JP3350332B2 - Method for producing aggregated rare earth hydroxide - Google Patents

Method for producing aggregated rare earth hydroxide

Info

Publication number
JP3350332B2
JP3350332B2 JP00086596A JP86596A JP3350332B2 JP 3350332 B2 JP3350332 B2 JP 3350332B2 JP 00086596 A JP00086596 A JP 00086596A JP 86596 A JP86596 A JP 86596A JP 3350332 B2 JP3350332 B2 JP 3350332B2
Authority
JP
Japan
Prior art keywords
rare earth
aqueous solution
hydroxide
salt
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00086596A
Other languages
Japanese (ja)
Other versions
JPH09188515A (en
Inventor
酒井  茂
勇 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP00086596A priority Critical patent/JP3350332B2/en
Publication of JPH09188515A publication Critical patent/JPH09188515A/en
Application granted granted Critical
Publication of JP3350332B2 publication Critical patent/JP3350332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類酸化物焼結
体の原料として、また窒化硅素、窒化アルミニウム等の
セラミックスの焼結助剤として有用な、粒度分布の狭い
サラサラした流動性の良い凝集塊状希土類水酸化物の
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flocculant having a narrow particle size distribution and good fluidity useful as a raw material for a rare earth oxide sintered body and as a sintering aid for ceramics such as silicon nitride and aluminum nitride. it relates manufacturing <br/> method for producing bulk rare earth hydroxide compound.

【0002】[0002]

【従来の技術】従来、希土類水酸化物は希土類塩水溶液
に塩基を添加して製造するのが一般的であるが、この方
法で生成する水酸化物は、非常に微細な粒子からなる難
濾過性のゲル状物質である。そのため、従来技術では、
濾過に時間がかかる、水洗による副生成物の除去が困難
である、乾燥物が固化するため粉砕が必要で手間が掛か
ると同時にコスト高と不純物混入の原因となる等の問題
がある。
2. Description of the Related Art Heretofore, rare earth hydroxides have generally been produced by adding a base to a rare earth salt aqueous solution, but the hydroxide formed by this method is difficult to filter by very fine particles. It is an acidic gel-like substance. Therefore, in the prior art,
There are problems that it takes time for filtration, that it is difficult to remove by-products by washing with water, that the dried product is solidified, and that pulverization is required, which is troublesome, and that the cost is high and that impurities are mixed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記の問題
点に鑑み、濾過性が良く、水洗による副生成物の除去が
容易で、乾燥後に粉砕を必要としない凝集塊状希土類水
酸化物の製造方法を提供しようとするものである。
The present invention is to challenge it to solve] In view of the above problems, good filterability, easy removal of the by-product by washing with water, do not require grinding after drying of the agglomerated mass rare earth hydroxide compound It is intended to provide a manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記課題
を解決するため鋭意研究を重ね、希土類水酸化物の沈殿
条件を検討した結果、本発明を完成させた。すなわち、
本発明の凝集塊状希土類水酸化物の製造方法は、あらか
じめ硝酸と塩基からなる塩を溶解した水溶液中に、希土
類塩水溶液と塩基の水溶液を同時に滴下することを特徴
とする凝集塊状希土類水酸化物の製造方法と、更に詳し
くは、塩基がアンモニアである製造方法を要旨とする。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and studied the precipitation conditions of rare earth hydroxides. As a result, the present invention has been completed. That is,
Method for producing a cohesive mass rare earth hydroxide of the present invention, Oh Raka <br/> in dimethyl aqueous solution of nitric acid and consist of base salts, characterized by the dropwise addition of a rare earth salt solution and a base solution at the same time The gist of the present invention is a method for producing an aggregated rare earth hydroxide, and more specifically, a method in which a base is ammonia.

【0005】以下、本発明を詳細に説明する。本発明の
最大の特徴は、あらかじめ硝酸と塩基からなる塩を溶解
した水溶液中に、希土類塩水溶液と塩基の水溶液を同時
に滴下して凝集塊状希土類水酸化物を得ることである。
あらかじめ塩を溶解しておくことは、塩析効果による微
細な希土類元素水酸化物の凝集塊状化に特に効果があ
る。
Hereinafter, the present invention will be described in detail. The greatest feature of the present invention is to obtain an aggregated rare earth hydroxide by simultaneously dropping an aqueous solution of a rare earth salt and an aqueous solution of a base into an aqueous solution in which a salt composed of nitric acid and a base is dissolved in advance.
Preliminarily dissolving the salt is particularly effective for agglomerating the fine rare earth element hydroxide by the salting out effect.

