JP3280688B2 - Production method of rare earth oxide - Google Patents

Production method of rare earth oxide

Info

Publication number
JP3280688B2
JP3280688B2 JP05142192A JP5142192A JP3280688B2 JP 3280688 B2 JP3280688 B2 JP 3280688B2 JP 05142192 A JP05142192 A JP 05142192A JP 5142192 A JP5142192 A JP 5142192A JP 3280688 B2 JP3280688 B2 JP 3280688B2
Authority
JP
Japan
Prior art keywords
rare earth
aqueous solution
dispersibility
oxide
earth oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05142192A
Other languages
Japanese (ja)
Other versions
JPH05254830A (en
Inventor
忠俊 室田
和弘 山本
剛史 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP05142192A priority Critical patent/JP3280688B2/en
Publication of JPH05254830A publication Critical patent/JPH05254830A/en
Application granted granted Critical
Publication of JP3280688B2 publication Critical patent/JP3280688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/247Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分散性に優れた希土類
酸化物微粉体の製造方法に関する。
The present invention relates to a process for the preparation of superior rare earth oxide fine powder dispersibility.

【0002】[0002]

【従来の技術】希土類酸化物は、カラーテレビ、照明用
ランプ等の蛍光体材料、機能性セラミックス用材料、電
子材料、自動車触媒材料等として多用されており、かよ
うな用途においては高純度であること、均一な粒度分布
を有すること、かさ密度が大きいこと、及び充填性、分
散性、流動性、反応操作性等が良いこと等が要求され
る。
2. Description of the Related Art Rare earth oxides are widely used as phosphor materials for color televisions, lighting lamps, etc., materials for functional ceramics, electronic materials, catalyst materials for automobiles, and the like. It is required to have certain properties, to have a uniform particle size distribution, to have a large bulk density, and to have good filling properties, dispersibility, fluidity, reaction operability and the like.

【0003】従来の希土類酸化物は、粒形が不定形であ
り、またその形状も針状、棒状等でかさ密度も小さく、
粒径も不揃いで不均一かつ広い粒度分布を有しているた
め、前記用途に使用する際には分級、破砕等の工程によ
り均一な粒径にする必要があり、操作の煩雑化、不純物
の混入等の問題がある。
[0003] Conventional rare earth oxides have an irregular grain shape, and have a needle-like or rod-like shape with a low bulk density.
Since the particle size is also uneven and has a non-uniform and wide particle size distribution, when used for the above-mentioned applications, it is necessary to make the particle size uniform by a process such as classification and crushing. There is a problem such as mixing.

【0004】また従来の希土類酸化物の製造方法として
は、希土類金属の硝酸塩水溶液及び塩酸塩水溶液に、シ
ュウ酸若しくは重炭酸アンモニウムを添加して得られる
希土類金属の炭酸塩、又は希土類金属の硝酸塩水溶液及
び塩酸塩水溶液に、尿素水溶液を添加し、50〜200
℃で水熱処理を行うことにより得られる希土類の水酸化
物及び炭酸塩若しくはシュウ酸塩を濾別、洗浄、乾燥、
焼成等により希土類酸化物とする方法が知られている。
しかしながら、該方法により得られる希土類酸化物の粒
形は不均一であり、粒度分布も不揃いであり、更に分散
性に劣るという問題がある。
[0004] Further, as a conventional method for producing a rare earth oxide, a rare earth metal carbonate or a rare earth metal nitrate aqueous solution obtained by adding oxalic acid or ammonium bicarbonate to a rare earth metal nitrate aqueous solution and a hydrochloride aqueous solution is known. And an aqueous urea solution to the aqueous hydrochloride solution,
Filter the rare earth hydroxide and carbonate or oxalate obtained by performing the hydrothermal treatment at ℃, wash, dry,
There is known a method of forming a rare earth oxide by firing or the like.
However, there is a problem that the rare-earth oxide obtained by the method has a nonuniform grain shape, a nonuniform particle size distribution, and a poor dispersibility.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、分散
性に優れた希土類酸化物微粉体の製造方法を提供するこ
とにある。
An object of the present invention is to provide a to provide a method for producing superior rare earth oxide fine powder dispersibility.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

【0007】発明によれば、希土類イオンを含む水溶
液と尿素を含む水溶液とを混合し、更に該希土類イオン
に対して平均分子量500以上の分散剤1〜50重量%
を添加し、得られた混合液を温度50〜200℃、圧力
1〜10kg/cm2の条件下にて水熱処理し、次いで得ら
れた希土類の水酸化物及び炭酸塩の混合物を、700℃
以上で焼成することを特徴とする分散性に優れた球形微
粒子を有する希土類酸化物微粉体の製造方法が提供され
る。
According to the present invention, an aqueous solution containing a rare earth ion and an aqueous solution containing urea are mixed, and 1 to 50% by weight of a dispersant having an average molecular weight of 500 or more based on the rare earth ion.
And the resulting mixture is subjected to hydrothermal treatment under the conditions of a temperature of 50 to 200 ° C. and a pressure of 1 to 10 kg / cm 2 , and then a mixture of the obtained rare earth hydroxide and carbonate is heated to 700 ° C.
Thus, there is provided a method for producing a rare earth oxide fine powder having spherical fine particles excellent in dispersibility, which is characterized by firing.

【0008】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0009】本発明の製造方法により得られる希土類酸
化物微粉体としては、平均粒径が0.01〜3μmであ
り、優れた分散性を有する球形微粒子を含む集合体が挙
げられる
[0009] As the rare earth oxide fine powder obtained by the production method of the present invention has an average particle size of 0.01 to 3 [mu] m, the aggregate containing spherical fine particles having excellent dispersibility behavior
I can do it .

【0010】本発明において球形とは、走査型電子顕微
鏡での観察により粒子が球状であることを意味する。
In the present invention, the term "spherical" means that the particles are spherical as observed by a scanning electron microscope.

【0011】また本発明において分散性とは、走査型電
子顕微鏡での観察により粒子が凝集していないことを意
味し、SEM写真上の100μm2中すべての粒子に対
し、凝集体が10%以下であることを意味する。従って
本発明の希土類酸化物は、前記球形微粒子である希土類
酸化物粉体の凝集体を10%以下含有する。
[0011] The dispersibility in the present invention means that particles by observation with a scanning electron microscope is not aggregated to all of the particles in 100 [mu] m 2 on SEM photographs, aggregates 1 0% It means the following. Accordingly rare earth oxide of the present invention are the spherical nanoparticle rare earth
Containing aggregates of oxide powder 1 0% or less.

【0012】前記球形微粒子は、イットリウム又は原子
番号57〜71のランタノイドの酸化物粒子であれば特
に限定されるものではない。
The spherical fine particles are not particularly limited as long as they are yttrium or lanthanoid oxide particles having an atomic number of 57 to 71.

【0013】前記球形微粒子の平均粒径は、体積基準
(D50)で0.01〜3μmであり、特に好ましくは
0.5〜1.0μmである。前記平均粒径が0.01μ
m未満では取扱いが困難となり、分散性に劣る。また3
μmを超えると工業的製造が困難となる。
[0013] The average particle diameter of the spherical fine particles are 0.01~3μm by volume (D50), particularly preferably 0.5 to 1.0 [mu] m. The average particle size is 0.01 μm
If it is less than m, handling becomes difficult and dispersibility is poor. Also 3
If it exceeds μm, industrial production becomes difficult.

【0014】本発明の製造方法においては、まず希土類
イオンを含む水溶液と尿素を含む水溶液とを混合し、更
に平均分子量500以上の分散剤を特定量添加する。
In the production method of the present invention, an aqueous solution containing rare earth ions and an aqueous solution containing urea are first mixed, and a specific amount of a dispersant having an average molecular weight of 500 or more is added.

【0015】前記希土類イオンを含む水溶液は、通常の
希土類元素の塩化物、硝酸塩、硫酸塩等の可水溶性の希
土類塩の水溶液として用いることができ、具体的には硝
酸イットリウム、硝酸ランタン、硝酸セリウム、硝酸プ
ラセオジム、硝酸ユーロピウム等の水溶液を好ましく挙
げることができ、使用に際しては単独でも2種以上混合
して用いてもよい。前記希土類イオンを含む水溶液中の
希土類イオン濃度は、好ましくは0.1mol/l以上、特
に好ましくは0.6〜2.0mol/lの濃度範囲で使用す
るのが望ましい。
The aqueous solution containing the rare earth ion can be used as an aqueous solution of a water-soluble rare earth salt such as a chloride, nitrate, sulfate or the like of a normal rare earth element. Specifically, yttrium nitrate, lanthanum nitrate, An aqueous solution of cerium, praseodymium nitrate, europium nitrate or the like can be preferably mentioned, and when used, they may be used alone or in combination of two or more. The rare earth ion concentration in the aqueous solution containing the rare earth ions is preferably 0.1 mol / l or more, and more preferably 0.6 to 2.0 mol / l.

【0016】また前記尿素を含む水溶液は、尿素を水に
溶解した水溶液であればよく、その尿素濃度は、好まし
くは0.1〜5.0、特に好ましくは2.0〜3.0mo
l/lの濃度範囲で使用するのが望ましい。前記尿素を含
む水溶液と、希土類イオンを含む水溶液との混合割合
は、尿素を含む水溶液を前記希土類イオンに対して、モ
ル比で好ましくは1〜3倍量の割合で混合するのが好ま
しい。
The aqueous solution containing urea may be an aqueous solution in which urea is dissolved in water, and the urea concentration is preferably 0.1 to 5.0, particularly preferably 2.0 to 3.0 mol.
It is desirable to use in a concentration range of l / l. The mixing ratio of the aqueous solution containing urea and the aqueous solution containing rare earth ions is preferably such that the aqueous solution containing urea is mixed with the rare earth ions at a molar ratio, preferably 1 to 3 times the molar amount.

【0017】更に分散剤は、平均分子量500以上のも
のであれば特に限定されるものではなく、例えばゼラチ
ン、ポリアクリル酸、ポリエチレンオキシド等の平均分
子量500以上、好ましくは5000〜10000の分
散剤を用いることができる。前記分散剤の混合割合は、
得られる球形希土類酸化物粒子の分散性を良好とするた
めに1〜50重量%、好ましくは1〜10重量%であ
る。
The dispersant is not particularly limited as long as it has an average molecular weight of 500 or more. For example, a dispersant having an average molecular weight of 500 or more, preferably 5,000 to 10,000, such as gelatin, polyacrylic acid and polyethylene oxide is used. Can be used. The mixing ratio of the dispersant,
In order to improve the dispersibility of the obtained spherical rare earth oxide particles, the content is 1 to 50% by weight, preferably 1 to 10% by weight.

【0018】次に前記希土類を含む水溶液と、尿素を含
む水溶液と、分散剤とを含む混合液を特定の条件下、水
熱処理することにより、希土類の水酸化物及び炭酸塩の
混合物を調製する。前記水熱処理は例えばオートクレー
ブ等を用いて、50〜200℃、好ましくは100〜1
50℃の温度範囲、1〜10kg/cm2、好ましくは1〜
2kg/cm2の圧力下にて行うことができ、特に好ましく
は0.5〜1時間の範囲にて行うのが望ましい。前記温
度範囲が50℃未満では反応が非常に起こりにくく、2
00℃を越えると圧力を制御しにくい。また圧力が前記
範囲外である場合には、球形微粒子が得にくい。
Next, a mixture of the aqueous solution containing the rare earth, the aqueous solution containing urea, and the dispersant is subjected to hydrothermal treatment under specific conditions to prepare a mixture of hydroxide and carbonate of the rare earth. . The hydrothermal treatment is performed, for example, using an autoclave or the like at 50 to 200 ° C., preferably 100 to 1 ° C.
Temperature range of 50 ° C., 1 to 10 kg / cm 2 , preferably 1 to 10 kg / cm 2
It can be carried out under a pressure of 2 kg / cm 2 , particularly preferably in the range of 0.5 to 1 hour. When the temperature range is lower than 50 ° C., the reaction is very unlikely to occur.
If the temperature exceeds 00 ° C., it is difficult to control the pressure. If the pressure is outside the above range, it is difficult to obtain spherical fine particles.

