JP3877922B2 - Method for producing rare earth compound - Google Patents
Method for producing rare earth compound Download PDFInfo
- Publication number
- JP3877922B2 JP3877922B2 JP34577099A JP34577099A JP3877922B2 JP 3877922 B2 JP3877922 B2 JP 3877922B2 JP 34577099 A JP34577099 A JP 34577099A JP 34577099 A JP34577099 A JP 34577099A JP 3877922 B2 JP3877922 B2 JP 3877922B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- earth element
- aqueous solution
- basic carbonate
- spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【0001】
【発明の属する技術分野】
希土類元素の焼結体の原料やセラミックの焼結助剤、蛍光体原料として有用な希土類化合物微粒子の製造方法に関する。
【0002】
【従来の技術】
希土類化合物微粒子の製造方法として、従来、希土類元素イオンと尿素を含む水溶液を加熱することで、球状の塩基性炭酸塩が得られ、これを焼成して、平均粒径が0.2〜1μmの球状の希土類元素酸化物が得られることが知られている(特開平10−139426号公報参照)。
また、平均粒径が0.1〜0.3μmのさらに小さな粒子の製造方法については、特開平10−139427号公報に記載が認められる。
【0003】
【発明が解決しようとする課題】
しかし、上記公報に記載された方法で、平均粒径の小さな粒子を製造するには、析出反応容器の他に、反応水溶液を希釈する容器が必要であり、工程も煩雑となっていた。
本発明は、希土類元素の焼結体として、あるいはセラミックの焼結助剤、蛍光体原料として有用な、希土類元素の塩基性炭酸塩及び酸化物の球状微粒子の簡便な製造方法を提供するものである。
【0004】
【課題を解決するための手段】
本発明は、希土類元素の鉱酸塩と過酸化水素と尿素の混合溶液を加熱することにより、電子顕微鏡による観察で、0.3μm未満の粒径を有する希土類元素の塩基性炭酸塩からなる球状微粒子が得られ、これを焼成して、希土類元素の酸化物からなる球状微粒子が得られることを見い出し、本発明を完成した。
本発明の希土類化合物の製造方法は、Y、Nd、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Scからなる群のうちの1種類以上の希土類元素イオン、過酸化水素及び尿素を含む水溶液を80℃〜該水溶液の沸点に加熱して、希土類元素の塩基性炭酸塩を得ることを特徴としている。
【0005】
また、前記希土類元素イオンに加えて、Ce、Pr、Sm、Euからなる群のうちの1種類以上の希土類元素イオンを添加して、希土類元素の塩基性炭酸塩を得ることもできる。この場合、添加する希土類元素イオンの量は、全希土類に対し、20モル%以下とするのが好ましい。
希土類元素酸化物は、この塩基性炭酸塩を焼成して得られる。
【0006】
なお、過酸化水素の水溶液中への添加時期は、尿素の加水分解により生成するアンモニアと炭酸によって反応が起こる前であればいつでもよいが、特には、加熱中に過酸化水素の一部が分解することなどを考えると、水溶液をある程度加熱した後に添加するのが好ましい。
尿素の添加時期は、希土類元素イオンを含む水溶液を調製するとき、または過酸化水素添加時に加えてもよい。あるいは、希土類元素イオンを含む水溶液の調製時と過酸化水素添加時の2度に分けて添加してもよい。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
希土類元素の鉱酸塩を含む水溶液を80℃〜該水溶液の沸点に0.5〜5時間加熱し、過酸化水素と尿素を添加してさらに加熱することにより、希土類元素の塩基性炭酸塩の球状粒子が析出する。次いで、析出した希土類元素の塩基性炭酸塩を固液分離することで希土類元素の塩基性炭酸塩の球状粒子が得られる。この塩基性炭酸塩の球状粒子をさらに空気中もしくは酸化性雰囲気中で焼成することで、希土類元素酸化物の球状微粒子を得ることができる。
【0008】
このようにして得られた希土類元素の酸化物微粒子を電子顕微鏡で観察すると、約0.3μm未満の球状の微粒子が認められ、過酸化水素の添加により微粒子が析出されていることがわかる。
また、Ce、Pr、Sm、Euの希土類元素を主成分とする場合は、球状の塩基性炭酸塩を得ることができないが、Y、Nd、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Scの希土類元素を主成分とし、Ce、Pr、Sm、Euを添加元素として添加する場合は、球状の塩基性炭酸塩を得ることができる。
【0009】
希土類元素の塩基性炭酸塩の析出反応条件についてさらに詳しく説明する。
水溶性の希土類元素の鉱酸塩としては、塩化物塩、硝酸塩、硫酸塩等が用いられるが、最終製品に不純物根を残さないためには硝酸塩もしくは塩化物塩が好ましい。
鉱酸塩の濃度は0.01〜0.08モル/リットル(mol/L)がよく、0.01モル/リットル未満では生産性が著しく劣り、0.08モル/リットルを超えると塩基性炭酸塩同士の凝集が起こり、単分散した球状粒子を得ることが困難になる。
【0010】
過酸化水素の添加量は、希土類元素イオンの濃度に対してモル比で1/100〜30/100の割合で添加するのが好ましい。過酸化水素(H2O2)の添加量が全希土類元素(RE)のモル数に対して、モル濃度で[H2O2]/[RE]≧1/100ならば粒子サイズを小さくする効果があり、特に[H2O2]/[RE]≧5/100で電子顕微鏡観察での直径が0.3μm未満の希土類元素の塩基性炭酸塩が得られるようになる。過酸化水素の添加量が多いほど、得られる希土類元素の塩基性炭酸塩の粒子は小さくなる傾向にあるが、添加量が多すぎると粒子が小さくなりすぎて凝集が起り、単分散性が得られなくなるため、希土類元素イオンのモル濃度に対してモル比で30/100以下とするのが好ましい。
【0011】
尿素の添加量は、希土類元素のモル濃度の3〜50倍程度の濃度にするのが好ましい。
加熱によって得られた沈殿物は、希土類元素の塩基性炭酸塩であり、これを電子顕微鏡で観察すると、球状の微細な粒子が認められる。
得られた希土類元素の塩基性炭酸塩を空気中もしくは酸化性雰囲気で600℃以上炭酸塩の融点以下の温度で好ましくは1〜10時間焼成すると、希土類元素の酸化物が得られ、電子顕微鏡などで観察すると、塩基性炭酸塩の形状を保った球状の希土類元素の酸化物微粒子が認められる。
【0012】
【実施例】
以下、本発明の実施の形態を実施例と比較例を挙げて具体的に説明する。
(実施例1)
イットリウムイオン濃度が0.05モル/リットルの硝酸イットリウム水溶液10リットルを95℃に加熱した。この水溶液に過酸化水素濃度が0.01モル/リットルとなるように過酸化水素を添加し、さらに、尿素をこの濃度が0.6モル/リットルになるように添加し、95℃で60分間加熱して、塩基性炭酸イットリウムが得られた。析出した固体をブフナー漏斗で固液分離し、700℃で2時間焼成したところ、図1に示すように、平均粒径が約0.1μmで非常に小さく、かつ粒径の揃ったイットリウム酸化物の球状粒子が得られた。
【0013】
(実施例2)
イットリウムイオン濃度が0.05モル/リットルで、添加元素としてのセリウムイオン濃度が0.005モル/リットルの水溶液10リットルを95℃に加熱した。この水溶液に過酸化水素濃度が0.005モル/リットルとなるように過酸化水素を添加し、さらに尿素濃度が0.6モル/リットルとなるように尿素を添加して、95℃で60分間加熱した。
析出した固体をブフナー漏斗で固液分離し、130℃で1時間乾燥したところ、図2に示すように、粒径が約0.1μmの非常に小さなイットリウム/セリウム共沈の希土類元素の塩基性炭酸塩の球状粒子が得られた。
【0014】
(実施例3)
実施例1において、硝酸イットリウム水溶液に代えて硝酸イッテルビウム水溶液を使用した以外は、同様にして処理したところ、実施例1と同様に平均粒径が約0.1μmで粒径の揃った球状のイッテルビウム酸化物が得られた。
【0015】
(比較例1)
イットリウムイオン濃度が0.05モル/リットルの硝酸イットリウム水溶液10リットルを95℃に加熱した。この水溶液に尿素濃度が0.6モル/リットルとなるように尿素を添加して、95℃で60分加熱した。析出した固体をブフナー漏斗で固液分離し、700℃で2時間焼成したところ、図3に示すような粒径が0.3μm以上のイットリウム酸化物の球状粒子が得られた。
【0016】
【発明の効果】
希土類元素酸化物の焼結体を製造する際の原料として、あるいはセラミックの焼結助剤、蛍光体原料として有用な希土類元素の塩基性炭酸塩粒子及び酸化物の球状微粒子を、簡便な工程で、しかも経済的に製造することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1により得られた希土類元素酸化物の球状微粒子を電子顕微鏡で観察した図である。
【図2】 本発明の実施例2により得られた希土類元素の塩基性炭酸塩の球状微粒子を電子顕微鏡で観察した図である。
【図3】 比較例1により得られた希土類元素酸化物の球状粒子を電子顕微鏡で観察した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing rare earth compound fine particles useful as a raw material for sintered rare earth elements, a sintering aid for ceramics, and a phosphor raw material.
[0002]
[Prior art]
As a method for producing rare earth compound fine particles, conventionally, an aqueous solution containing rare earth element ions and urea is heated to obtain a spherical basic carbonate, which is fired to have an average particle size of 0.2 to 1 μm. It is known that spherical rare earth element oxides can be obtained (see JP-A-10-139426).
Japanese Patent Application Laid-Open No. 10-139427 discloses a method for producing smaller particles having an average particle size of 0.1 to 0.3 μm.
[0003]
[Problems to be solved by the invention]
However, in order to produce particles having a small average particle diameter by the method described in the above publication, a container for diluting the reaction aqueous solution is required in addition to the precipitation reaction container, and the process is complicated.
The present invention provides a simple method for producing spherical fine particles of rare earth element basic carbonates and oxides useful as rare earth element sintered bodies, ceramic sintering aids, and phosphor materials. is there.
[0004]
[Means for Solving the Problems]
According to the present invention, a spherical solution composed of a rare earth element basic carbonate having a particle size of less than 0.3 μm is observed by an electron microscope by heating a mixed solution of a rare earth element mineral salt, hydrogen peroxide and urea. It was found that fine particles were obtained and fired to obtain spherical fine particles composed of oxides of rare earth elements, and the present invention was completed.
The method for producing a rare earth compound of the present invention includes one or more rare earth element ions, hydrogen peroxide and urea in the group consisting of Y, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc. It is characterized in that an aqueous solution containing a rare earth element is obtained by heating an aqueous solution containing 80 to the boiling point of the aqueous solution.
[0005]
Further, in addition to the rare earth element ions, one or more rare earth element ions of the group consisting of Ce, Pr, Sm, and Eu can be added to obtain a rare earth element basic carbonate. In this case, the amount of rare earth element ions added is preferably 20 mol% or less with respect to the total rare earth.
The rare earth element oxide is obtained by firing this basic carbonate.
[0006]
The hydrogen peroxide may be added to the aqueous solution at any time before the reaction between ammonia and carbonic acid produced by hydrolysis of urea occurs, but in particular, part of the hydrogen peroxide is decomposed during heating. For example, it is preferable to add the aqueous solution after heating it to some extent.
The timing of adding urea may be added when preparing an aqueous solution containing rare earth element ions or adding hydrogen peroxide. Alternatively, it may be added in two portions at the time of preparing an aqueous solution containing rare earth element ions and at the time of adding hydrogen peroxide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
An aqueous solution containing a rare earth element mineral acid salt is heated to 80 ° C. to the boiling point of the aqueous solution for 0.5 to 5 hours, added with hydrogen peroxide and urea, and further heated to form a rare earth element basic carbonate. Spherical particles are deposited. Subsequently, the precipitated rare earth element basic carbonate is subjected to solid-liquid separation to obtain spherical particles of the rare earth element basic carbonate. Spherical fine particles of rare earth element oxide can be obtained by further firing the spherical particles of the basic carbonate in air or in an oxidizing atmosphere.
[0008]
Observation of the rare earth element oxide fine particles thus obtained with an electron microscope reveals that spherical fine particles of less than about 0.3 μm are observed, and that fine particles are precipitated by the addition of hydrogen peroxide.
Further, when a rare earth element such as Ce, Pr, Sm and Eu is used as a main component, a spherical basic carbonate cannot be obtained, but Y, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb When a rare earth element such as, Lu, or Sc is used as a main component and Ce, Pr, Sm, or Eu is added as an additive element, a spherical basic carbonate can be obtained.
[0009]
The precipitation reaction conditions for the rare earth element basic carbonate will be described in more detail.
As the water-soluble rare earth element mineral salt, chloride salt, nitrate salt, sulfate salt and the like are used, but nitrate salt or chloride salt is preferable in order not to leave an impurity root in the final product.
The concentration of the mineral acid salt is preferably 0.01 to 0.08 mol / liter (mol / L). If it is less than 0.01 mol / liter, the productivity is remarkably inferior. Aggregation of salts occurs, making it difficult to obtain monodispersed spherical particles.
[0010]
It is preferable to add hydrogen peroxide at a molar ratio of 1/100 to 30/100 with respect to the rare earth element ion concentration. If the amount of hydrogen peroxide (H 2 O 2 ) added is [H 2 O 2 ] / [RE] ≧ 1/100 in terms of molar concentration relative to the number of moles of all rare earth elements (RE), the particle size is reduced. There is an effect, and in particular [H 2 O 2 ] / [RE] ≧ 5/100, a rare earth element basic carbonate having a diameter of less than 0.3 μm as observed with an electron microscope can be obtained. The larger the amount of hydrogen peroxide added, the smaller the rare earth element basic carbonate particles obtained. However, when the amount added is too large, the particles become too small and agglomeration occurs, resulting in monodispersity. Therefore, the molar ratio of the rare earth element ions is preferably 30/100 or less.
[0011]
The amount of urea added is preferably about 3 to 50 times the molar concentration of the rare earth element.
The precipitate obtained by heating is a basic carbonate of a rare earth element, and when observed with an electron microscope, fine spherical particles are observed.
When the obtained rare earth element basic carbonate is fired in air or in an oxidizing atmosphere at a temperature not lower than 600 ° C. and not higher than the melting point of the carbonate, preferably for 1 to 10 hours, an oxide of the rare earth element is obtained, such as an electron microscope When observed, the spherical fine particles of rare earth elements maintaining the basic carbonate shape are observed.
[0012]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to examples and comparative examples.
Example 1
Ten liters of an yttrium nitrate aqueous solution having an yttrium ion concentration of 0.05 mol / liter was heated to 95 ° C. Hydrogen peroxide is added to this aqueous solution so that the hydrogen peroxide concentration becomes 0.01 mol / liter, and urea is further added so that this concentration becomes 0.6 mol / liter, and the mixture is heated at 95 ° C. for 60 minutes. Upon heating, basic yttrium carbonate was obtained. The precipitated solid was solid-liquid separated with a Buchner funnel and calcined at 700 ° C. for 2 hours. As shown in FIG. 1, the average particle size was about 0.1 μm, and the yttrium oxide had a very small particle size. Of spherical particles were obtained.
[0013]
(Example 2)
Ten liters of an aqueous solution having an yttrium ion concentration of 0.05 mol / liter and a cerium ion concentration of 0.005 mol / liter as an additive element was heated to 95 ° C. Hydrogen peroxide was added to this aqueous solution so that the hydrogen peroxide concentration was 0.005 mol / liter, and urea was further added so that the urea concentration was 0.6 mol / liter. Heated.
The precipitated solid was solid-liquid separated with a Buchner funnel and dried at 130 ° C. for 1 hour. As shown in FIG. 2, the basicity of the rare earth element with a very small yttrium / cerium coprecipitation with a particle size of about 0.1 μm was obtained. Carbonate spherical particles were obtained.
[0014]
(Example 3)
In Example 1, except that an ytterbium nitrate aqueous solution was used in place of the yttrium nitrate aqueous solution, the same treatment was performed. As in Example 1, a spherical ytterbium having an average particle size of about 0.1 μm and a uniform particle size was obtained. An oxide was obtained.
[0015]
(Comparative Example 1)
Ten liters of an yttrium nitrate aqueous solution having an yttrium ion concentration of 0.05 mol / liter was heated to 95 ° C. Urea was added to this aqueous solution so that the urea concentration was 0.6 mol / liter, and the solution was heated at 95 ° C. for 60 minutes. The precipitated solid was subjected to solid-liquid separation with a Buchner funnel and calcined at 700 ° C. for 2 hours. As a result, spherical particles of yttrium oxide having a particle size of 0.3 μm or more as shown in FIG. 3 were obtained.
[0016]
【The invention's effect】
Rare earth element basic carbonate particles and oxide spherical fine particles useful as raw materials for the production of sintered rare earth element oxides, ceramic sintering aids, and phosphor raw materials can be produced in a simple process. Moreover, it can be manufactured economically.
[Brief description of the drawings]
FIG. 1 is a view of rare earth element oxide spherical fine particles obtained by Example 1 of the present invention, observed with an electron microscope.
FIG. 2 is a view of spherical particles of a rare earth element basic carbonate obtained by Example 2 of the present invention, observed with an electron microscope.
3 is a view obtained by observing spherical particles of a rare earth element oxide obtained in Comparative Example 1 with an electron microscope. FIG.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34577099A JP3877922B2 (en) | 1998-12-24 | 1999-12-06 | Method for producing rare earth compound |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-366484 | 1998-12-24 | ||
JP36648498 | 1998-12-24 | ||
JP34577099A JP3877922B2 (en) | 1998-12-24 | 1999-12-06 | Method for producing rare earth compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000239019A JP2000239019A (en) | 2000-09-05 |
JP3877922B2 true JP3877922B2 (en) | 2007-02-07 |
Family
ID=26578100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34577099A Expired - Lifetime JP3877922B2 (en) | 1998-12-24 | 1999-12-06 | Method for producing rare earth compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3877922B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058724A (en) * | 2012-09-22 | 2013-04-24 | 包头市京瑞新材料有限公司 | Preparation method of large-particle gadolinium oxide |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4783654B2 (en) * | 2006-03-20 | 2011-09-28 | コバレントマテリアル株式会社 | Translucent ceramic sintered body and manufacturing method thereof |
JP5396473B2 (en) * | 2008-07-29 | 2014-01-22 | エルジー・ケム・リミテッド | Method for producing cerium carbonate and method for producing cerium oxide powder |
JP2011042512A (en) * | 2009-08-19 | 2011-03-03 | Fuji Kagaku Kk | Method for producing rare earth carbonate particle |
JP6939741B2 (en) | 2018-08-31 | 2021-09-22 | 信越化学工業株式会社 | Method for producing rare earth compound particles |
JP7084353B2 (en) * | 2019-06-05 | 2022-06-14 | 信越化学工業株式会社 | Method for producing rare earth carbonate fine particles and rare earth carbonate fine particles |
JP2022067632A (en) | 2020-10-20 | 2022-05-06 | 信越化学工業株式会社 | Method for producing rare earth compound particle and rare earth oxide particle |
CN115572162B (en) * | 2022-04-29 | 2024-08-09 | 厦门稀土材料研究所 | Rare earth medium-high entropy hafnate ceramic material for reactor neutron control |
-
1999
- 1999-12-06 JP JP34577099A patent/JP3877922B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058724A (en) * | 2012-09-22 | 2013-04-24 | 包头市京瑞新材料有限公司 | Preparation method of large-particle gadolinium oxide |
CN103058724B (en) * | 2012-09-22 | 2014-12-03 | 包头市京瑞新材料有限公司 | Preparation method of large-particle gadolinium oxide |
Also Published As
Publication number | Publication date |
---|---|
JP2000239019A (en) | 2000-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4992003B2 (en) | Method for producing metal oxide fine particles | |
US5545386A (en) | Method for the preparation of globular particles of a rare earth oxide | |
JP3877922B2 (en) | Method for producing rare earth compound | |
JP2004107186A (en) | Method for manufacturing nanosphere particle ceria compound powder having easy sintering property | |
JP3280688B2 (en) | Production method of rare earth oxide | |
JPH0832554B2 (en) | Method for producing rare earth oxide powder | |
JP2002029742A (en) | Rare earth oxide powder and method for manufacturing the same | |
JPWO2003076336A1 (en) | Cerium-based composite oxide, its sintered body and production method | |
JP4955142B2 (en) | Rare earth / aluminum / garnet fine powder and sintered body using the powder | |
JPH06305726A (en) | Production of powdery oxide of rare earth element | |
JP4729700B2 (en) | Dy-doped nano ceria-based sintered body | |
JP4195931B2 (en) | Scandium compound ultrafine particles and method for producing the same | |
US7135161B2 (en) | Method of producing nanosized oxide powders | |
JP4614197B2 (en) | Method for producing metal oxide short fiber | |
JP3906353B2 (en) | YAG fine powder manufacturing method | |
JP2843908B2 (en) | Method for producing yttrium oxide fine powder | |
JP3891252B2 (en) | Process for producing rare earth oxides and basic carbonates | |
JP2004083350A (en) | Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder | |
US20220119271A1 (en) | Rare earth compound particles and method for producing rare earth oxide particles | |
JP2883522B2 (en) | Method for producing rare earth oxide fine powder | |
JPH07109118A (en) | Production of rare earth element oxide | |
JPH07309622A (en) | Production of fine powder of oxide of rare earth element | |
JP2002255656A (en) | Method for producing nano-crystal grain dense sintered body | |
DE3780573T2 (en) | PRODUCTION OF PARTLY STABILIZED TETRAGONAL ZIRCONDIOXIDE. | |
JP2966724B2 (en) | Method for producing rare earth hydroxide and spherical particles of rare earth oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061101 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3877922 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151110 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |