JP2004083350A - Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder - Google Patents

Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder Download PDF

Info

Publication number
JP2004083350A
JP2004083350A JP2002248143A JP2002248143A JP2004083350A JP 2004083350 A JP2004083350 A JP 2004083350A JP 2002248143 A JP2002248143 A JP 2002248143A JP 2002248143 A JP2002248143 A JP 2002248143A JP 2004083350 A JP2004083350 A JP 2004083350A
Authority
JP
Japan
Prior art keywords
rare earth
aqueous solution
carbonate
alkali
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002248143A
Other languages
Japanese (ja)
Other versions
JP2004083350A5 (en
Inventor
Tsuyoshi Fujimoto
藤本 津佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2002248143A priority Critical patent/JP2004083350A/en
Publication of JP2004083350A publication Critical patent/JP2004083350A/en
Publication of JP2004083350A5 publication Critical patent/JP2004083350A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing rare earth oxide fine powder having ≤100 nm primary particle size without using an organic solvent. <P>SOLUTION: The method for manufacturing rare earth oxide fine powder having ≤100 nm primary particle size includes sequential processes of adding an aqueous solution containing rare earth ions to an alkali carbonate or alkali hydrogen carbonate aqueous solution to react to obtain precipitates, drying and pyrolyzing the obtained precipitates. The reaction conditions in the above method are controlled in such a manner that: the amount of carbonate ions in the alkali carbonate or alkali hydrogen carbonate aqueous solution is twice or more by the molar ratio as the amount of rare earth ions in the aqueous solution containing rare earth ions; the concentration of rare earth ions in the total amount of the aqueous solution containing rare earth ions and the alkali carbonate or alkali hydrogen carbonate aqueous solution is ≤1 mol/L; and the alkali carbonate or alkali hydrogen carbonate aqueous solution is heated to ≥40°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、希土類酸化物微粉の製造方法に係り、特に一次粒子径が小さい希土類酸化物微粉の製造方法に関する。
【0002】
【従来の技術】
希土類酸化物は、圧電、誘電体などのセラミックス系電子材料の添加剤、セラミックス用焼結助剤、研磨剤、機能性セラミックス材料、蛍光体材料等として多くの分野で利用されている。このような分野で使用する希土類酸化物粉体は、他のセラミックス粉体と混じて使用するため混合度が高いことが必要である。また、研磨剤として使用されるときには、表面精度を挙げるために粒子径が小さく、均一であることが要求される。このような用途に使用される微粒希土類酸化物微粉の製造方法として、たとえば特公昭63−5332号公報、特開平4−310516号公報に記載の手段が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの手段は、いずれも有機溶剤を使用しているため、安全性に問題があるとともに、沈殿の熟成、ろ過、水洗に長時間を要し、工業的に製造するには容易でなかった。また、上記手段によって製造された製品は解砕度について考慮が払われていなかった。本発明は、有機溶剤を使用せずに一次粒子径の小さい希土類酸化物微粉を製造する方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明では、希土類イオンを含む水溶液を炭酸アルカリ又は炭酸水素アルカリ水溶液中に添加・反応させて沈殿物を得、得られた沈殿物を乾燥・熱分解する工程を順次行う希土類酸化物微粉の製造方法における反応条件を、前記炭酸アルカリ又は炭酸水素アルカリ水溶液の炭酸イオン量が希土類イオンを含む水溶液に含まれる希土類イオンに対しモル比で2倍以上であり、希土類イオンを含む水溶液と前記炭酸アルカリ又は炭酸水素アルカリ水溶液の合計量における希土類イオンの濃度が1mol/l以下であり、かつ、前記炭酸アルカリ又は炭酸水素アルカリ水溶液の温度が40℃以上に加熱されているものとすることによって一次粒子径が100nm以下の希土類酸化物微粉を製造する。上記方法によって製造された製品のうち、一次粒子径が100nm以下、かつ解砕度が70%以上の希土類酸化物微粉は他のセラミックス粉体との混合度が良く、また研磨剤として使用したとき表面精度を上げることができる。