【0019】次いで本発明の製造方法では、前記水熱処
理により得られた希土類の水酸化物及び炭酸塩の混合物
を、特定の温度で焼成することにより、分散性に優れる
前記希土類酸化物を得ることができる。前記焼成は、焼
成温度700℃以上、特に好ましくは850〜900℃
で行う。この際、昇温速度が速過ぎると昇温中に希土類
粒子が割れることがあるので、好ましくは300℃/時
間以下、特に好ましくは100〜150℃/時間、更に
焼成時間は30分〜4時間、特に好ましくは3〜4時間
とするのが望ましい。前記焼成条件を変えることにより
得られる希土類酸化物の平均粒径及び粒度分布を制御す
ることができる。
Next, in the production method of the present invention, the mixture of the rare earth hydroxide and the carbonate obtained by the hydrothermal treatment is fired at a specific temperature to thereby obtain excellent dispersibility.
It is possible to obtain the rare earth oxide. The sintering is performed at a sintering temperature of 700 ° C or more, particularly preferably 850 to 900 ° C.
Do with. At this time, if the heating rate is too fast, the rare earth particles may crack during the heating, so that the temperature is preferably 300 ° C / hour or less, particularly preferably 100 to 150 ° C / hour, and the firing time is 30 minutes to 4 hours. It is particularly desirable to set it for 3 to 4 hours. The average particle size and the particle size distribution of the rare earth oxide obtained by changing the firing conditions can be controlled.

【0020】[0020]

【発明の効果】本発明の製造方法により得られる希土類
酸化物微粉体は分散性に優れており、螢光特性、焼結性
等が向上するので、蛍光体材料、セラミックス材料等と
して有用である。
The rare earth oxide fine powder obtained by the production method of the present invention is excellent in dispersibility, and has improved fluorescent properties and sinterability, so that it is useful as a phosphor material, a ceramic material and the like. .

【0021】更に本発明の製造方法により、均一な粒径
を有し、分散性に優れる球形の希土類酸化物粉体の集合
を得ることができる。
Further, according to the production method of the present invention, a collection of spherical rare earth oxide powders having a uniform particle size and excellent dispersibility.
You can get the body .

【0022】[0022]

【実施例】以下、実施例に基づき本発明を更に詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0023】[0023]

【実施例1】硝酸イットリウム(三徳金属工業(株)
製、純度99.99%以上)169gを用いて、濃度1
mol/lの硝酸イットリウム水溶液を調製した。また粒状
尿素(日産化学(株)製、純度99%以上)80gを純
水に溶解して、濃度2.38mol/lの尿素水溶液を調製
した。次いで、前記調製した硝酸イットリウム水溶液4
43mlと尿素水溶液557mlとを混合して1000mlの
混合液を得た。該混合液に工業用ゼラチン(平均分子量
65000)5gを添加し、オートクレーブ中にて温度
135℃、圧力2kg/cm2下にて、1時間水熱処理し
て、イットリウムの水酸化物及び炭酸塩の混合物を得
た。
Example 1 Yttrium nitrate (Santoku Metal Industry Co., Ltd.)
(Purity: 99.99% or more) using 169 g and a concentration of 1
A mol / l yttrium nitrate aqueous solution was prepared. Further, 80 g of granular urea (manufactured by Nissan Chemical Co., Ltd., purity: 99% or more) was dissolved in pure water to prepare an aqueous urea solution having a concentration of 2.38 mol / l. Next, the prepared yttrium nitrate aqueous solution 4
43 ml and 557 ml of an aqueous urea solution were mixed to obtain a 1000 ml mixed solution. 5 g of industrial gelatin (average molecular weight: 65,000) was added to the mixture, and the mixture was subjected to hydrothermal treatment in an autoclave at a temperature of 135 ° C. under a pressure of 2 kg / cm 2 for 1 hour to form a hydroxide and a carbonate of yttrium. A mixture was obtained.

【0024】次いで、得られた前記イットリウムの水酸
化物及び炭酸塩の混合物を、磁性ルツボに入れ、昇温速
度100℃/時間で850℃まで昇温し、4時間保持す
ることにより焼成したところ、酸化イットリウム微粉体
50gを得た。得られた酸化イットリウム微粉体を走査
型電子顕微鏡により観察した結果、SEM写真において
100μm2中の凝集微粒子は5.1%であり、分散性
に優れていることが確認された。また該微粉体を構成す
る微粒子の粒度分布をレーザー回折法により測定したと
ころ、平均粒径は0.6μmであることがわかった。
Next, the mixture of the obtained yttrium hydroxide and carbonate was placed in a magnetic crucible, heated to 850 ° C. at a rate of 100 ° C./hour, and calcined by holding for 4 hours. Thus, 50 g of yttrium oxide fine powder was obtained. As a result of observing the obtained fine yttrium oxide powder with a scanning electron microscope, it was confirmed that the aggregated fine particles in 100 μm 2 were 5.1% in a SEM photograph, indicating that the particles were excellent in dispersibility. When the particle size distribution of the fine particles constituting the fine powder was measured by a laser diffraction method, it was found that the average particle size was 0.6 μm.

【0025】[0025]

【実施例2】ゼラチンをポリアクリル酸(平均分子量1
000、日本純薬(株)製)に代えた以外は実施例1と
同様に行い、平均粒径0.6μmの酸化イットリウム微
粒子からなる微粉体を得た。またSEM写真において1
00μm2中の酸化イットリウム微粒子凝集は9.2%
であり、分散性に優れていることが確認された。
Example 2 Gelatin was converted to polyacrylic acid (average molecular weight 1
000, manufactured by Nippon Junyaku Co., Ltd.) to obtain a fine powder of yttrium oxide fine particles having an average particle diameter of 0.6 μm. In the SEM photograph, 1
Aggregation of yttrium oxide fine particles in 00 μm 2 is 9.2%
It was confirmed that the composition had excellent dispersibility.

【0026】[0026]

【実施例3】ゼラチンをポリエチレンオキシド(平均分
子量600)に代えた以外は実施例1と同様に行い、平
均粒径1.0μmの分散性に優れる酸化イットリウム微
粒子からなる微粉体を得た。またSEM写真において1
00μm2中の酸化イットリウム微粒子凝集は9.5%
であり、分散性に優れていることが確認された。
Example 3 The procedure of Example 1 was repeated except that the gelatin was changed to polyethylene oxide (average molecular weight: 600) to obtain a fine powder composed of fine particles of yttrium oxide having an average particle diameter of 1.0 μm and excellent in dispersibility. In the SEM photograph, 1
Aggregation of yttrium oxide fine particles in 00 μm 2 is 9.5%
It was confirmed that the composition had excellent dispersibility.

【0027】[0027]

【実施例4】硝酸イットリウム水溶液を硝酸ランタン
(三徳金属工業(株)製、純度99.99%)水溶液に
代えた以外は実施例1と同様に行い、平均粒径0.6μ
mの分散性に優れる酸化ランタン微粒子からなる微粉体
を得た。またSEM写真において100μm2中の酸化
ランタン微粒子凝集は5.6%であり、分散性に優れて
いることが確認された。
Example 4 The procedure of Example 1 was repeated, except that the aqueous solution of yttrium nitrate was replaced with an aqueous solution of lanthanum nitrate (purity: 99.99%, manufactured by Santoku Metal Industry Co., Ltd.).
A fine powder composed of lanthanum oxide fine particles having excellent dispersibility of m was obtained. Further, in the SEM photograph, the lanthanum oxide fine particle aggregation in 100 μm 2 was 5.6%, and it was confirmed that the lanthanum oxide was excellent in dispersibility.

【0028】[0028]

【実施例5】硝酸イットリウム水溶液を硝酸セリウム
(三徳金属工業(株)製、純度99.9%)水溶液に代
えた以外は実施例1と同様に行い、平均0.6μmの分
散性に優れる酸化セリウム微粒子からなる微粉体を得
た。またSEM写真において100μm2中の酸化セリ
ウム微粒子凝集は5.3%であり、分散性に優れている
ことが確認された。
Example 5 The same procedure as in Example 1 was carried out except that the aqueous solution of yttrium nitrate was replaced with an aqueous solution of cerium nitrate (purity: 99.9%, manufactured by Santoku Metal Industry Co., Ltd.). A fine powder composed of cerium fine particles was obtained. In addition, in the SEM photograph, the cerium oxide fine particle aggregation in 100 μm 2 was 5.3%, and it was confirmed that the particles had excellent dispersibility.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−271118(JP,A) 特開 昭59−207839(JP,A) 特開 昭63−310706(JP,A) 特開 昭60−239323(JP,A) 特開 昭62−132708(JP,A) 特開 昭62−70204(JP,A) 特開 昭61−122121(JP,A) 欧州特許出願公開462388(EP,A 1) (58)調査した分野(Int.Cl.7,DB名) C01F 17/00 C09K 11/77 CPB ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-271118 (JP, A) JP-A-59-207839 (JP, A) JP-A-63-310706 (JP, A) JP-A-60-1985 239323 (JP, A) JP-A-62-132708 (JP, A) JP-A-62-70204 (JP, A) JP-A-61-122121 (JP, A) European Patent Application 462388 (EP, A1) (58) Field surveyed (Int. Cl. 7 , DB name) C01F 17/00 C09K 11/77 CPB

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類イオンを含む水溶液と尿素を含む
水溶液とを混合し、更に該希土類イオンに対して平均分
子量500以上の分散剤1〜50重量%を添加し、得ら
れた混合液を温度50〜200℃、圧力1〜10kg/cm
2の条件下にて水熱処理し、次いで得られた希土類の水
酸化物及び炭酸塩の混合物を、700℃以上で焼成する
ことを特徴とする分散性に優れた球形微粒子を有する希
土類酸化物微粉体の製造方法。
An aqueous solution containing a rare earth ion and an aqueous solution containing urea are mixed, and 1 to 50% by weight of a dispersant having an average molecular weight of 500 or more is added to the rare earth ion. 50-200 ° C, pressure 1-10kg / cm
Hydrothermal treatment under the conditions of 2 , and then sintering the resulting mixture of the rare earth hydroxide and carbonate at 700 ° C. or higher. How to make the body.
JP05142192A 1992-03-10 1992-03-10 Production method of rare earth oxide Expired - Lifetime JP3280688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05142192A JP3280688B2 (en) 1992-03-10 1992-03-10 Production method of rare earth oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05142192A JP3280688B2 (en) 1992-03-10 1992-03-10 Production method of rare earth oxide

Publications (2)

Publication Number Publication Date
JPH05254830A JPH05254830A (en) 1993-10-05
JP3280688B2 true JP3280688B2 (en) 2002-05-13

Family

ID=12886463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05142192A Expired - Lifetime JP3280688B2 (en) 1992-03-10 1992-03-10 Production method of rare earth oxide

Country Status (1)

Country Link
JP (1) JP3280688B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811691B2 (en) * 1993-03-22 1996-02-07 工業技術院長 Method for producing coprecipitated spherical fine particles containing yttrium / europium, coprecipitated sintered spherical fine particles and phosphor
JP3363818B2 (en) * 1998-03-31 2003-01-08 セイコーインスツルメンツ株式会社 Reversible discolorable composition and timepiece exterior part using the same
AU6021299A (en) * 1998-08-27 2000-03-21 Superior Micropowders Llc Phosphor powders, methods for making phosphor powders and devices incorporating same
JP2003041247A (en) * 2001-07-31 2003-02-13 Matsushita Electric Ind Co Ltd Plasma display apparatus
JP4344502B2 (en) 2002-02-26 2009-10-14 独立行政法人産業技術総合研究所 Method for producing metal compound particles
US7326366B2 (en) * 2003-10-22 2008-02-05 Fujifilm Corporation Method of producing inorganic semiconductor-or phosphor-primary particle and inorganic semiconductor-or phosphor-primary particle
JP5296993B2 (en) * 2007-02-02 2013-09-25 三井金属鉱業株式会社 Yttrium oxide powder
JP2008101225A (en) * 2007-11-14 2008-05-01 Konica Minolta Holdings Inc Method for producing phosphor
JP2008101224A (en) * 2007-11-14 2008-05-01 Konica Minolta Holdings Inc Method for producing phosphor
CN102391865A (en) * 2011-09-21 2012-03-28 中国科学院福建物质结构研究所 Preparation method for doping gadolinium oxide nano-powders
JP7074644B2 (en) * 2018-10-31 2022-05-24 信越化学工業株式会社 A method for manufacturing abrasive particles for polishing a synthetic quartz glass substrate, and a method for polishing a synthetic quartz glass substrate.
JP7084353B2 (en) 2019-06-05 2022-06-14 信越化学工業株式会社 Method for producing rare earth carbonate fine particles and rare earth carbonate fine particles

Also Published As

Publication number Publication date
JPH05254830A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
JP3738454B2 (en) Composite metal oxide powder and method for producing the same
JP3280688B2 (en) Production method of rare earth oxide
DE3875277T2 (en) CERAMIC ABRASIVE PARTICLES, CONTAINING OXIDE OF ALUMINUM AND RARE EARTH METALS, METHOD FOR THE PRODUCTION AND PRODUCTS THEREOF.
US5545386A (en) Method for the preparation of globular particles of a rare earth oxide
EP1484282B1 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
JP4955142B2 (en) Rare earth / aluminum / garnet fine powder and sintered body using the powder
JPH06305726A (en) Production of powdery oxide of rare earth element
JP3877922B2 (en) Method for producing rare earth compound
EP3816135A1 (en) Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these
EP3816134A1 (en) Zinc oxide powder for producing zinc oxide sintered body, zinc oxide sintered body, and method of producing these
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
JP3891252B2 (en) Process for producing rare earth oxides and basic carbonates
JP2883522B2 (en) Method for producing rare earth oxide fine powder
JPH0529606B2 (en)
JP3280689B2 (en) Method for producing round rare earth oxide
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JP4196179B2 (en) Method for producing silicon nitride material
JPH1179742A (en) Production of yttria/gadolinia/europia coprecipitated single-dispersed spherical particles and yttria/gadolinia/ europia coprecipitated single-dispersed spherical particles obtained by same
JP3007472B2 (en) Method for producing rare earth element oxide particles
JP2878898B2 (en) Rare earth element oxide particles
JP2786052B2 (en) Method for producing rare earth element oxide particles
JPS62158167A (en) Manufacture of silicon nitride mixed powder
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2685687B2 (en) Method for producing rare earth element oxide particles
JP2966724B2 (en) Method for producing rare earth hydroxide and spherical particles of rare earth oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11