JPH07277710A - Production of perovskite-type multiple oxide powder - Google Patents

Production of perovskite-type multiple oxide powder

Info

Publication number
JPH07277710A
JPH07277710A JP6090663A JP9066394A JPH07277710A JP H07277710 A JPH07277710 A JP H07277710A JP 6090663 A JP6090663 A JP 6090663A JP 9066394 A JP9066394 A JP 9066394A JP H07277710 A JPH07277710 A JP H07277710A
Authority
JP
Japan
Prior art keywords
perovskite
oxide powder
producing
tetravalent metal
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090663A
Other languages
Japanese (ja)
Inventor
Wataru Hiraishi
亘 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP6090663A priority Critical patent/JPH07277710A/en
Publication of JPH07277710A publication Critical patent/JPH07277710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide a method for producing easily at low cost perovskite-type multiple oxide powder useful as e.g. a ceramic feedstock and having such characteristics as to be fine and highly dispersible to submicron levels and, besides, sharp in the distribution of both primary and secondary particle diameters. CONSTITUTION:In producing the perovskite-type multiple oxide powder expressed by formula ABO3 (A is at least one kind of alkaline earth metal; B is at least one kind of tetravalent metallic element), an aqueous slurry of at least one kind of an alkaline earth metal hydroxide is incorporated with at least one kind of compound of tetravalent metal and an alkali at least equivalent to the tetravalent metal under agitation to carry out a reaction, and the resultant slurry containing the reaction product is aged at about 50-200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粒子、高分散性で、
かつ粒度分布幅の狭いペロブスカイト型複合酸化物粉末
の製造方法に関する。さらに詳しくは、コンデンサー、
PTC素子、半導体等のセラミックス電子部品の材料と
して有用なペロブスカイト型複合酸化物粉末、特にチタ
ン酸バリウム系誘電体材料粉末の製造方法に関する。
The present invention relates to fine particles, high dispersibility,
The present invention also relates to a method for producing a perovskite type complex oxide powder having a narrow particle size distribution width. More specifically, condensers,
The present invention relates to a method for producing a perovskite-type composite oxide powder, particularly a barium titanate-based dielectric material powder, which is useful as a material for ceramic electronic components such as PTC elements and semiconductors.

【0002】[0002]

【従来の技術】ペロブスカイト型複合酸化物粉末の製造
方法としては、(1)複合酸化物を構成する元素の炭酸
塩あるいは酸化物の粉末を混合粉砕し、1000℃以上
の温度で仮焼した後、機械的に粉砕して微細化するいわ
ゆる乾式法、(2)バリウムおよびチタンの水溶液に蓚
酸を加えて生成させた両金属の蓚酸塩を高温で焼成する
方法、(3)バリウムおよびチタンのアルコキシドの混
合溶液を加水分解する方法、(4)酸化チタンと水酸化
バリウムをBa/Ti=1.2の割合で混合し、オート
クレーブ中で110〜370℃で水熱処理する方法、
(5)含水率95重量%の含水酸化チタンと水酸化バリ
ウムとをバリウムとチタンのモル比が2〜3となるよう
に混合し、100℃に加熱する方法が知られている。
2. Description of the Related Art (1) As a method for producing a perovskite type complex oxide powder, (1) powders of carbonates or oxides of elements constituting the complex oxide are mixed and pulverized, and then calcined at a temperature of 1000 ° C. or higher. A so-called dry method of mechanically pulverizing and pulverizing, (2) a method of firing oxalates of both metals produced by adding oxalic acid to an aqueous solution of barium and titanium at high temperature, (3) alkoxide of barium and titanium A method of hydrolyzing the mixed solution of (4) a method of mixing titanium oxide and barium hydroxide at a ratio of Ba / Ti = 1.2, and performing a hydrothermal treatment at 110 to 370 ° C. in an autoclave,
(5) A method is known in which hydrous titanium oxide having a water content of 95% by weight and barium hydroxide are mixed so that the molar ratio of barium to titanium is 2 to 3, and the mixture is heated to 100 ° C.

【0003】[0003]

【発明が解決しようとする課題】(1)の乾式法は、高
温(約1300〜1400℃)を必要とする。また高温
仮焼により、焼結が始まり、異常な粒子成長を含む粗大
な一次粒子となり、しかもそれらが凝集している。この
ため、焼成後の粉砕によっては、微細で均一な二次粒子
径を有するチタン酸バリウム系酸化物粉末を得ることが
できないという問題がある。また粉砕工程における不純
物の混入を避け難いという問題がある。(2)の蓚酸塩
法は、600℃以上の焼成温度で実施する必要があり、
ある程度の一次粒子の粗大化と凝集は避けられず、
(1)の方法と同様の問題がある。また大量に蓚酸を使
用するため、コストが高くなるという問題がある。
(3)の加水分解する方法は、(1)や(2)の方法と
比べると液相反応であるため、均一性が著しく向上し、
常温で目的の化合物が得られるという利点がある。しか
し、生成する結晶は格子欠陥に基づく格子歪みが多く、
結晶の完全性に乏しい。このため、一次粒子は小さい
が、それらが強く凝集して粗大な二次粒子を形成すると
いう問題がある。また原料のアルコキシドは高価であ
り、コストが高くなるという問題がある。(4)の水熱
処理する方法は、酸化チタンが比較的安定な化合物であ
るため、反応速度が遅い。このため、高温高圧(300
℃、85気圧以上)を必要とし、しかも生成したチタン
酸バリウムの二次粒子径が粗大であり、かつ不均一であ
るという問題がある(5)の方法は、得られたチタン酸
バリウムの外形が原料である含水酸化チタンの形状を受
けて角ばった形状となるという問題がある。また一次粒
子が微細すぎるために、それらが凝集し易いという問題
がある。
The dry method (1) requires a high temperature (about 1300 to 1400 ° C.). Further, high temperature calcination causes sintering to start, resulting in coarse primary particles including abnormal particle growth, which are aggregated. Therefore, there is a problem in that barium titanate-based oxide powder having a fine and uniform secondary particle diameter cannot be obtained by pulverization after firing. There is also a problem that it is difficult to avoid mixing of impurities in the crushing process. The oxalate method of (2) needs to be carried out at a firing temperature of 600 ° C. or higher,
Some coarsening and agglomeration of primary particles are unavoidable,
There is a problem similar to the method (1). Further, since oxalic acid is used in a large amount, there is a problem that the cost becomes high.
The method (3) of hydrolysis is a liquid phase reaction as compared with the methods (1) and (2), so that the uniformity is remarkably improved.
There is an advantage that the target compound can be obtained at room temperature. However, the generated crystals have many lattice distortions due to lattice defects,
Poor crystal perfection. Therefore, although the primary particles are small, there is a problem that they are strongly aggregated to form coarse secondary particles. Further, there is a problem that the alkoxide as a raw material is expensive and the cost becomes high. In the method (4) of hydrothermal treatment, the reaction rate is slow because titanium oxide is a relatively stable compound. Therefore, high temperature and high pressure (300
(85 ° C., 85 atm or more), and the generated secondary particles of barium titanate are coarse and non-uniform, and the method (5) is based on the external shape of the obtained barium titanate. However, there is a problem that the material becomes a square shape due to the shape of the hydrous titanium oxide. Further, since the primary particles are too fine, there is a problem that they are likely to aggregate.

【0004】本発明の目的は、サブミクロンレベルに分
散可能な微細でかつ高分散性であり、その上一次粒子径
および二次粒子径の分布がシャープなペロブスカイト型
複合酸化物粉末、例えばセラミックス原料として有用な
粉末を容易にかつ安価に製造できる製造方法の提供にあ
る。本発明は、上記セラミックス原料粉末の提供によ
り、小型化、大容量化、高性能化、高信頼化、低価格と
いう電子部品に対する市場要求を満足させようとするも
のである。
An object of the present invention is a fine perovskite type composite oxide powder which is fine and highly dispersible in a submicron level and has a sharp distribution of primary and secondary particle diameters, for example, ceramic raw materials. The purpose of the present invention is to provide a manufacturing method capable of easily and inexpensively manufacturing a powder useful as the above. The present invention intends to satisfy the market demand for electronic parts such as miniaturization, large capacity, high performance, high reliability, and low price by providing the ceramic raw material powder.

【0005】[0005]

【課題を解決するための手段】本発明は、式(1) ABO3 (1) [式中、Aは少なくとも一種のアルカリ土類金属、Bは
少なくとも一種の4価の金属元素を示す]で表されるペ
ロブスカイト型複合酸化物粉末の製造方法において、ア
ルカリ土類金属の水酸化物の少なくとも一種の水スラリ
ーに、少なくとも一種の4価金属の化合物と、4価金属
と当量又は過剰当量のアルカリとを撹拌下に添加して反
応させ、反応物を含むスラリーを約50〜200℃、好
ましくは約100〜200℃で、0.1〜10時間、好
ましくは約0.1〜3時間熟成することを特徴とするペ
ロブスカイト型複合酸化物粉末の製造方法を提供する。
The present invention provides a compound represented by the formula (1) ABO 3 (1) [wherein A represents at least one alkaline earth metal and B represents at least one tetravalent metal element]. In the method for producing a perovskite-type composite oxide powder represented, at least one tetravalent metal compound and at least one tetravalent metal equivalent or excess equivalent alkali in an aqueous slurry of at least one alkaline earth metal hydroxide. And are added under stirring to react with each other, and a slurry containing the reactant is aged at about 50 to 200 ° C., preferably about 100 to 200 ° C. for 0.1 to 10 hours, preferably about 0.1 to 3 hours. A method for producing a perovskite type complex oxide powder is provided.

【0006】本発明は、安価な原料を用いて、常温で共
沈反応を行い、しかる後、熟成処理、好ましくは水熱処
理を行うことにより、極めて完全度の高いペロブスカイ
ト型の結晶を得る方法である。本発明の方法により得ら
れた結晶は、平均一次粒子径が約0.01〜1μmと微
細であり、しかも凝集が殆ど生じない。このため平均二
次粒子径も約0.01〜1μmとなり、極めて高分散性
を示す。また一次粒子径および二次粒子径の分布がシャ
ープであり、かつ一次および二次粒子の外形がほぼ球形
に近いため、粉末の流動性、充填性が良好である。これ
により、本発明方法で得られた粉末を使用すると高性能
のセラミックスを供給することが容易である。本発明で
用いるアルカリ土類金属の水酸化物とは、Mg、Ca、
SrおよびBaの水酸化物を意味する。本発明で用いる
4価金属元素としては、Ti、Zr、Sn等が例示され
る。4価金属の化合物としては、これら金属の塩化物、
臭化物等のハロゲン化物、硝酸塩等の水溶性の一価の塩
が例示される。本発明で用いるアルカリ成分としては、
水酸化ナトリウム、水酸化カリウム、水酸化リチウム等
のアルカリ金属の水酸化物、水酸化アンモニウム、ジメ
チルアミン、N−N’−ジメチルベンジルアミン等の有
機アミンが例示される。
The present invention is a method for obtaining a perovskite-type crystal having an extremely high degree of perfection by carrying out a coprecipitation reaction at a room temperature using an inexpensive raw material, and then performing an aging treatment, preferably a hydrothermal treatment. is there. The crystals obtained by the method of the present invention have a fine average primary particle size of about 0.01 to 1 μm, and almost no aggregation occurs. Therefore, the average secondary particle diameter is also about 0.01 to 1 μm, which shows extremely high dispersibility. Further, the distribution of the primary particle diameter and the secondary particle diameter is sharp, and the outer shapes of the primary and secondary particles are almost spherical, so that the powder has good fluidity and packing property. Therefore, it is easy to supply high-performance ceramics by using the powder obtained by the method of the present invention. The alkaline earth metal hydroxide used in the present invention includes Mg, Ca,
It means a hydroxide of Sr and Ba. Examples of the tetravalent metal element used in the present invention include Ti, Zr, Sn and the like. Compounds of tetravalent metals include chlorides of these metals,
Examples thereof include halides such as bromide, and water-soluble monovalent salts such as nitrates. As the alkaline component used in the present invention,
Examples thereof include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, and organic amines such as ammonium hydroxide, dimethylamine and NN′-dimethylbenzylamine.