【0006】あらかじめ用意しておく塩水溶液の塩濃度
は、0.2〜1.0モル/Lの範囲が好ましく、0.2モル/L未
満では生成する水酸化物はゲル状になり、1.0モル/Lを
超えると希土類水酸化物の凝集塊状化に与える効果は飽
和するので薬品の無駄となるだけである。また、塩水溶
液の液量は、最終液量の30%〜70%が好ましく、30%未
満では生成する水酸化物はゲル状になり、70%を超える
と希土類水酸化物の生成量が少なくなり生産性を損ね
る。
The salt concentration of the salt aqueous solution prepared in advance is preferably in the range of 0.2 to 1.0 mol / L. When the salt concentration is less than 0.2 mol / L, the produced hydroxide becomes a gel, and when it exceeds 1.0 mol / L, The effect of the rare earth hydroxide on the agglomeration is saturated, so that only the chemical is wasted. The liquid volume of the salt solution is preferably 30% to 70% of the final liquid volume. If it is less than 30%, the generated hydroxide will be gelled, and if it exceeds 70%, the amount of rare earth hydroxide generated will be small. It impairs productivity.

【0007】あらかじめ溶解する塩は硝酸と塩基からな
る塩であるが、反応系を簡単にするためにも、後で添加
する希土類塩水溶液と塩基の水溶液の構成成分は、硝酸
とあらかじめ溶解する塩の構成成分と同じ塩基からなる
ものを用いることが好ましい。また、最終的な目的が、
希土類水酸化物を焼成して希土類酸化物を得ることにあ
る場合は、焼成時に分解揮散する酸と塩基、例えば、あ
らかじめ溶解する塩には硝酸アンモニウム、希土類塩に
は硝酸希土、塩基にはアンモニアを用いることが好まし
い。
The pre-dissolved salt consists of nitric acid and a base.
In order to simplify the reaction system, the components of the rare earth salt aqueous solution and the base aqueous solution to be added later are nitric acid.
It is preferable to use a material consisting of the same base as the component of the salt which is dissolved in advance . Also, the ultimate purpose is
When in that by sintering a rare earth hydroxide to obtain a rare earth oxide, acid and base to decompose volatilized during firing, for example, ammonium nitrate Salts pre-dissolved, nitric acid to rare earth salt rare earth, the salt groups It is preferred to use ammonia.

【0008】次に、上記のあらかじめ塩を溶解した水溶
液中に、希土類塩水溶液と塩基の水溶液を同時に滴下す
る。この時、これらを別々に加えると、希土類水酸化物
の凝集塊状化は起こらない。希土類塩水溶液の濃度は特
に限定されないが、生産性や取り扱い易さから言えば0.
1〜1.0モル/Lが好ましく、0.1モル/L未満では生産性
が悪くなり、1.0モル/Lを超えると反応終期での生成ス
ラリーの粘度が上がり過ぎて撹拌に支障をきたす。塩基
の水溶液の濃度は特に限定されないが、投入モル数は希
土類塩水溶液中の希土類元素を完全に水酸化物とするの
に必要な化学量論量の1.0〜1.2倍が好ましく、これ以上
加えても薬品の無駄となるだけである。
Next, an aqueous solution of a rare earth salt and an aqueous solution of a base are simultaneously dropped into the aqueous solution in which the salt is dissolved in advance. At this time, when these are separately added, the agglomeration of the rare earth hydroxide does not occur. The concentration of the aqueous solution of the rare earth salt is not particularly limited, but is 0.
The amount is preferably 1 to 1.0 mol / L , and if it is less than 0.1 mol / L , the productivity is deteriorated. The concentration of the aqueous solution of the base is not particularly limited, but the number of moles to be introduced is preferably 1.0 to 1.2 times the stoichiometric amount necessary to completely convert the rare earth element in the rare earth salt aqueous solution to hydroxide, and more than this. Is just a waste of medicine.