【0005】
【発明の実施の形態】
本発明で製造される希土類酸化物微粉は、走査型電子顕微鏡又は透過型電子顕微鏡で観察したとき識別できる最大一次粒子径が100nm以下のものである。このような微粉は凝集しやすく、通常用いられるレーザー光回折型の粒度測定機では粒子径測定範囲の下限値が一次粒子径に近く正確な測定が行えないこと、得られる粒子径の値が一次粒子径の値か凝集粒子径の値か判別できない。このため、本発明においては一次粒子径(いわゆる結晶子径)を走査型電子顕微鏡又は透過型電子顕微鏡を用いて測定することにする。
【0006】
「解砕度」は凝集体が解砕され易い程度をいう。その測定には、原理的に凝集粒子の粒子径を数nmまで測定可能なレーザードップラー方式の粒度分析計を用い、観察視野内に認められる凝集粒子数のうち平均一次粒子径の10倍以下の凝集粒子径をもつ凝集粒子数の占める割合(%)をもって解砕度とした。
【0007】
本発明においては、上記希土類酸化物微粉を製造するために、希土類イオンを含む水溶液を炭酸アルカリ又は炭酸水素アルカリ水溶液中に添加・反応させて沈殿物を得、得られた沈殿物を乾燥・熱分解する方法を採用し、その際の反応条件を以下に示すようにする。
【0008】
まず、希土類イオンを含む水溶液を炭酸アルカリ又は炭酸水素アルカリ水溶液(以下単にアルカリ水溶液という)中に添加して反応させるのに当たり、アルカリ水溶液の炭酸イオン量(COとして換算)が希土類イオンを含む水溶液に含まれる希土類イオン量に対しモル比で2倍以上、好ましくは3〜6倍となるようにする。
【0009】
炭酸イオンは反応時のCO発泡作用により一次粒子の凝集を抑制する効果があるが、モル比が2より小さいとその効果が十分でなく、そのため得られた沈殿物を乾燥・熱分解後、解砕するとき凝集粒子(二次粒子)が残存する割合が高くなる。一方、モル比が6倍以上としても上記抑制効果の向上がみとめられず、かえってコストアップの原因になる。
【0010】
なお、炭酸アルカリ、又は炭酸水素アルカリの濃度は溶解度以下であれば特に限定しない。また、炭酸アルカリ、又は炭酸水素アルカリとしては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム等が利用し得る。中でもアンモニウム塩は生成した沈殿物を乾燥・熱分解したときの残留不純物が加熱したときに除去しやすいという利点がある。
【0011】
希土類元素としては、イットリウム又は原子番号57〜71のランタノイドを用いることができ、これらを単独あるいは2種類以上混合して用いることができる。これら希土類の水溶液としては、硝酸塩、塩酸塩、硫酸塩等の水溶液を利用することができ、その濃度は溶解度以下であれば特に限定しない。
【0012】
上記アルカリ水溶液に希土類イオンを含む水溶液を徐々に加えて反応させ、希土類化合物コロイド生成させる。その際、希土類イオンの量を上記アルカリ水溶液と希土類イオンを含む水溶液の合計量に対して1mol/l以下、好ましくは0.6mol/l以下の濃度にする。希土類イオン濃度が1mol/l以上になると、100nm以下の一次粒子をもつ希土類酸化物粉体が得られなくなる。また、反応時に生成する希土類化合物コロイドの凝集が激しくなり解砕度の低下が起こる。
【0013】
また、上記反応温度は、40℃以上、好ましくは50〜90℃とする。具体的には、上記温度に加熱されたアルカリ水溶液中に希土類イオンを含む水溶液を添加する。反応温度が40℃より低いと、炭酸アルカリ、炭酸水素アルカリの分解によるCO発泡作用が十分でなく、一次粒子の凝集を抑制する効果が減少し、解砕度が低下する。
【0014】
希土類イオンを含む水溶液の添加速度は特に限定しない。その速度が遅いほど得られるコロイドの粒子径が小さくなる。しかし、この速度があまりに遅いと生産性を害する。したがって、目標とする粒子径に合わせ、定量ポンプ等を用いて添加速度を制御しながら添加するのがよい。たとえば、希土類イオンを含む水溶液をその全量の7〜0.5%/minの割合で添加するのがよい。
【0015】
上記の反応の結果、反応生成物として一次粒子径が最大で100nm以下の沈殿物が得られる。これを乾燥・熱分解して希土類酸化物微粉とする。
【0016】
【実施例】
[実施例1]
濃度1.0mol/lの塩化ネオジウム溶液200ml(A液)及びモル比で炭酸イオン濃度がネオジウムイオン濃度の4倍含むように調整した炭酸水素アンモニウム溶液800ml(B液)を準備した。両者の合計量における希土類イオン(Nd2+)の濃度は0.20mol/lである。
【0017】
70℃に液温を保ったB液中に、定量ポンプを用いてA液をその全量の5%/minの速度で添加し沈殿物を得た。得られた沈殿をろ過、洗浄、乾燥した後800℃で1時間加熱し、酸化ネオジウム粉とした。この粉末をハンマーミルで粉砕した後、走査型電子顕微鏡で粒子径を観察したところ、最大一次粒子径が80nm程度で解砕度が90%以上のの酸化ネオジウム粉であることが確認された。
【0018】
[実施例2]
濃度2.Omol/lの硝酸ホルミウム溶液200ml(A液)モル比で炭酸イオン濃度がホルミウムイオン濃度の6倍になるように調整した炭酸アンモニウム溶液800ml(B液)準備した。両者の合計量における希土類イオン(Ho2+)の濃度は0.40mol/lである。
【0019】