【0007】アルカリ成分の添加は、アルカリ土類金属
の水酸化物の水スラリーに4価金属化合物水溶液を添加
する前、該水溶液の添加と同時、あるいは添加後のいず
れの段階でもよい。アルカリ成分の添加量は、4価金属
化合物とほぼ当量以上であればよい。共沈反応およびこ
れに続く熟成処理反応でアルカリ土類の水酸化物の炭酸
化が生じないように、用いる水および雰囲気中の炭酸イ
オンおよび炭酸ガスを極力除くことが好ましい。共沈反
応時における撹拌は必要な操作であり、また熟成処理反
応も十分な撹拌下に行うことが好ましい。熟成処理後、
常法に従い、濾過、水洗、乾燥することにより、微細で
高分散性のペロブスカイト型結晶が得られる。乾燥物を
さらに約800℃で焼成し、ついで洗浄、乾燥してもよ
い。洗浄には、炭酸イオン等が除かれた純水を使用する
ことが好ましい。
The alkali component may be added at any stage before the addition of the aqueous solution of the tetravalent metal compound to the aqueous slurry of the hydroxide of alkaline earth metal, at the same time as the addition of the aqueous solution, or after the addition. The addition amount of the alkali component may be approximately equal to or more than that of the tetravalent metal compound. It is preferable to remove carbonate ions and carbon dioxide in the water and the atmosphere used as much as possible so that carbonation of the alkaline earth hydroxide does not occur in the coprecipitation reaction and the subsequent aging treatment reaction. Stirring during the coprecipitation reaction is a necessary operation, and the aging treatment reaction is also preferably carried out under sufficient stirring. After aging treatment,
Fine, highly dispersible perovskite type crystals are obtained by filtration, washing with water and drying according to a conventional method. The dried product may be further calcined at about 800 ° C., then washed and dried. For cleaning, it is preferable to use pure water from which carbonate ions and the like have been removed.

【0008】本発明では、半導体化するための公知の希
土類元素、例えばY、Sc,La等、あるいはBi、N
b、Sb等の元素の水溶性塩類の水溶液を共沈反応時に
添加し、共沈反応させることもできる。この際、添加す
るアルカリ成分の量は、これら添加元素の当量分だけ増
加して添加することが好ましい。本発明の方法によれ
ば、ペロブスカイト型複合酸化物ABO3の結晶とし
て、実質的に凝集がなく、一次粒子と二次粒子の粒子径
がほぼ同じであり、平均二次粒子径は約0.01〜1.
0μmの範囲、好ましくは約0.01〜0.5μmの範
囲にあり、BET比表面積は約1〜20m2/gの範囲
にあるものが得られる。本発明のペロブスカイト型複合
酸化物の製造方法は、共沈反応時におけるアルカリ土類
金属と4価金属元素化合物との間の水酸化物形成に必要
なpHの大きな相違に基づく不均質な沈澱生成という従
来の製造方法の欠陥を解決するものである。すなわち本
発明の製造方法は、溶解度が高く、高pHにならないと
水酸化物を形成しないアルカリ土類金属元素を、初めか
ら水酸化物としておき、これに4価金属の水溶液、アル
カリ成分を加えて理想に近い共沈反応を可能としたこと
により、従来の製造方法が有する欠陥を解決することに
成功した製造方法である。その結果、ペロブスカイト型
複合酸化物に近い組成の共沈物を得ることが可能とな
り、そしてそれに続く液相中での水熱反応により、従来
の製造方法に比して低い温度で、しかも完全度の高いペ
ロブスカイト型複合酸化物の結晶を容易に得ることがで
きる製造方法が提供できることとなった。
In the present invention, a known rare earth element for forming a semiconductor, such as Y, Sc, La, etc., or Bi, N is used.
It is also possible to add an aqueous solution of a water-soluble salt of an element such as b or Sb during the coprecipitation reaction to cause the coprecipitation reaction. At this time, it is preferable that the amount of the alkali component to be added be increased by the equivalent amount of these additional elements. According to the method of the present invention, the crystals of the perovskite-type composite oxide ABO 3 have substantially no aggregation, the primary particles and the secondary particles have substantially the same particle diameter, and the average secondary particle diameter is about 0. 01 to 1.
It is obtained in the range of 0 μm, preferably in the range of about 0.01 to 0.5 μm, and the BET specific surface area in the range of about 1 to 20 m 2 / g. The method for producing a perovskite-type composite oxide of the present invention is based on a large difference in pH required for hydroxide formation between an alkaline earth metal and a tetravalent metal element compound during a coprecipitation reaction, resulting in heterogeneous precipitation formation. This is to solve the defect of the conventional manufacturing method. That is, in the production method of the present invention, an alkaline earth metal element that has a high solubility and does not form a hydroxide unless the pH is high is left as a hydroxide from the beginning, and an aqueous solution of a tetravalent metal and an alkali component are added thereto. It is a manufacturing method that has succeeded in solving the defects of the conventional manufacturing method by enabling a coprecipitation reaction close to ideal. As a result, it is possible to obtain a coprecipitate having a composition close to that of a perovskite type complex oxide, and the subsequent hydrothermal reaction in the liquid phase results in a lower temperature and a higher degree of perfection than in conventional production methods. Therefore, it is possible to provide a manufacturing method capable of easily obtaining crystals of a perovskite complex oxide having a high temperature.

