ほとんどすべてが球状粒子
からなっていた。
Example 5 Instead of adding 40 ml of 28% ammonia water and 20 ml of pure water, 1
13.3 g of yttrium oxide was obtained in the same manner as in Example 1 except that 180 ml of a 0 mol / l sodium hydroxide aqueous solution was used. The average particle size was 19.6 μm, the angle of repose was 40 degrees, and when observed by an electron microscope, almost all were spherical particles.

【0020】比較例1 28%アンモニア水40mlと 460mlの純水を混合して得た水
溶液中に、撹拌しながら、 0.75mol/lの硝酸イットリウ
ム水溶液 160mlを3分間かけて注ぎ込んだ。以下、実施
例1と同様にして、 13.5gの酸化イットリウムを得た。
平均粒径は51.4μm、安息角は流れ性が極めて悪く測定
不能。電子顕微鏡で観察したところ、角張った不定形の
粒子の他に、1〜数μmの細かい粒子も見られた。
Comparative Example 1 160 ml of a 0.75 mol / l yttrium nitrate aqueous solution was poured over 3 minutes into an aqueous solution obtained by mixing 40 ml of 28% ammonia water and 460 ml of pure water while stirring. Thereafter, in the same manner as in Example 1, 13.5 g of yttrium oxide was obtained.
The average particle size is 51.4 μm, and the angle of repose has extremely poor flowability and cannot be measured. When observed with an electron microscope, in addition to angular irregular-shaped particles, fine particles of 1 to several μm were also seen.

【0021】比較例2 28%アンモニア水の代わりに、蓚酸二水和物 25gを加え
ることの他は実施例2と同様にして、 13.3gの酸化イッ
トリウムを得た。平均粒径は 5.4μm、安息角は流れ性
が極めて悪く測定不能。電子顕微鏡で観察したところ、
角張った不定形の粒子からなっていた。また、焼成前の
沈殿物の一部をとり、X線回析パターンを測定したとこ
ろ、通常の蓚酸イットリウムであった。
Comparative Example 2 13.3 g of yttrium oxide was obtained in the same manner as in Example 2 except that 25 g of oxalic acid dihydrate was added instead of 28% aqueous ammonia. The average particle size is 5.4 μm, and the angle of repose is extremely poor in flowability and cannot be measured. When observed with an electron microscope,
It consisted of angular irregularly shaped particles. Moreover, when a part of the precipitate before firing was taken and the X-ray diffraction pattern was measured, it was normal yttrium oxalate.

【0022】[0022]

【発明の効果】本発明により希土類元素酸化物の球状粒
子を容易に得ることが出来、これは又、ほとんど全てが
球状粒子からなっており、安息角も小さく熔射用粉末
や、セラミック焼結体の焼成時の敷き粉用として有用な
ものである。
INDUSTRIAL APPLICABILITY According to the present invention, spherical particles of rare earth element oxide can be easily obtained. Also, since almost all of them are spherical particles, the angle of repose is small and the powder for spraying or the ceramic sintering is used. It is useful as a spreader for baking the body.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素の水溶性塩の水溶液と、アン
モニアまたは水酸化アルカリの水溶液とを混合して反応
させて希土類元素水酸化物の沈殿を得る際に、該希土類
元素水溶液と該アルカリ水溶液のうちの少なくとも一方
を水と均一に混じり合わない有機溶剤中に分散させて加
えることを特徴とする希土類元素水酸化物の製造方法。
1. When the aqueous solution of a water-soluble salt of a rare earth element and an aqueous solution of ammonia or an alkali hydroxide are mixed and reacted to obtain a precipitate of a rare earth hydroxide, the aqueous solution of the rare earth element and the aqueous alkali solution. A method for producing a rare earth element hydroxide, characterized in that at least one of the above is dispersed in an organic solvent that is not uniformly mixed with water and added.
【請求項2】 請求項1に記載の方法で得られた希土類
元素水酸化物を焼成することを特徴とする希土類元素酸
化物の製造方法。
2. A method for producing a rare earth element oxide, which comprises firing the rare earth element hydroxide obtained by the method according to claim 1.
JP6260392A 1994-10-25 1994-10-25 Production of hydroxide of rare earth element and production of oxide of rare earth element Pending JPH08119632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6260392A JPH08119632A (en) 1994-10-25 1994-10-25 Production of hydroxide of rare earth element and production of oxide of rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6260392A JPH08119632A (en) 1994-10-25 1994-10-25 Production of hydroxide of rare earth element and production of oxide of rare earth element

Publications (1)

Publication Number Publication Date
JPH08119632A true JPH08119632A (en) 1996-05-14

Family

ID=17347289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6260392A Pending JPH08119632A (en) 1994-10-25 1994-10-25 Production of hydroxide of rare earth element and production of oxide of rare earth element

Country Status (1)

Country Link
JP (1) JPH08119632A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239055A2 (en) * 2001-03-08 2002-09-11 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
US7473408B2 (en) 2002-04-15 2009-01-06 Lg Chem, Ltd. Method for preparing single crystalline cerium oxide powders

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239055A2 (en) * 2001-03-08 2002-09-11 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
EP1239055A3 (en) * 2001-03-08 2004-01-07 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
US6916534B2 (en) * 2001-03-08 2005-07-12 Shin-Etsu Chemical Co., Ltd. Thermal spray spherical particles, and sprayed components
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
US7473408B2 (en) 2002-04-15 2009-01-06 Lg Chem, Ltd. Method for preparing single crystalline cerium oxide powders

Similar Documents

Publication Publication Date Title
JPS63295405A (en) Manufacture of finely crushed powdery composition
US4590090A (en) Method for making interdiffused, substantially spherical ceramic powders
JP4374442B2 (en) Preparation of alkaline earth metal thiogallate phosphors with high luminous efficiency
US20030168636A1 (en) Oxide based phosphors
JPH08119631A (en) Production of spherical oxide of rare earth element and its precursor
WO2002044303A1 (en) Process for producing fluorescent metal oxide material
JP2005054046A (en) Method for producing fluorophor
JP3280688B2 (en) Production method of rare earth oxide
JPH08119632A (en) Production of hydroxide of rare earth element and production of oxide of rare earth element
JPS6363487B2 (en)
JP3289500B2 (en) Manufacturing method of ceramic raw material powder
JP2883522B2 (en) Method for producing rare earth oxide fine powder
JP3350332B2 (en) Method for producing aggregated rare earth hydroxide
JPH0635329B2 (en) Method for producing zirconium oxide powder
JP2966724B2 (en) Method for producing rare earth hydroxide and spherical particles of rare earth oxide
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2006213573A (en) Mixed liquid and method of manufacturing ceramic microparticle
JP3551428B2 (en) Method for producing rare earth element-containing BaFI prismatic crystal
JPH0283212A (en) Synthesis of lanthanide-alkaline earth metal-copper-oxygen type superconductor material
JPH07309622A (en) Production of fine powder of oxide of rare earth element
JPS60171223A (en) Manufacture of zirconium oxide containing solubilized rare earth element
JP3176119B2 (en) Acicular dielectric oxide particles and method for producing the same
JPH0222003B2 (en)
JP2005263528A (en) Method for producing spherical yttria particulate
JPH01164709A (en) Production of composite oxide precursor