85℃に温度調整されたB液中に、定量ポンプを用いてA液をその全量の0.7%/minの速度で添加し沈殿物を得た。得られた沈殿をろ過、洗浄、乾燥した後600℃で1時間加熱し、酸化ホルミウム粉を製造した。この粉末を、ハンマーミルで粉砕した後、走査型電子顕微鏡で粒子径を観察したところ、最大一次粒子径が70nm程度で解砕度が80%の酸化ホルミウム粉であることが確認された。
【0020】
[実施例3]
濃度1.0mol/lの塩化セリウム溶液200ml(A液)及びモル比で炭酸イオン濃度がセリウムイオン濃度の4倍になるよう含有する炭酸水素アンモニウム溶液800ml(B液)を準備した。両者の合計量における希土類イオン(Ce2+)の濃度は0.20mol/lである。
【0021】
60℃に加熱・保持したB液中に、定量ポンプを用いてA液をその全量の1%/minの速度で添加し沈殿物を得た。得られた沈殿物をろ過、洗浄、乾燥した後、200℃で1時間加熱し、酸化セリウム粉を製造した。この粉末をハンマーミルで粉砕した後、透過型電子顕微鏡で粒子径を観察したところ、最大一次粒子径が70nm程度で解砕度が70%の酸化セリウム粉であることが確認された。
【0022】
[比較例1]
濃度1.Omol/lの塩化ネオジウム溶液200ml(A液)、モル比で炭酸イオン濃度がネオジウムイオン濃度の1.5倍になるように調整した炭酸水素アンモニウム溶液800ml(B液)を準備した。両者の合計量における希土類イオン(Ce2+)の濃度は0.20mol/lである。
【0023】
70℃に加熱・保持したB液中に、定量ポンプを用いてA液をその全量の5%/minの速度で添加し沈殿物を得た。この沈殿をろ過、洗浄、乾燥した後800℃で1時間加熱し、酸化ネオジウム粉を製造した。この粉末をハンマーミルで粉砕した後、1万倍以上の走査型電子顕微鏡で粒子径を観察したところ、最大一次粒子径が80nm程度で解砕度が50%の酸化ネオジウム粉であった。
【0024】
[比較例2]
濃度2.Omol/lの硝酸ホルミウム溶液200ml(A液)、モル比で炭酸イオン濃度がホルミウムイオン濃度の6倍になるように調整した炭酸アンモニウム溶液700ml(B液)を準備した。両者の合計量における希土類イオン(Ho2+)の濃度は0.44mol/lである。
【0025】
30℃に加熱・保持したB液中に、定量ポンプを用いてA液をその全量の0.7%/minの速度で添加し沈殿物を得た。この沈殿をろ過、洗浄、乾燥した後、600℃で1時間加熱し、酸化ホルミウム粉を製造した。この粉末を、ハンマーミルで粉砕した後、走査型電子顕微鏡で粒子径を観察したところ、最大一次粒子径が70nm程度で、解砕度が20%程度の酸化ホルミウム粉であることが確認された。
【0026】
[比較例3]
濃度1.5mol/lの硝酸ホルミウム溶液1000ml(A液)、モル比で炭酸イオン濃度がホルミウムイオン濃度の3倍になるように調整した炭酸水素アンモニウム溶液400ml(B液)を準備した。両者の合計量における希土類イオン(Ho2+)の濃度は1.07mol/lである。
【0027】
70℃に加熱・保持したB液中に、定量ポンプを用いてA液をその全量の5%/minの速度で添加し沈殿物を得た。この沈殿をろ過、洗浄、乾燥した後、600℃で1時間加熱し、酸化ホルミウム粉を製造した。この粉末を、ハンマーミルで粉砕した後、走査型電子顕微鏡で粒子径を観察したところ、最大一次粒子径が300nm程度で、解砕度が90%以上の酸化ホルミウム粉であることが確認された。
【0028】
【発明の効果】
本発明の製造方法で得られる希土類酸化物微粉は、100μm以下の一次粒子径を有し、分散性に優れているので、圧電体、誘電体などのセラミックス系電子材料の添加剤、セラミックス用焼結補助剤、機能性セラミックス材料、蛍光体材料として用いると、混合度が非常によくなる等の効果があり有用である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a rare earth oxide fine powder, and particularly to a method for producing a rare earth oxide fine powder having a small primary particle diameter.
[0002]
[Prior art]
Rare earth oxides are used in many fields as additives for ceramic-based electronic materials such as piezoelectrics and dielectrics, sintering aids for ceramics, abrasives, functional ceramic materials, phosphor materials, and the like. The rare earth oxide powder used in such a field needs to have a high degree of mixing because it is used by being mixed with other ceramic powders. Further, when used as an abrasive, it is required that the particle diameter is small and uniform in order to increase the surface accuracy. As a method for producing fine rare earth oxide fine powder used in such applications, for example, means described in JP-B-63-5332 and JP-A-4-310516 are known.
[0003]
[Problems to be solved by the invention]