【0009】希土類塩水溶液と塩基の水溶液は、全量を
2〜10時間かけて添加することが好ましく、2時間未満
では凝集状態が十分ではなく、10時間を超えても格別の
効果は期待できない。反応温度は特に限定されないが、
一般的な反応条件として、例えば室温から80℃程度の温
度が好ましい。
The total amount of the aqueous solution of the rare earth salt and the aqueous solution of the base is preferably added over 2 to 10 hours. If it is less than 2 hours, the state of aggregation is not sufficient, and if it exceeds 10 hours, no particular effect can be expected. The reaction temperature is not particularly limited,
As a general reaction condition, for example, a temperature of about room temperature to about 80 ° C. is preferable.

【0010】本発明の方法により得られた生成物は、平
均粒子径が5μm以上100μm以下の凝集塊状物なので、
常法により速やかに濾別される。また、副生成物は、水
洗により容易に除去される。その後、常法に従い30℃以
上200℃以下で付着水分が除去されるのに必要な時間乾
燥すると、サラサラした流動性の良い粉末状の平均粒子
径5μm以上100μm以下の凝集塊状希土類水酸化物が得
られ、粉砕工程を必要としない。これは、希土類酸化物
焼結体の原料として、また窒化硅素、窒化アルミニウム
等のセラミックスの焼結助剤として取扱上極めて有用で
ある。
The product obtained by the method of the present invention is an agglomerate having an average particle diameter of 5 μm or more and 100 μm or less.
It is quickly filtered off by a conventional method. Also, by-products are easily removed by washing with water. Thereafter, drying is performed at a temperature of 30 ° C. or more and 200 ° C. or less according to a conventional method for a time necessary to remove adhering water, and a smooth, fluid, powdery, aggregated rare earth hydroxide having an average particle size of 5 μm to 100 μm is obtained. Obtained and does not require a grinding step. This is extremely useful in handling as a raw material for rare earth oxide sintered bodies and as a sintering aid for ceramics such as silicon nitride and aluminum nitride.

【0011】この凝集塊状希土類水酸化物を、必要に応
じて600℃以上1700℃以下の温度で1〜4時間程度焼成
すると、サラサラした流動性の良い粉末状の凝集塊状希
土類元素酸化物が得られ、粉砕工程を必要としない。こ
れは、希土類酸化物の熔射用原料や反応性金属の焼結時
の敷粉として有用である。
When the aggregated rare earth hydroxide is fired at a temperature of 600 ° C. to 1700 ° C. for about 1 to 4 hours as needed, a smooth and fluid powdery aggregated rare earth oxide is obtained. And does not require a grinding step. This is useful as a raw material for rare earth oxide spraying or as a lint during sintering of a reactive metal.

【0012】本発明に適用される希土類元素は、Yを含
むLa、Ce、Pr、Nd、Sm、Eu、Gd、Tb、
Dy、Ho、Er、Tm、YbおよびLuからなる群か
ら1種または2種以上が選択される。
The rare earth elements applied to the present invention include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Y containing Y.
One or more members are selected from the group consisting of Dy, Ho, Er, Tm, Yb and Lu.

【0013】[0013]

【発明の実施の形態】本発明の作用は、あらかじめ溶解
した硝酸と塩基からなる塩水溶液が、その塩析効果によ
り、後で生成する微細な希土類水酸化物粒子を凝集させ
ることによる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The function of the present invention is based on the fact that a salt aqueous solution composed of nitric acid and a base dissolved in advance agglomerates fine rare earth hydroxide particles formed later due to the salting out effect.

【0014】[0014]

【実施例】以下、本発明の実施形態を実施例と比較例を
挙げて説明するが、本発明はこれらに限定されるもので
はない。 (実施例1) あらかじめ0.5モル/Lの硝酸アンモニウム水溶液5L
を10Lビーカーに張り、室温(21℃)で撹拝しながら、そ
こに1.0モル/Lの硝酸イットリウム水溶液2.5Lと3.0
モル/Lのアンモニア水溶液2.5Lを4時間掛けて同時
に滴下した。生成物をヌッチェで濾過し、5Lの脱イオ
ン水をかけて水洗した。該水洗物を50℃で16時間乾燥し
て粉末状の凝集塊状水酸化イットリウム610g(Y23
有量45.7重量%)を得た。該粉末の安息角は43°であ
り、走査型電子顕微鏡観察で粒子径0.1μm以上1μm
以下の微粒子が塊状に凝集している様子が観察でき、レ
ーザー回析法による平均粒子径は37μmでサラサラして
流動性の良いものであった。なお、平均粒子径はマイク
ロトラック社のレーザー回折法による粒度分布測定装置
(型番SPA)により測定した。
EXAMPLES Hereinafter, embodiments of the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these. (Example 1) 5 L of 0.5 mol / L ammonium nitrate aqueous solution in advance
Into a 10 L beaker and stir at room temperature (21 ° C.), and add 2.5 L of 3.0 mol / L yttrium nitrate aqueous solution and 3.0 L
2.5 L of an aqueous ammonia solution of mol / L was simultaneously added dropwise over 4 hours. The product was filtered through Nutsche and washed with 5 L of deionized water. The aqueous wash was to obtain a dried 16 hours at 50 ° C. powdered agglomerated mass yttrium hydroxide 610g (Y 2 0 3 content of 45.7 wt%). The angle of repose of the powder is 43 °, and the particle diameter is 0.1 μm or more and 1 μm by observation with a scanning electron microscope.
The following fine particles were observed to be agglomerated in a lump, and the average particle diameter by laser diffraction was 37 μm, which was smooth and had good fluidity. The average particle size is measured by Microtrac's laser diffraction method.
(SPA).

【0015】(実施例2) 実施例1で得た凝集塊状水酸化イットリウムを800℃で
2時間焼成して、粉末状の凝集塊状酸化イットリウム27
9gを得た。該粉末の安息角は42°であり、走査型電子
顕微鏡観察で粒子径0.1μm以上1μm以下の微粒子が
塊状に凝集している様子が観察でき、レーザー回折法に
よる平均粒子径は35μmでサラサラした流動性の良いも
のであった。
Example 2 The agglomerated yttrium hydroxide obtained in Example 1 was calcined at 800 ° C. for 2 hours to obtain a powdery agglomerated yttrium oxide 27.
9 g were obtained. The angle of repose of the powder was 42 °, and it was observed by scanning electron microscopy that fine particles having a particle diameter of 0.1 μm or more and 1 μm or less were aggregated in a lump, and the average particle diameter determined by laser diffraction was 35 μm and smooth. It had good fluidity.

【0016】(実施例3) 硝酸エルビウムを実施例1と同様な方法で反応させ、粉
末状の凝集塊状水酸化エルビウム812g(Er23含有量
58.6重量%)を得た。該粉末の安息角は41°であり、走
査型電子顕微鏡観察で粒子径0.1μm以上1μm以下の
微粒子が塊状に凝集している様子が観察でき、レーザー
回折法による平均粒子径は42μmでサラサラした流動性
の良いものであった。
[0016] (Example 3) the erbium nitrate reacted in the same manner as in Example 1, powdery aggregate bulk erbium hydroxide 812 g (Er 2 0 3 content
58.6% by weight). The angle of repose of the powder was 41 °, and it was observed by scanning electron microscopy that fine particles having a particle size of 0.1 μm or more and 1 μm or less were aggregated in a lump. It had good fluidity.

【0017】(実施例4) 硝酸ガドリニウムを実施例1と同様な方法で反応させ、
粉末状の凝集塊状水酸化ガドリニウム780g(Gd23
有量57.3重量%)を得た。該粉末の安息角は41°であ
り、走査型電子顕微鏡観察で粒子径0.1μm以上1μm
以下の微粒子が塊状に凝集している様子が観察でき、レ
ーザー回折法による平均粒子径は39μmでサラサラした
流動性の良いものであった。
Example 4 Gadolinium nitrate was reacted in the same manner as in Example 1,
Powdered agglomerated mass hydroxide gadolinium 780g (Gd 2 0 3 content of 57.3 wt%) was obtained. The angle of repose of the powder is 41 °, and the particle size is 0.1 μm or more and 1 μm by scanning electron microscope observation.
The following fine particles could be observed to be aggregated in a lump, and the average particle diameter determined by a laser diffraction method was 39 μm, which was smooth and had good fluidity.