【0009】[0009]

【発明の効果】本発明によれば、安価な原料を用い、従
来得られなかった微細で高分散性のペロブスカイト型複
合酸化物の結晶を、低温で、再現性良く製造する方法が
提供される。さらに本発明によれば、熟成処理の温度を
約50℃〜200℃の間で、好ましくは水熱処理の温度
を約100℃〜200℃の間で変化させることにより、
種々の一次粒子径と二次粒子径を有するペロブスカイト
型複合酸化物の結晶を、容易にかつ再現性よく製造する
方法が提供される。本発明の製造方法は、ペロブスカイ
ト型複合酸化物の結晶に対する多様化した要求に応える
ものである。
EFFECTS OF THE INVENTION The present invention provides a method for producing fine and highly dispersible perovskite type complex oxide crystals, which have hitherto not been obtained, at low temperature and with good reproducibility by using inexpensive raw materials. . Further according to the invention, by varying the temperature of the aging treatment between about 50 ° C. and 200 ° C., preferably the temperature of the hydrothermal treatment between about 100 ° C. and 200 ° C.,
Provided is a method for easily and reproducibly producing crystals of a perovskite-type composite oxide having various primary particle diameters and secondary particle diameters. The production method of the present invention meets diversified demands for crystals of perovskite type complex oxides.

【0010】以下本発明を実施例に基づき、より詳細に
説明する。以下の各例において、部および%は特にこと
わりの無い限り、それぞれ重量部および重量%を意味す
る。 実施例1 脱イオン水500ミリリットル(約25℃)に撹拌下
に、0.1モルのBa(OH)2・8H2Oを加え、分散
溶解後、0.1モルのTiCl4溶液(約25℃)を加
えた。つづいて4モル/リットルの水酸化ナトリウム水
溶液(約25℃)を0.4モル加え、撹拌下に0.25
時間保持した。以上の反応で得られたスラリーをそのま
まオートクレーブに入れ、170℃で2時間水熱処理を
行った。その後、減圧濾過し、さらに脱イオン水で洗浄
し、乾燥した。得られたチタン酸バリウムの粉末は、X
線回折の結果、立方晶であることがわかった。粒度分布
は、レーザー回折散乱法により、平均粒子径が0.10
6μm、標準偏差値が0.016μmである極めて微細
で、かつ分布幅の狭いものであった。BET比表面積は
6m2/gであった。また走査型電子顕微鏡により観察
したところ、ほとんど全ての粒子が球形であり、平均直
径約0.1μmの粒子が凝集することなく、分散してい
た。図1に得られた粉末の結晶構造を示す電子顕微鏡写
真(10,000倍)を、図2に粒度分布を示す。
The present invention will be described in more detail based on the following examples. In the following examples, parts and% mean parts by weight and% by weight, respectively, unless otherwise specified. Example 1 0.1 mol of Ba (OH) 2 .8H 2 O was added to 500 ml of deionized water (about 25 ° C.) with stirring, and after dispersion and dissolution, 0.1 mol of TiCl 4 solution (about 25 C) was added. Subsequently, 0.4 mol of a 4 mol / liter sodium hydroxide aqueous solution (about 25 ° C.) was added, and the mixture was stirred for 0.25
Held for hours. The slurry obtained by the above reaction was placed in an autoclave as it was, and hydrothermal treatment was carried out at 170 ° C. for 2 hours. Then, it was filtered under reduced pressure, further washed with deionized water, and dried. The obtained barium titanate powder is X
As a result of line diffraction, it was found to be cubic. As for the particle size distribution, the average particle size is 0.10 according to the laser diffraction scattering method.
It was 6 μm, and the standard deviation was 0.016 μm, which was extremely fine and had a narrow distribution width. The BET specific surface area was 6 m 2 / g. Also, when observed by a scanning electron microscope, almost all the particles were spherical, and particles having an average diameter of about 0.1 μm were dispersed without agglomeration. The electron micrograph (10,000 times) showing the crystal structure of the obtained powder is shown in FIG. 1, and the particle size distribution is shown in FIG.

【0011】実施例2 脱イオン水500ミリリットル(約25℃)に撹拌下
に、0.06モルのBa(OH)2・8H2Oと0.04
モルのSr(OH)2・8H2Oを加え、分散溶解後0.
095モルのTiCl4溶液(約25℃)を加えた。続
いて4モル/リットルの水酸化ナトリウム水溶液(約2
5℃)0.4モルを加え、撹拌下に0.25時間保持し
た。以上の反応で得られたスラリーをそのままオートク
レーブに入れ、150℃で2時間水熱処理した。その
後、減圧濾過、水洗、乾燥した。得られた(Ba0.60
0.40)TiO3の組成の粉末は、X線回折の結果、B
aTiO3と同じ結晶構造を有する立方晶固溶体である
ことがわかった。粒度分布は平均粒子径0.122μ
m、標準偏差0.024μmであり、BET比表面積は
8.5m2/gであった。走査型電子顕微鏡により観察
したところ、ほとんど全ての粒子がほぼ球形であり、そ
の直径は約0.1μmであり、凝集することなく分散し
ていた。
Example 2 0.06 mol of Ba (OH) 2 .8H 2 O and 0.04 mol in 500 ml of deionized water (about 25 ° C.) with stirring.
After Smol (S) (OH) 2 .8H 2 O was added and dispersed and dissolved,
A 095 molar TiCl 4 solution (about 25 ° C.) was added. Then, a 4 mol / liter sodium hydroxide aqueous solution (about 2 mol
(5 ° C.) 0.4 mol was added and the mixture was kept under stirring for 0.25 hours. The slurry obtained by the above reaction was placed in an autoclave as it was, and hydrothermally treated at 150 ° C. for 2 hours. Then, it was filtered under reduced pressure, washed with water and dried. Obtained (Ba 0.60 S
The powder having a composition of r 0.40 ) TiO 3 showed a B
It was found to be a cubic solid solution having the same crystal structure as aTiO 3 . The average particle size is 0.122μ
m, the standard deviation was 0.024 μm, and the BET specific surface area was 8.5 m 2 / g. Observation with a scanning electron microscope revealed that almost all the particles were substantially spherical, their diameter was about 0.1 μm, and they were dispersed without aggregation.

【0012】実施例3 脱イオン水500ミリリットル(約20℃)に撹拌下
に、0.1モルのBa(OH)2・8H2Oを加え、分散
溶解後、4モル/リットルの水酸化カリリウム水溶液
(約20℃)0.4モルを加えた。続いて0.09モル
のTiCl4溶液(約20℃)と0.01モルのSrC
4を溶解した水溶液(約20℃)100ミリリットル
とを同時に加えた。その後70℃に加熱し、撹拌下に約
2時間保持した。その後、減圧濾過し、脱イオン水で水
洗し、乾燥した。得られたBa(Ti0.90Sr0.10)O
3の組成の粉末は、X線回折の結果、BaTiO3と同じ
結晶構造を有する立方晶固溶体であることがわかった。
粒度分布は平均粒子径0.196μm、標準偏差0.0
58μmであり、BET比表面積は12.1m2/gで
あった。走査型電子顕微鏡により観察したところ、ほと
んど全ての粒子がほぼ球形であり、その直径は約0.2
μmであり、凝集することなく分散していた。
Example 3 To 500 ml of deionized water (about 20 ° C.), 0.1 mol of Ba (OH) 2 .8H 2 O was added with stirring, and after dispersion and dissolution, 4 mol / l of potassium hydroxide was added. 0.4 mol of an aqueous solution (about 20 ° C.) was added. Then, 0.09 mol of TiCl 4 solution (about 20 ° C.) and 0.01 mol of SrC were added.
l 4 aqueous solution of (approximately 20 ° C.) was added and 100 ml simultaneously. Then, it heated at 70 degreeC and hold | maintained under stirring for about 2 hours. Then, it was filtered under reduced pressure, washed with deionized water, and dried. The obtained Ba (Ti 0.90 Sr 0.10 ) O
As a result of X-ray diffraction, the powder having the composition of 3 was found to be a cubic solid solution having the same crystal structure as BaTiO 3 .
The particle size distribution is such that the average particle size is 0.196 μm and the standard deviation is 0.0.
The BET specific surface area was 12.1 m 2 / g. Observation with a scanning electron microscope revealed that almost all the particles were almost spherical and had a diameter of about 0.2.
It was μm and was dispersed without agglomeration.

【0013】比較例1 脱イオン水500ミリリットル(約20℃)に撹拌下
に、0.12モルのBa(OH)2・8H2Oを加え、分
散溶解後、0.1モルのTiO2を加え分散させた後、
撹拌下に約0.25時間保持した。得られたスラリーを
オートクレーブに入れ、170℃で2時間水熱処理し
た。その後、減圧濾過し、脱イオン水で水洗し、乾燥し
た。得られた粉末は、X線回折の結果、立方晶のチタン
酸バリウムと酸化チタンとの混合物であった。
Comparative Example 1 0.12 mol of Ba (OH) 2 .8H 2 O was added to 500 ml of deionized water (about 20 ° C.) with stirring, and after dispersion and dissolution, 0.1 mol of TiO 2 was added. After adding and dispersing,
It was kept under stirring for about 0.25 hours. The obtained slurry was put into an autoclave and hydrothermally treated at 170 ° C. for 2 hours. Then, it was filtered under reduced pressure, washed with deionized water, and dried. As a result of X-ray diffraction, the obtained powder was a mixture of cubic barium titanate and titanium oxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた組成物の結晶構造を示す電
子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the crystal structure of the composition obtained in Example 1.

【図2】実施例1で得られた組成物の粒度分布を示すグ
ラフである。
FIG. 2 is a graph showing the particle size distribution of the composition obtained in Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 式(1) ABO3 (1) [式中、Aは少なくとも一種のアルカリ土類金属、Bは
少なくとも一種の4価の金属元素を示す]で表されるペ
ロブスカイト型複合酸化物粉末の製造方法において、 アルカリ土類金属の水酸化物の少なくとも一種の水スラ
リーに、少なくとも一種の4価金属の化合物と、4価金
属と当量又は過剰当量のアルカリとを撹拌下に添加して
反応させ、反応物を含むスラリーを約50〜200℃で
熟成することを特徴とするペロブスカイト型複合酸化物
粉末の製造方法。
1. A perovskite-type complex oxide represented by the formula (1) ABO 3 (1) [wherein A represents at least one alkaline earth metal and B represents at least one tetravalent metal element]. In the method for producing a powder, at least one tetravalent metal compound and tetravalent metal and an equivalent or excess equivalent of alkali are added to an aqueous slurry of at least one alkaline earth metal hydroxide with stirring. A method for producing a perovskite type complex oxide powder, which comprises reacting and aging a slurry containing a reactant at about 50 to 200 ° C.
【請求項2】 熟成が、オートクレーブ中、約100〜
200℃の水熱処理であることを特徴とする請求項1記
載のペロブスカイト型複合酸化物粉末の製造方法。
2. Aging is carried out in an autoclave at a rate of about 100-.
The method for producing a perovskite type complex oxide powder according to claim 1, wherein the hydrothermal treatment is performed at 200 ° C.
【請求項3】 4価金属の化合物が、4価金属のハロゲ
ン化物または4価金属の硝酸塩である請求項1記載のペ
ロブスカイト型複合酸化物粉末の製造方法。
3. The method for producing a perovskite-type composite oxide powder according to claim 1, wherein the tetravalent metal compound is a tetravalent metal halide or a tetravalent metal nitrate.
【請求項4】 ペロブスカイト型複合酸化物粉末が、チ
タン酸バリウム系誘電体粉末である請求項1記載のペロ
ブスカイト型複合酸化物粉末の製造方法。
4. The method for producing a perovskite complex oxide powder according to claim 1, wherein the perovskite complex oxide powder is a barium titanate-based dielectric powder.
JP6090663A 1994-04-05 1994-04-05 Production of perovskite-type multiple oxide powder Pending JPH07277710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090663A JPH07277710A (en) 1994-04-05 1994-04-05 Production of perovskite-type multiple oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090663A JPH07277710A (en) 1994-04-05 1994-04-05 Production of perovskite-type multiple oxide powder

Publications (1)

Publication Number Publication Date
JPH07277710A true JPH07277710A (en) 1995-10-24

Family

ID=14004782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090663A Pending JPH07277710A (en) 1994-04-05 1994-04-05 Production of perovskite-type multiple oxide powder

Country Status (1)

Country Link
JP (1) JPH07277710A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035811A1 (en) * 1998-12-11 2000-06-22 Showa Denko K.K. Perovskite type composite oxide containing titanium
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
US6893623B2 (en) * 1998-12-11 2005-05-17 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
JP2005162594A (en) * 2003-06-10 2005-06-23 Showa Denko Kk Perovskite type titanium-containing multiple oxide particle, method for manufacturing the same, and application
US7030165B2 (en) 1999-05-26 2006-04-18 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
JP2017043514A (en) * 2015-08-26 2017-03-02 国立研究開発法人物質・材料研究機構 Method for producing fine particle, method for crushing sintered body and fine particle
WO2023032412A1 (en) * 2021-08-31 2023-03-09 国立研究開発法人産業技術総合研究所 Perovskite-type ceramic compact and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035811A1 (en) * 1998-12-11 2000-06-22 Showa Denko K.K. Perovskite type composite oxide containing titanium
EP1148030A1 (en) * 1998-12-11 2001-10-24 Showa Denko Kabushiki Kaisha Perovskite type composite oxide containing titanium
KR100431213B1 (en) * 1998-12-11 2004-05-12 쇼와 덴코 가부시키가이샤 Perovskite type composite oxide containing titanium
US6893623B2 (en) * 1998-12-11 2005-05-17 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
EP1148030A4 (en) * 1998-12-11 2008-11-19 Showa Denko Kk Perovskite type composite oxide containing titanium
US7030165B2 (en) 1999-05-26 2006-04-18 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
US7091154B2 (en) 1999-05-26 2006-08-15 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
JP2005162594A (en) * 2003-06-10 2005-06-23 Showa Denko Kk Perovskite type titanium-containing multiple oxide particle, method for manufacturing the same, and application
JP2017043514A (en) * 2015-08-26 2017-03-02 国立研究開発法人物質・材料研究機構 Method for producing fine particle, method for crushing sintered body and fine particle
WO2023032412A1 (en) * 2021-08-31 2023-03-09 国立研究開発法人産業技術総合研究所 Perovskite-type ceramic compact and method for manufacturing same

Similar Documents

Publication Publication Date Title
US5900223A (en) Process for the synthesis of crystalline powders of perovskite compounds
JP2635048B2 (en) Preparation of perovskite-based products
CN100506701C (en) Barium titanate and production process thereof
JP4060791B2 (en) Method for producing barium titanate powder
KR101158985B1 (en) Process for producing perovskite compound powder
JP6368246B2 (en) Method for producing coated barium titanate fine particles
JP4102872B2 (en) High crystalline barium titanate ultrafine particles and method for producing the same
JP2011116645A (en) Calcium titanate and method for producing the same
JP4657621B2 (en) Perovskite-type titanium-containing composite oxide particles, production method and use thereof
JPH07277710A (en) Production of perovskite-type multiple oxide powder
EP0439620B1 (en) Method of producing pulverized perovskite compound
JPH0648734A (en) Production of crystalline titanic acid based perovskite-type fine particle
JPH06305729A (en) Fine powder of perovskite type compound and its production
JP2764111B2 (en) Method for producing perovskite ceramic powder
JPH0246531B2 (en)
WO2020217830A1 (en) Method for producing rare earth element-containing titanium hydroxide and titanium dioxide
JP3216160B2 (en) Method for producing perovskite-type composite oxide powder
JPH08119745A (en) Production of ceramic powder
JP2012211058A (en) Barium titanate powder, method for manufacturing barium titanate powder, and ceramic electronic component using the same
JPH0769645A (en) Production of lead-containing multiple oxide
CN115380008B (en) Method for producing perovskite compound, and perovskite compound
JPH04238814A (en) Preparation of titanate of bi- or tri-valent cation
KR20060102928A (en) Manufacturing method of barium titanate powder
JPH04132614A (en) Production of perovskite-type multiple oxide powder
CN116789168A (en) Method for solid phase synthesis of barium titanate powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914