However, these methods all use an organic solvent, so there is a problem in safety, and ripening of the precipitate, filtration, washing with water require a long time, and it is not easy to produce industrially. Was. Further, the products produced by the above-mentioned means have not been considered in terms of the degree of crushing. An object of the present invention is to provide a method for producing a rare earth oxide fine powder having a small primary particle size without using an organic solvent.
[0004]
[Means for Solving the Problems]
In the present invention, a process of adding and reacting an aqueous solution containing rare earth ions to an aqueous alkali carbonate or alkali bicarbonate solution to obtain a precipitate, and sequentially drying and thermally decomposing the obtained precipitate is used to produce a rare earth oxide fine powder. The reaction conditions in the method are such that the amount of carbonate ions in the aqueous solution of alkali carbonate or alkali hydrogen carbonate is twice or more in molar ratio to the amount of rare earth ions contained in the aqueous solution containing rare earth ions, and the aqueous solution containing rare earth ions and the alkali carbonate Alternatively, the primary particle diameter is determined by assuming that the concentration of rare earth ions in the total amount of the aqueous alkali hydrogen carbonate solution is 1 mol / l or less and the temperature of the aqueous alkali carbonate or alkali hydrogen carbonate solution is heated to 40 ° C. or more. Produces a rare earth oxide fine powder of 100 nm or less. Among the products manufactured by the above method, the rare earth oxide fine powder having a primary particle diameter of 100 nm or less and a crushing degree of 70% or more has a good mixing degree with other ceramic powders and when used as an abrasive. Surface accuracy can be improved.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The rare-earth oxide fine powder produced in the present invention has a maximum primary particle diameter of 100 nm or less that can be identified when observed with a scanning electron microscope or a transmission electron microscope. Such fine powders are liable to agglomerate, and the lower limit of the particle size measurement range cannot be measured accurately because the lower limit of the particle size measurement range is close to the primary particle size with a commonly used laser light diffraction type particle sizer. It cannot be distinguished from the value of the particle size or the value of the aggregated particle size. Therefore, in the present invention, the primary particle diameter (so-called crystallite diameter) is measured using a scanning electron microscope or a transmission electron microscope.
[0006]
"Crushing degree" refers to the degree to which the aggregates are easily broken. For the measurement, a laser Doppler type particle size analyzer capable of measuring the particle diameter of aggregated particles to several nm in principle is used, and the number of aggregated particles observed in the observation visual field is 10 times or less of the average primary particle diameter. The degree of crushing was defined as the ratio (%) of the number of aggregated particles having an aggregated particle diameter.
[0007]
In the present invention, in order to produce the rare earth oxide fine powder, an aqueous solution containing rare earth ions is added and reacted in an aqueous alkali carbonate or alkali hydrogen carbonate solution to obtain a precipitate, and the obtained precipitate is dried and heated. A decomposition method is adopted, and the reaction conditions at that time are as shown below.
[0008]
First, when an aqueous solution containing a rare earth ion is added to an aqueous alkali carbonate solution or an aqueous alkali hydrogen carbonate solution (hereinafter simply referred to as an aqueous alkali solution) to cause a reaction, the amount of carbonate ions (converted as CO 3 ) of the aqueous alkali solution is an aqueous solution containing the rare earth ion. In a molar ratio of at least 2 times, preferably 3 to 6 times, relative to the amount of rare earth ions contained in the above.
[0009]
Carbonate ions have the effect of suppressing the aggregation of primary particles by the CO 2 foaming action during the reaction, but if the molar ratio is less than 2, the effect is not sufficient, and the resulting precipitate is dried and thermally decomposed, When crushed, the ratio of remaining aggregated particles (secondary particles) increases. On the other hand, even if the molar ratio is 6 times or more, the improvement of the above-mentioned suppression effect is not observed, but rather increases the cost.
[0010]
The concentration of alkali carbonate or alkali hydrogen carbonate is not particularly limited as long as it is equal to or lower than the solubility. As the alkali carbonate or alkali hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, or the like can be used. Among them, the ammonium salt has an advantage that residual impurities when the generated precipitate is dried and thermally decomposed are easily removed when heated.
[0011]
As the rare earth element, yttrium or a lanthanoid having an atomic number of 57 to 71 can be used, and these can be used alone or in combination of two or more. As the rare earth aqueous solution, an aqueous solution of a nitrate, a hydrochloride, a sulfate or the like can be used, and the concentration thereof is not particularly limited as long as it is equal to or lower than the solubility.
[0012]
An aqueous solution containing rare earth ions is gradually added to the alkaline aqueous solution to cause a reaction, thereby forming a rare earth compound colloid. At this time, the amount of the rare earth ions is adjusted to a concentration of 1 mol / l or less, preferably 0.6 mol / l or less, based on the total amount of the above-mentioned alkaline aqueous solution and the aqueous solution containing the rare earth ions. When the concentration of the rare earth ion is 1 mol / l or more, a rare earth oxide powder having primary particles of 100 nm or less cannot be obtained. In addition, the rare earth compound colloid generated during the reaction is strongly agglomerated, and the degree of crushing is reduced.
[0013]
The reaction temperature is 40 ° C. or higher, preferably 50 to 90 ° C. Specifically, an aqueous solution containing rare earth ions is added to the alkaline aqueous solution heated to the above temperature. When the reaction temperature is lower than 40 ° C., the CO 2 foaming action due to the decomposition of alkali carbonate and alkali hydrogencarbonate is not sufficient, and the effect of suppressing the aggregation of the primary particles decreases, and the degree of crushing decreases.
[0014]
The rate of addition of the aqueous solution containing rare earth ions is not particularly limited. The lower the speed, the smaller the particle size of the obtained colloid. However, if the speed is too low, productivity is impaired. Therefore, it is preferable to add while controlling the addition rate using a metering pump or the like according to the target particle diameter. For example, an aqueous solution containing rare earth ions is preferably added at a rate of 7 to 0.5% / min of the total amount.
[0015]
As a result of the above reaction, a precipitate having a primary particle diameter of at most 100 nm is obtained as a reaction product. This is dried and thermally decomposed into rare earth oxide fine powder.
[0016]
【Example】
[Example 1]
200 ml (solution A) of a neodymium chloride solution having a concentration of 1.0 mol / l and 800 ml (solution B) of an ammonium bicarbonate solution adjusted so that the carbonate ion concentration was four times the neodymium ion concentration in a molar ratio were prepared. The concentration of the rare earth ion (Nd 2+ ) in the total amount of both is 0.20 mol / l.
[0017]
The solution A was added to the solution B maintained at a temperature of 70 ° C. at a rate of 5% / min of the total amount thereof using a metering pump to obtain a precipitate. The obtained precipitate was filtered, washed and dried, and then heated at 800 ° C. for 1 hour to obtain neodymium oxide powder. After the powder was pulverized with a hammer mill, the particle diameter was observed with a scanning electron microscope. As a result, it was confirmed that the powder was neodymium oxide powder having a maximum primary particle diameter of about 80 nm and a degree of crushing of 90% or more.
[0018]
[Example 2]
Concentration 2. 800 ml of an ammonium carbonate solution (solution B) was prepared in which the concentration of carbonate ions was adjusted to be 6 times the holmium ion concentration at a molar ratio of 200 ml of an Omol / l holmium nitrate solution (solution A). The concentration of the rare earth ion (Ho 2+ ) in the total amount of both is 0.40 mol / l.
[0019]
Solution A was added to Solution B at a temperature adjusted to 85 ° C. at a rate of 0.7% / min of the total amount thereof using a metering pump to obtain a precipitate. The obtained precipitate was filtered, washed and dried, and then heated at 600 ° C. for 1 hour to produce holmium oxide powder. After the powder was pulverized with a hammer mill, the particle diameter was observed with a scanning electron microscope. As a result, it was confirmed that the powder was a holmium oxide powder having a maximum primary particle diameter of about 70 nm and a degree of crushing of 80%.
[0020]
[Example 3]
A 200 ml (solution A) cerium chloride solution having a concentration of 1.0 mol / l and an 800 ml (solution B) ammonium bicarbonate solution containing a carbonate ion concentration at a molar ratio four times that of the cerium ion concentration were prepared. The concentration of the rare earth ion (Ce 2+ ) in the total amount of both is 0.20 mol / l.
[0021]
The solution A was added to the solution B heated and maintained at 60 ° C. at a rate of 1% / min of the total amount thereof using a metering pump to obtain a precipitate. After filtering, washing and drying the obtained precipitate, it was heated at 200 ° C. for 1 hour to produce cerium oxide powder. After the powder was pulverized with a hammer mill, the particle diameter was observed with a transmission electron microscope. As a result, it was confirmed that the powder was a cerium oxide powder having a maximum primary particle diameter of about 70 nm and a degree of crushing of 70%.
[0022]
[Comparative Example 1]
Concentration 1. 200 ml of an Omol / l neodymium chloride solution (solution A) and 800 ml of an ammonium bicarbonate solution (solution B) adjusted to a molar ratio of 1.5 times the neodymium ion concentration were prepared. The concentration of the rare earth ion (Ce 2+ ) in the total amount of both is 0.20 mol / l.
[0023]
Solution A was added to Solution B heated and maintained at 70 ° C. at a rate of 5% / min of the total amount thereof using a metering pump to obtain a precipitate. The precipitate was filtered, washed and dried, and then heated at 800 ° C. for 1 hour to produce neodymium oxide powder. After the powder was pulverized with a hammer mill, the particle diameter was observed with a scanning electron microscope of 10,000 times or more. As a result, the powder was a neodymium oxide powder having a maximum primary particle diameter of about 80 nm and a degree of crushing of 50%.
[0024]
[Comparative Example 2]
Concentration 2. 200 ml of an Omol / l holmium nitrate solution (solution A) and 700 ml of an ammonium carbonate solution (solution B) adjusted to a molar ratio of 6 times the holmium ion concentration were prepared. The concentration of the rare earth ion (Ho 2+ ) in the total amount of both is 0.44 mol / l.
[0025]
Solution A was added to Solution B heated and maintained at 30 ° C. at a rate of 0.7% / min of the total amount thereof using a metering pump to obtain a precipitate. This precipitate was filtered, washed and dried, and then heated at 600 ° C. for 1 hour to produce holmium oxide powder. After the powder was pulverized with a hammer mill, the particle diameter was observed with a scanning electron microscope. As a result, it was confirmed that the powder was a holmium oxide powder having a maximum primary particle diameter of about 70 nm and a degree of crushing of about 20%. .
[0026]
[Comparative Example 3]
A holmium nitrate solution having a concentration of 1.5 mol / l (1000 ml, solution A) and an ammonium bicarbonate solution (400 ml, solution B) adjusted to a molar ratio of three times the holmium ion concentration were prepared. The concentration of the rare earth ion (Ho 2+ ) in the total amount of both is 1.07 mol / l.
[0027]
Solution A was added to Solution B heated and maintained at 70 ° C. at a rate of 5% / min of the total amount thereof using a metering pump to obtain a precipitate. This precipitate was filtered, washed and dried, and then heated at 600 ° C. for 1 hour to produce holmium oxide powder. After the powder was pulverized by a hammer mill, the particle diameter was observed with a scanning electron microscope. As a result, it was confirmed that the powder was a holmium oxide powder having a maximum primary particle diameter of about 300 nm and a degree of crushing of 90% or more. .
[0028]
【The invention's effect】
The rare earth oxide fine powder obtained by the production method of the present invention has a primary particle diameter of 100 μm or less and is excellent in dispersibility, so that additives for ceramic-based electronic materials such as piezoelectrics and dielectrics, When used as a binding aid, a functional ceramics material, or a phosphor material, it is useful because it has effects such as a very good degree of mixing.

Claims (2)

希土類イオンを含む水溶液を炭酸アルカリ又は炭酸水素アルカリ水溶液中に添加・反応させて沈殿物を得、得られた沈殿物を乾燥・熱分解する工程を順次行う希土類酸化物微粉の製造方法における反応条件を、
前記炭酸アルカリ又は炭酸水素アルカリ水溶液の炭酸イオン量が希土類イオンを含む水溶液に含まれる希土類イオンに対しモル比で2倍以上であり、
希土類イオンを含む水溶液と前記炭酸アルカリ又は炭酸水素アルカリ水溶液の合計量における希土類イオンの濃度が1mol/l以下であり、
かつ、前記炭酸アルカリ又は炭酸水素アルカリ水溶液の温度が40℃以上に加熱されているものとすることを特徴とする一次粒子径が100nm以下の希土類酸化物微粉の製造方法。
Reaction conditions in a method for producing a rare-earth oxide fine powder in which a precipitate is obtained by adding and reacting an aqueous solution containing a rare-earth ion into an aqueous solution of an alkali carbonate or an alkali hydrogen carbonate, and sequentially drying and thermally decomposing the obtained precipitate. To
The amount of carbonate ions in the aqueous alkali carbonate or alkali hydrogen carbonate solution is twice or more in molar ratio to the amount of rare earth ions contained in the aqueous solution containing rare earth ions,
The concentration of rare earth ions in the total amount of the aqueous solution containing rare earth ions and the aqueous alkali carbonate or alkali hydrogen carbonate solution is 1 mol / l or less;
And a method of producing a rare earth oxide fine powder having a primary particle diameter of 100 nm or less, wherein the temperature of the alkali carbonate or alkali hydrogen carbonate aqueous solution is heated to 40 ° C. or higher.
一次粒子径が100nm以下、かつ解砕度が70%以上の希土類酸化物微粉。Rare earth oxide fine powder having a primary particle diameter of 100 nm or less and a degree of crushing of 70% or more.
JP2002248143A 2002-08-28 2002-08-28 Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder Pending JP2004083350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248143A JP2004083350A (en) 2002-08-28 2002-08-28 Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248143A JP2004083350A (en) 2002-08-28 2002-08-28 Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder

Publications (2)

Publication Number Publication Date
JP2004083350A true JP2004083350A (en) 2004-03-18
JP2004083350A5 JP2004083350A5 (en) 2005-11-04

Family

ID=32055591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248143A Pending JP2004083350A (en) 2002-08-28 2002-08-28 Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder

Country Status (1)

Country Link
JP (1) JP2004083350A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230800A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Method for producing rare earth oxide
CN104387989A (en) * 2014-11-04 2015-03-04 南昌大学 Method for preparing superfine high-cerium rare earth polishing powder from high-density rare earth carbonate by virtue of high-temperature decrepitation method
WO2023109515A1 (en) * 2021-12-14 2023-06-22 安集微电子(上海)有限公司 Method for synthesizing cerium oxide and chemical mechanical polishing solution
WO2024004411A1 (en) * 2022-06-27 2024-01-04 日本イットリウム株式会社 Rare earth oxide powder
JP7474909B1 (en) 2022-06-27 2024-04-25 日本イットリウム株式会社 Rare Earth Oxide Powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007230800A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Method for producing rare earth oxide
CN104387989A (en) * 2014-11-04 2015-03-04 南昌大学 Method for preparing superfine high-cerium rare earth polishing powder from high-density rare earth carbonate by virtue of high-temperature decrepitation method
CN104387989B (en) * 2014-11-04 2016-08-24 南昌大学 High density carbon acid rare earth explosive spalling method prepares the method for ultra-fine high cerium mischmetal polishing powder
WO2023109515A1 (en) * 2021-12-14 2023-06-22 安集微电子(上海)有限公司 Method for synthesizing cerium oxide and chemical mechanical polishing solution
WO2024004411A1 (en) * 2022-06-27 2024-01-04 日本イットリウム株式会社 Rare earth oxide powder
JP7474909B1 (en) 2022-06-27 2024-04-25 日本イットリウム株式会社 Rare Earth Oxide Powder

Similar Documents

Publication Publication Date Title
JP4992003B2 (en) Method for producing metal oxide fine particles
CN101428838B (en) Barium carbonate particle powder, production method thereof, and production method of perovskite barium titanate
JP2003137550A (en) Manufacturing method for zirconia/ceria-based composite oxide
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP3280688B2 (en) Production method of rare earth oxide
JP5729926B2 (en) Gallium oxide powder
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JPH09183620A (en) Bismuth oxycarbonate powder and its production
JP3877922B2 (en) Method for producing rare earth compound
CN101439874A (en) Production method of high purity superfine bismuth oxide
JP4195931B2 (en) Scandium compound ultrafine particles and method for producing the same
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JP3289358B2 (en) Method for producing magnetic oxide powder
JP3906353B2 (en) YAG fine powder manufacturing method
JP6939741B2 (en) Method for producing rare earth compound particles
JP2883522B2 (en) Method for producing rare earth oxide fine powder
JPH0826833A (en) Production of ceramic raw material
JP2022067632A (en) Method for producing rare earth compound particle and rare earth oxide particle
JPS63222014A (en) Production of oxide fine powder of perovskite type
JPS61122121A (en) Production of rare earth metal oxide powder
JP3350332B2 (en) Method for producing aggregated rare earth hydroxide
JP3280689B2 (en) Method for producing round rare earth oxide
JP2023095008A (en) Method for manufacturing metal oxide
JP3681550B2 (en) Rare earth oxide and method for producing the same
JP2004345942A (en) Zirconium based composite oxide and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216