【0018】(比較例1) 1.0モル/Lの硝酸イットリウム水溶液2.5Lと脱イオン
水2.5Lを10Lビーカーに張り、室温(21℃)で撹拌しなが
ら、3.0モル/Lのアンモニア水溶液2.5Lを4時間掛け
て滴下した。生成した水酸化イットリウムをヌッチェで
濾過し、5Lの脱イオン水をかけて水洗した。該水洗物
を50℃で16時間乾燥して固形分623g(Y23含有量44.8
重量%)を得た。該固形分は固く凝集していて安息角や
平均粒子径を測定することはできなかった。
Comparative Example 1 2.5 L of a 1.0 mol / L yttrium nitrate aqueous solution and 2.5 L of deionized water were placed in a 10 L beaker, and 2.5 L of a 3.0 mol / L aqueous ammonia solution was added thereto while stirring at room temperature (21 ° C.). It was added dropwise over 4 hours. The produced yttrium hydroxide was filtered with Nutsche and washed with 5 L of deionized water. Solids 623g with a water washing was dried for 16 hours at 50 ℃ (Y 2 0 3 content of 44.8
% By weight). The solid content was firmly agglomerated and the angle of repose and the average particle size could not be measured.

【0019】(比較例2) あらかじめ0.5モル/Lの硝酸アンモニウム水溶液5L
と1.0モル/Lの硝酸イットリウム水溶液2.5Lを10Lビ
ーカーに張り、室温(21℃)で撹拝しながら、そこに3.0
モル/Lのアンモニア水溶液2.5Lを4時間掛けて滴下
した。生成した水酸化イットリウムをヌッチェで濾過
し、5Lの脱イオン水をかけて水洗した。該水洗物を50
℃で16時間乾燥して固形分617g(Y23含有量45.2重量
%)を得た。該固形分は固く凝集していて安息角や平均
粒子径を測定することはできなかった。
Comparative Example 2 5 L of 0.5 mol / L ammonium nitrate aqueous solution
And 2.5 L of 1.0 mol / L yttrium nitrate aqueous solution in a 10 L beaker, and stir at room temperature (21 ° C.).
2.5 L of a molar / L aqueous ammonia solution was added dropwise over 4 hours. The produced yttrium hydroxide was filtered with Nutsche and washed with 5 L of deionized water. 50 washes
℃ in dried 16 hours to obtain a solid 617g (Y 2 0 3 content of 45.2 wt%). The solid content was firmly agglomerated and the angle of repose and the average particle size could not be measured.

【0020】(比較例3) 硝酸イットリウム水溶液とアンモニア水溶液を1時間で
同時滴下すること以外は実施例1と同様な方法で水酸化
イットリウム620g(Y23含有量45.0重量%)を得た。
該固形分は固く凝集していて安息角や平均粒子径を測定
することは出来なかった。
[0020] was obtained (Comparative Example 3) yttrium nitrate aqueous solution and aqueous ammonia in the same manner as in Example 1 except that the simultaneous dropwise in 1 hour yttrium hydroxide 620 g (Y 2 0 3 content of 45.0 wt%) .
The solid content was firmly agglomerated and the angle of repose and the average particle size could not be measured.

【0021】[0021]

【発明の効果】本発明より、希土類酸化物焼結体の原料
として、またセラミックス原料等への焼結助剤として有
用な、粒度分布の狭いサラサラした流動性の良い凝集塊
状希土類水酸化物が簡便な工程でかつ低コストで製造で
き、産業上その利用価値は極めて高い。
According to the present invention, an agglomerated rare earth hydroxide having a narrow particle size distribution and a good flowability, which is useful as a raw material for a rare earth oxide sintered body and as a sintering aid for a ceramic raw material, etc. It can be manufactured in a simple process and at low cost, and its industrial value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01F 17/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C01F 17/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 あらかじめ硝酸と塩基からなる塩を溶解
した水溶液中に、希土類塩水溶液と塩基の水溶液を同時
に滴下することを特徴とする凝集塊状希土類水酸化物の
製造方法
1. A salt composed of nitric acid and a base is dissolved in advance.
A rare earth salt aqueous solution and a base aqueous solution
Of agglomerate rare earth hydroxide, characterized by being dropped on
Manufacturing method .
【請求項2】 塩基がアンモニアである請求項1に記載
の凝集塊状希土類水酸化物の製造方法
2. The method according to claim 1, wherein the base is ammonia.
For producing an aggregated rare earth hydroxide .
JP00086596A 1996-01-08 1996-01-08 Method for producing aggregated rare earth hydroxide Expired - Fee Related JP3350332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00086596A JP3350332B2 (en) 1996-01-08 1996-01-08 Method for producing aggregated rare earth hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00086596A JP3350332B2 (en) 1996-01-08 1996-01-08 Method for producing aggregated rare earth hydroxide

Publications (2)

Publication Number Publication Date
JPH09188515A JPH09188515A (en) 1997-07-22
JP3350332B2 true JP3350332B2 (en) 2002-11-25

Family

ID=11485575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00086596A Expired - Fee Related JP3350332B2 (en) 1996-01-08 1996-01-08 Method for producing aggregated rare earth hydroxide

Country Status (1)

Country Link
JP (1) JP3350332B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219479A (en) * 2011-04-21 2011-10-19 西安交通大学 Negative temperature coefficient (NTC) material utilized at high temperature and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339330B2 (en) * 2008-02-06 2013-11-13 独立行政法人物質・材料研究機構 Method for producing layered rare earth hydroxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832554B2 (en) * 1989-06-16 1996-03-29 信越化学工業株式会社 Method for producing rare earth oxide powder
JP2767484B2 (en) * 1990-05-28 1998-06-18 テイカ株式会社 Method for producing particulate metal oxide
JPH05139704A (en) * 1991-11-19 1993-06-08 Teika Corp Production of fine particle-shaped metal oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219479A (en) * 2011-04-21 2011-10-19 西安交通大学 Negative temperature coefficient (NTC) material utilized at high temperature and preparation method thereof

Also Published As

Publication number Publication date
JPH09188515A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
JP2678004B2 (en) Method for producing inorganic spherical fine particles
IE913935A1 (en) Process for the manufacture of ammonium rare-earth double¹oxalates and their uses for the manufacture of rare-earth¹oxides
Rahmani et al. The effects of pH and excess Al3+ content on the microstructure and phase evolution of YAG polycrystals
JPH08119631A (en) Production of spherical oxide of rare earth element and its precursor
WO2002044303A1 (en) Process for producing fluorescent metal oxide material
JP3280688B2 (en) Production method of rare earth oxide
US20130015398A1 (en) Method for preparing modified micronized particles
JP3350332B2 (en) Method for producing aggregated rare earth hydroxide
RU2699500C1 (en) Method of obtaining low-agglomerated high-stoichiometric nano-sized precursor powder based on yttrium-aluminum garnet with cations of rare-earth elements
JPH06305726A (en) Production of powdery oxide of rare earth element
JP5626329B2 (en) Method for producing zirconia composite fine particles
JP2883522B2 (en) Method for producing rare earth oxide fine powder
RU2707840C1 (en) Method of producing highly stoichiometric nano-sized precursor for synthesis of solid solutions of yttrium-aluminium garnet with rare-earth element oxides
JPH0714814B2 (en) Process for producing rare earth ammonium oxalate double salt, use thereof for production of rare earth oxide, and obtained rare earth oxide
JP5987778B2 (en) Method for producing rare earth oxide powder
JPH10114522A (en) Production of powdery zirconium dioxide
US6673143B2 (en) Aqueous slurry of rare earth hydroxide particles
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JP3300576B2 (en) Method for producing spherical rare earth oxide
JP2786052B2 (en) Method for producing rare earth element oxide particles
WO2023163058A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP2966724B2 (en) Method for producing rare earth hydroxide and spherical particles of rare earth oxide
JPS6126513A (en) Preparation of compound oxide of rare earth metal
JPH07109118A (en) Production of rare earth element oxide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees