JP2764111B2 - Method for producing perovskite ceramic powder - Google Patents

Method for producing perovskite ceramic powder

Info

Publication number
JP2764111B2
JP2764111B2 JP29546989A JP29546989A JP2764111B2 JP 2764111 B2 JP2764111 B2 JP 2764111B2 JP 29546989 A JP29546989 A JP 29546989A JP 29546989 A JP29546989 A JP 29546989A JP 2764111 B2 JP2764111 B2 JP 2764111B2
Authority
JP
Japan
Prior art keywords
powder
perovskite
raw material
ceramic powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29546989A
Other languages
Japanese (ja)
Other versions
JPH03159903A (en
Inventor
功 長田
辰明 西村
匠 塩谷
繁樹 山縣
一男 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU KOGYO KK
Original Assignee
NIPPON KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU KOGYO KK filed Critical NIPPON KAGAKU KOGYO KK
Priority to JP29546989A priority Critical patent/JP2764111B2/en
Publication of JPH03159903A publication Critical patent/JPH03159903A/en
Application granted granted Critical
Publication of JP2764111B2 publication Critical patent/JP2764111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ペロブスカイト系セラミック粉末、とくに
均一な粒度ならびに結晶化を有する高品位のペロブスカ
イト系のセラミック粉末材料を製造するための方法に関
する。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing perovskite-based ceramic powders, in particular high-quality perovskite-based ceramic powder materials having a uniform grain size and crystallization.

〔従来の技術〕[Conventional technology]

ペロブスカイト系セラミック粉末は、例えばチタン酸
バリウム(BaTiO3)、チタン酸鉛(PbTiO3)、ジルコン
酸カルシウム(CaZrO3)、チタン酸ストロンチウム(Sr
TiO3)など一般にABO3の示性式で表される複合酸化物
で、これらの粉末は強誘電体、セラミックヒーター、圧
電体等の電気部品の原料粉末として有用されている。
Perovskite ceramic powders include, for example, barium titanate (BaTiO 3 ), lead titanate (PbTiO 3 ), calcium zirconate (CaZrO 3 ), strontium titanate (Sr
TiO 3 ) is a composite oxide generally represented by the ABO 3 chemical formula, and these powders are useful as raw material powders for electric components such as ferroelectrics, ceramic heaters, and piezoelectrics.

従来、ペロブスカイト系セラミック粉末は、固相反応
法、アルコキシド法、複合または混合金属シュウ酸塩の
熱分解法、水熱合金法などの方法により得られる生成物
を、電気炉またはガス炉を用いて400〜1300℃程度の温
度域で仮焼したのち粉砕することによって製造されてい
る。
Conventionally, perovskite-based ceramic powder, solid phase reaction method, alkoxide method, pyrolysis method of composite or mixed metal oxalate, product obtained by such methods as hydrothermal alloy method, using an electric furnace or gas furnace It is manufactured by calcining in the temperature range of about 400 to 1300 ° C and then pulverizing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、従来技術における生成物の仮焼・粉砕
のプロセスにより形成されたペロブスカイト系セラミッ
ク粉末には以下のような問題点がある。
However, the perovskite ceramic powder formed by the process of calcining and pulverizing a product in the prior art has the following problems.

ペロブスカイト系セラミック原料粉末を作成するため
の固相反応法、アルコキシド法、複合または混合シュウ
酸塩の熱分解法、水熱合成法、その他の従来方法におい
ては、いずれの方法を適用する場合でもしっかりとした
ペロブスカイト結晶構造を作成するために、原料粉末の
仮焼工程が必要となる。しかしながら、この仮焼工程に
よりせっかく微粉末ペロブスカイト系セラミック原料粉
末を作成しても微粒子間の固相拡散作用により、もとの
微粒子が粒成長をおこして目的とする結晶の発達した微
粒子のペロブスカイト系セラミック原料を得ることを困
難としていた。
In the solid-phase reaction method, alkoxide method, thermal decomposition method of composite or mixed oxalate, hydrothermal synthesis method, and other conventional methods for producing perovskite ceramic raw material powder, even if any method is applied, In order to create the perovskite crystal structure described above, a calcining step of the raw material powder is required. However, even if a fine powder perovskite ceramic raw material powder is prepared by this calcining process, the original fine particles undergo grain growth due to the solid phase diffusion action between the fine particles, and the perovskite ceramic particles having the target crystal developed are developed. It was difficult to obtain ceramic raw materials.

このため、これら原料粉末を用いてセラミックシート
を作成する際にシート厚が厚い場合は問題がないが、最
近のようにセラミックシートの薄層化が要求されてくる
と、微粉末でしかも結晶構造がしっかりした原料粉末の
必要性が一層高利現在までの公知の技術では充分に満足
いく原料粉末は得られていないのが実情である。
For this reason, there is no problem if the sheet thickness is large when making a ceramic sheet using these raw material powders. However, recently, when the ceramic sheet is required to be thinner, a fine powder and a crystal structure are required. The need for a solid raw material powder is even higher. The current state of the art is that no well-known raw material powder has been obtained by the known techniques.

本発明の目的は、上述した従来技術の問題点を解消
し、微細な粉体粒度ならびに極めて均質な結晶構造を備
えるペロブスカイト系セラミック粉末の製造方法を提供
するところにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a perovskite-based ceramic powder having a fine powder particle size and an extremely homogeneous crystal structure.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するための本発明によるペロブスカ
イト系セラミック粉末の製造方法は、ペロブスカイト
(ABO3)系セラミック原料粉末を水媒体に分散させたの
ち、炭酸化剤又はシュウ酸化剤を添加して溶解したAイ
オンと反応せしめて炭酸塩又はシュウ酸塩を沈澱させ、
次いで濾過、乾燥及び仮焼することを構成上の特徴とす
る。
In order to achieve the above object, a method for producing a perovskite-based ceramic powder according to the present invention comprises dispersing a perovskite (ABO 3 ) -based ceramic raw material powder in an aqueous medium and then adding a carbonating agent or an oxidizing agent to dissolve the powder. Reacting with the A ion thus precipitated to precipitate carbonate or oxalate,
Subsequently, filtration, drying, and calcination are the structural features.

本発明の処理対象となるペロブスカイト(ABO3)系セ
ラミック原料粉末は、その製造履歴は特に限定されな
い。即ち、各種の金属炭酸塩および酸化物の固相反応、
アルコオキシド法、シュウ酸塩法又は水熱合成法など、
常用の方法により得られるペロブスカイトの結晶構造を
有する粉末であって、その結晶化度は問わない。
The production history of the perovskite (ABO 3 ) -based ceramic raw material powder to be treated in the present invention is not particularly limited. That is, solid-state reactions of various metal carbonates and oxides,
Alcooxide method, oxalate method or hydrothermal synthesis method,
It is a powder having a crystal structure of perovskite obtained by a conventional method, and its crystallinity is not limited.

このようなものとしては、例えば、BaTiO3、SrTiO3
PbTiO3、CaZrO3などが挙げられるが、工業的には特にBa
TiO3が好ましい。
As such, for example, BaTiO 3 , SrTiO 3 ,
PbTiO 3 , CaZrO 3 and the like are listed.
TiO 3 is preferred.

本発明は、まず、かかる原料粉末を水媒体に所望の手
段により分散させる。
In the present invention, first, such a raw material powder is dispersed in an aqueous medium by a desired means.

なお、原料粉末は微粉末の方がよいことから、粗粒粉
末であるときは、分散処理に先立って粉砕操作を施して
微粉末にすることが望ましい。
Since the raw material powder is preferably fine powder, when it is a coarse powder, it is desirable to perform a pulverizing operation prior to the dispersion treatment to obtain a fine powder.

分散操作は、通常撹拌、高速撹拌、あるいは強力剪断
力が作用するようなホモジナイザー、コロイドミル等の
分散機により、可及的に均一に分散させてスラリーを調
製する。スラリー濃度は特に限定はないが、5〜20wt%
の範囲、多くの場合10wt%の前後が実際的である。温度
は一般的には常温でよいが、必要に応じ加温した状態で
あってもよい。
In the dispersion operation, a slurry is prepared by dispersing the dispersion as uniformly as possible using a disperser such as a homogenizer, a colloid mill, or the like in which normal stirring, high-speed stirring, or strong shearing force acts. The slurry concentration is not particularly limited, but is 5 to 20% by weight.
In most cases, around 10 wt% is practical. The temperature may generally be room temperature, but may be in a heated state as needed.

次に、調製したスラリーに炭酸化剤又はシュウ酸化剤
を添加して溶存するAイオンと反応せしめることにより
不溶性の炭酸塩又はシュウ酸塩の微細沈澱を析出させ
る。
Next, a carbonizing agent or an oxalate oxidizing agent is added to the prepared slurry and reacted with dissolved A ions to precipitate a fine precipitate of insoluble carbonate or oxalate.

即ち、ABO3の示性式で表わされるペロブスカイト原料
粉末は水に対する溶解度は小さいが、前記の分散処理に
伴って、調製スラリーには水媒体の状態に応じたAイオ
ンが溶存する。なお、前記溶解度量のAイオンに限ら
ず、必要に応じAイオンを添加調整することもできる。
That is, although the perovskite raw material powder represented by the ABO 3 chemical formula has a low solubility in water, A ions corresponding to the state of the aqueous medium are dissolved in the prepared slurry with the above-mentioned dispersion treatment. The solubility is not limited to the A ion, and the A ion can be added and adjusted as needed.

本発明はこのAイオン(Ca++、Ba++、Sr++、Pb++
ど)を炭酸化剤又はシュウ酸化剤により不溶性塩の微粒
子に転換させ、該微粒子によってペロブスカイト原料粉
末の粒子表面へ沈積又は被覆させることが重要である。
In the present invention, this A ion (Ca ++ , Ba ++ , Sr ++ , Pb ++, etc.) is converted into fine particles of an insoluble salt with a carbonating agent or an oxidizing agent, and the fine particles of the perovskite raw material powder are converted by the fine particles. It is important that they are deposited or coated.

ここに炭酸化剤としては、炭酸ガス、炭酸水、炭酸ア
ンモニウム溶液、重炭酸アンモニウムとアンモニアの水
溶液であり、シュウ酸化剤としては、シュウ酸溶液、シ
ュウ酸アンモニウム溶液などが挙げられる。
Here, the carbonating agent is a carbon dioxide gas, a carbonated water, an ammonium carbonate solution, an aqueous solution of ammonium bicarbonate and ammonia, and the oxalic oxidizing agent is an oxalic acid solution, an ammonium oxalate solution, or the like.

かかる炭酸化剤又はシュウ酸化剤を原料スラリーと作
用させることにより、溶存するAイオンは速やかに反応
して不溶性炭酸塩又はシュウ酸塩の微細粒子が生成して
ペロブスカイト原料粉末に沈積する。
By causing such a carbonating agent or an oxidizing agent to act on the raw material slurry, the dissolved A ions quickly react to form fine particles of an insoluble carbonate or oxalate and deposit on the perovskite raw material powder.

反応後、濾過、水洗および乾燥して原料粉末を回収
し、次いで仮焼する。
After the reaction, the mixture is filtered, washed with water and dried to recover the raw material powder, and then calcined.

仮焼は、原料粉末を匣鉢の如き耐熱容器に充填しシャ
トルキルンの如き加熱炉中で400〜1300℃の温度域で熱
処理することによっておこない、ついで適宜な粉砕機を
用いて解砕して、製品として仕上げる。
The calcination is performed by filling the raw material powder in a heat-resistant container such as a sagger and heat-treating it in a heating furnace such as a shuttle kiln in a temperature range of 400 to 1300 ° C., and then crushing using an appropriate crusher. Finish as a product.

なお、この焼成操作は、必要に応じ再度行うこともで
きる。
This firing operation can be performed again if necessary.

〔作 用〕(Operation)

本発明によれば、ペロブスカイト系原料粉末が溶解し
たAラインを不溶性の炭酸塩、シュウ酸塩の微細粒子に
転換させ、該原料粉末と共沈澱させることにより原料粒
子の表面に沈積又は被覆する。
According to the present invention, the A line in which the perovskite-based raw material powder is dissolved is converted into fine particles of insoluble carbonate and oxalate, and co-precipitated with the raw material powder to deposit or coat the surface of the raw material particles.

このような、原料粉末を仮焼すると原料粉末の粒子間
にこれと異なる組成の微粒子が介在し、かつ熱分解によ
るガス発生が生ずるためペロブスカイト系の原料粉末の
粒子間の固体拡散作用が阻止されて仮焼に伴う粒成長が
抑制される。
When such raw material powder is calcined, fine particles having a different composition are interposed between the particles of the raw material powder, and gas is generated by thermal decomposition, so that the solid diffusion action between the particles of the perovskite-based raw material powder is prevented. Thus, grain growth accompanying calcination is suppressed.

即ち、Aイオンの炭酸塩又はシュウ酸塩がペロブスカ
イト系原料粉末の仮焼の際粒成長に対する障壁剤として
作用し、仮焼後は分解してもとの組成になって微細なペ
ロブスカイト系セラミック粉末となる。
That is, the carbonate or oxalate of the A ion acts as a barrier agent against grain growth during calcination of the perovskite-based raw material powder, and after calcination, the composition becomes the original composition and becomes fine perovskite-based ceramic powder. Becomes

〔実施例〕〔Example〕

実施例1. シュウ酸バリウムチタニル(BaTiO(C2O4)2・4H
2O)を熱分解して得られたチタン酸バリウムの微粉末1
部を水10部に充分に分散させた。次いで、撹拌しながら
炭酸ガスを吹き込むことにより水に一部溶解したBaイオ
ンと炭酸ガスを反応させ未溶解のチタン酸バリウム(Ba
TiO 3)の粒子表面に生成した炭酸バリウムの微粒子を
沈積させる。炭酸ガスの吹き込みの終点はスラリーのpH
で管理し、6.8に至って吹き込みを停止した。得られた
スラリーを濾過、乾燥し解砕後、匣鉢に入れ1100℃で4
時間、焼成してチタン酸バリウムの微細なセラミック粉
末(本発明品)を得た。
Example 1. barium titanyl oxalate (BaTiO (C 2 O 4) 2 · 4H
2 O) a fine powder 1 barium titanate obtained by pyrolysis
Parts were sufficiently dispersed in 10 parts of water. Then, by blowing carbon dioxide gas with stirring, the Ba ions partially dissolved in water react with the carbon dioxide gas, and undissolved barium titanate (Ba
The barium carbonate fine particles generated are deposited on the TiO 3) particle surface. The end point of carbon dioxide injection is the pH of the slurry
, And stopped blowing when it reached 6.8. The obtained slurry is filtered, dried, crushed, and put in a sagger at 1100 ° C. for 4 hours.
Firing was performed for a long time to obtain a fine ceramic powder of barium titanate (the product of the present invention).

比較のために、炭酸ガス処理をしないで1100℃、4時
間、同様に焼成したチタン酸バリウム粉末のセラミック
粉末(比較例品)を得た。
For comparison, a ceramic powder of barium titanate powder (comparative product) which was similarly calcined at 1100 ° C. for 4 hours without carbon dioxide treatment was obtained.

これら試料粉末につき電子顕微鏡観察により仮焼によ
る粒度の比較を行った。
The particle sizes of these sample powders were determined by calcination by electron microscope observation.

第1図は本発明品、第2図は比較例品の電子顕微鏡写
真である。この写真から明らかなように炭酸ガス処理を
したチタン酸バリウム(本発明品)は仮焼による粒子の
成長が防止されており、他方仮焼により結晶化が進み且
つ微粉末のチタン酸バリウムが出来ていることが判っ
た。
FIG. 1 is an electron micrograph of a product of the present invention, and FIG. 2 is an electron micrograph of a product of a comparative example. As is clear from this photograph, the carbon dioxide-treated barium titanate (product of the present invention) prevents the growth of particles due to calcination, while the crystallization proceeds by calcination and barium titanate as a fine powder is formed. It turned out that.

このチタン酸バリウムを用いて積層コンデンサーを作
成したところ、誘電体損失が小さく、誘電率の大きい層
厚の薄いセラミックコンデンサーを得ることが出来た。
When a multilayer capacitor was prepared using this barium titanate, a thin ceramic capacitor having a small dielectric loss and a large dielectric constant was obtained.

実施例2 炭酸バリウム712部、酸化チタン288部と水2500部をボ
ールミルに入れて4時間混合粉砕を行い、得られたスラ
リーを撹拌機にてさらに充分に混合し濾過、乾燥後、匣
鉢に入れシャトルキルンにて1100℃、2時間焼成しチタ
ン酸バリウムを作成した。次いでこれを粉砕機にて充分
に粉砕し、平均粒度が0.7μm以下の粉末を得た。
Example 2 712 parts of barium carbonate, 288 parts of titanium oxide and 2500 parts of water were put into a ball mill and mixed and pulverized for 4 hours. The obtained slurry was further sufficiently mixed with a stirrer, filtered, dried and then placed in a sagger. It was baked at 1100 ° C for 2 hours in a put shuttle kiln to produce barium titanate. Next, this was sufficiently pulverized by a pulverizer to obtain a powder having an average particle size of 0.7 μm or less.

この粉末を10倍量の水に投入し、充分に撹拌しなが
ら、この粉末に対し3wt%の炭酸アンモニウム水溶液
(重炭酸アンモニウムとアンモニア水で調製)を添加し
た。30分混合し充分に反応させた後、濾過、乾燥し解砕
後、匣鉢に入れ1100℃、4時間、焼成してチタン酸バリ
ウムの微細なセラミック粉末を得た。
This powder was added to a 10-fold amount of water, and a 3 wt% aqueous solution of ammonium carbonate (prepared with ammonium bicarbonate and aqueous ammonia) was added to the powder with sufficient stirring. After mixing for 30 minutes to allow a sufficient reaction, the mixture was filtered, dried, crushed, placed in a sagger, and fired at 1100 ° C. for 4 hours to obtain a fine ceramic powder of barium titanate.

一方、前記において炭酸アンモニウムによる炭酸化処
理をしないものを同様に1100℃、4時間焼成して比較試
料を得た。
On the other hand, a sample not subjected to the carbonation treatment with ammonium carbonate in the above was similarly calcined at 1100 ° C. for 4 hours to obtain a comparative sample.

この二つの試料を電子顕微鏡観察したところ、本発明
に係る炭酸化処理品の方が微細で整粒された粉末である
ことが確認された。
When these two samples were observed with an electron microscope, it was confirmed that the carbonated product according to the present invention was a finer and sized powder.

実施例3. 水酸化バリウムBa(OH)2・8H2O)289.9部とメタチ
タン酸〔TiO(OH)2〕のスラリー(TiO2換算で6部)
と水600部をオートクレープに入れ撹拌しながら温度を9
5℃に保持し、2時間反応を行った。次いで、濾過装置
により固液分離を行い、得られたウエットケーキを洗浄
装置に入れ、温水600部にて充分に洗浄して結晶に付着
した過剰の水酸化バリウムを洗い流した。
Example 3. barium hydroxide Ba (OH) 2 · 8H 2 O) 289.9 parts of metatitanic acid [TiO (OH) 2] a slurry of (6 parts in terms of TiO2)
And 600 parts of water in an autoclave and stir at 9
The reaction was maintained at 5 ° C. for 2 hours. Next, solid-liquid separation was performed by a filtration device, and the obtained wet cake was placed in a washing device, and sufficiently washed with 600 parts of warm water to wash away excess barium hydroxide adhering to the crystals.

次いで、再び濾過を行い、得られた結晶を105℃にて
乾燥後、解砕しチタン酸バリウムの微粉末を得た。この
微粉末のチタン酸バリウム1部に対して10部の水に分散
させ、チタン酸バリウムの投入量の3wt%のシュウ酸ア
ンモニウムをこの分散系に少しづつ添加し、30分間よく
撹拌して反応させた。次いで、スラリーを濾過、乾燥し
解砕後、匣鉢に入れ950℃、4時間焼成してチタン酸バ
リウムの微細なセラミック粉末を得た。
Next, filtration was performed again, and the obtained crystals were dried at 105 ° C. and then pulverized to obtain barium titanate fine powder. 1 part of barium titanate of this fine powder is dispersed in 10 parts of water, and ammonium oxalate in an amount of 3 wt% of the input amount of barium titanate is added little by little to the dispersion, and the mixture is stirred well for 30 minutes to react. I let it. Next, the slurry was filtered, dried and crushed, placed in a sagger, and fired at 950 ° C. for 4 hours to obtain a fine ceramic powder of barium titanate.

一方、前記において、シュウ酸化反応させない未処理
品950℃、4時間同様に焼成して比較試料を得た。
On the other hand, in the above, an untreated product which was not subjected to an oxalation reaction was fired at 950 ° C. for 4 hours to obtain a comparative sample.

この二つの試料を電子顕微鏡観察したところ、本発明
に係るものは焼成による粒度の増大は防止されており、
積層コンデンサーの層厚の薄膜化に対応可能であり、コ
ンデンサーの小型化に適したセラミック粉末であること
が判った。
When these two samples were observed with an electron microscope, the one according to the present invention was prevented from increasing in particle size due to firing,
It was found that it was a ceramic powder suitable for reducing the thickness of the multilayer capacitor and suitable for miniaturization of the capacitor.

実施例4. 炭酸ストロンチウム148部と酸化チタン80部をボール
ミルにて粉砕混合し、得られた粉末を950℃、2時間、
仮焼し一度チタン酸ストロンチウム(SrTiO3)のペロブ
スカイト構造になるまで、固相反応を行い、さらに粉砕
機により粉砕し平均粒度が0.8μm以下の原料粉末を得
た。
Example 4. 148 parts of strontium carbonate and 80 parts of titanium oxide were pulverized and mixed in a ball mill, and the obtained powder was heated at 950 ° C for 2 hours.
After calcining, a solid phase reaction was carried out until a perovskite structure of strontium titanate (SrTiO 3 ) was obtained, followed by pulverization with a pulverizer to obtain a raw material powder having an average particle size of 0.8 μm or less.

この原料粉末1部に対して10部の水にこの原料粉末を
充分に撹拌機により分散させ、この分散系に原料粉末に
対し15wt%の炭酸アンモニウムをゆっくりと添加した。
充分に撹拌機、濾過、乾燥し解砕後、匣鉢に入れてシャ
トルキルンにて1100℃、2時間の焼成した。得られた粉
末を軽く解砕後実施例1と同様に電子顕微鏡観察をした
ところ、未処理品に比較して焼成による粒度の増大は防
止されており、ペロブスカイト構造の強固な微結晶チタ
ン酸ストロンチウムの粉末であることが判った。
This raw material powder was sufficiently dispersed in 10 parts of water with respect to 1 part of the raw material powder by a stirrer, and 15 wt% ammonium carbonate based on the raw material powder was slowly added to the dispersion.
After sufficiently stirring, filtering, drying and crushing, the mixture was placed in a sagger and fired at 1100 ° C. for 2 hours in a shuttle kiln. When the obtained powder was lightly crushed and observed with an electron microscope in the same manner as in Example 1, an increase in the particle size due to firing was prevented as compared with the untreated product, and a strong microcrystalline strontium titanate titanate having a perovskite structure was obtained. Powder.

実施例5. 炭酸カルシウム100部と酸化チタン80部をボールミル
にて混合粉砕し、次に1000℃、4時間焼成を行い、チタ
ン酸カルシウム(CaTiO3)のペロブスカイト構造をもつ
仮焼品を得た。この仮焼品を粉砕機により粉砕して平均
粒度が0.8μm以下の粒子を作成した。この粉末1部を1
0部の水に均一に分散させた後、炭酸ガスを吹き込みス
ラリーのpHが6.8になったら、反応を停止し30分間熟成
した後、濾過、乾燥して粉末を得た。次いで、この粉末
を匣鉢に入れて電気炉にて1100℃、4時間焼成してチタ
ン酸カルシウムのセラミック粉末を得た。
Example 5 100 parts of calcium carbonate and 80 parts of titanium oxide were mixed and pulverized with a ball mill, and then calcined at 1000 ° C. for 4 hours to obtain a calcined product having a perovskite structure of calcium titanate (CaTiO 3 ). . The calcined product was pulverized by a pulverizer to prepare particles having an average particle size of 0.8 μm or less. 1 part of this powder
After uniformly dispersing in 0 parts of water, carbon dioxide gas was blown in, and when the pH of the slurry reached 6.8, the reaction was stopped, the mixture was aged for 30 minutes, and then filtered and dried to obtain a powder. Then, the powder was put in a sagger and fired at 1100 ° C. for 4 hours in an electric furnace to obtain a ceramic powder of calcium titanate.

この粉末を電子顕微鏡観察したところ、炭酸ガスの未
処理品に比較して焼成による粒度の増大は防止されてお
り、微粉末でしかもペロブスカイト構造の結晶の発達し
たセラミック粉末であることが判った。
Observation of this powder with an electron microscope revealed that the particle size was not increased due to firing compared to an untreated carbon dioxide gas product, and it was found to be a fine powder and a ceramic powder with crystals having a perovskite structure developed.

実施例6. 酸化鉛(PbO)221部と酸化チタン80部をボールミルに
て湿式混合粉砕を行い、これを乾燥したのち900℃、2
時間、仮焼し一度チタン酸鉛(PbTiO3)のペロブスカイ
ト構造になるまで固相反応を行い、さらに粉砕機により
粉砕し平均粒度0.8μm以下の粉末にした。次いで、こ
の原料粉末をこの粉末1部に対して10部の水に撹拌機に
て均一に分散させた。この原料粉末に対して5wt%のシ
ュウ酸アンモニウムを徐々に添加し、添加終了後30分間
熟成し濾過、乾燥、凝集粒子を軽く解砕して粉末を得
た。この粉末を匣鉢に入れたのち950℃、2時間、焼成
してチタン酸鉛のセラミック粉末を得た。
Example 6 221 parts of lead oxide (PbO) and 80 parts of titanium oxide were wet-mixed and pulverized with a ball mill, and dried, and then dried at 900 ° C.
After calcination for a time, a solid phase reaction was performed until a perovskite structure of lead titanate (PbTiO 3 ) was obtained, and the mixture was further pulverized by a pulverizer into a powder having an average particle size of 0.8 μm or less. Next, this raw material powder was uniformly dispersed in 10 parts of water with respect to 1 part of the powder by a stirrer. 5 wt% ammonium oxalate was gradually added to the raw material powder, and after the addition was completed, the mixture was aged for 30 minutes, filtered, dried, and lightly pulverized to obtain a powder. This powder was placed in a sagger and calcined at 950 ° C. for 2 hours to obtain a ceramic powder of lead titanate.

この粉末を電子顕微鏡により観察し、シュウ酸アンモ
ニウム未処理品と比較したところ実施例1と同様に粒子
成長は抑制されており、微粒子でしかも粒度分布の良い
結晶構造のしっかりとしたセラミック粉末であることが
判った。
This powder was observed with an electron microscope and compared with an untreated product of ammonium oxalate. As in Example 1, the powder was a fine-grained ceramic powder having fine particles and a fine crystal structure with good particle size distribution. It turns out.

〔発明の効果〕〔The invention's effect〕

本発明によれば、従来のペロブスカイト系セラミック
粉末の製造法に比べて微細かつ整粒した粉末を得ること
ができる。
ADVANTAGE OF THE INVENTION According to this invention, compared with the manufacturing method of the conventional perovskite-type ceramic powder, a fine and sized powder can be obtained.

従って、本発明に係る方法で得られるペロブスカイト
系セラミック粉末は、最近の薄層化が要求されるセラミ
ックシートに追従できるエレクトロセラミック粉末とし
て効果的に適用できるものである。
Therefore, the perovskite-based ceramic powder obtained by the method according to the present invention can be effectively applied as an electroceramic powder that can follow a recent ceramic sheet required to be thinner.

【図面の簡単な説明】[Brief description of the drawings]

図は実施例1により得られたチタン酸バリウム粉末セラ
ミック粉末の粒子構造を示した電子顕微鏡写真(倍率50
00倍)で第1図は本発明品、第2図は比較例品である。
The figure is an electron micrograph (magnification: 50) showing the particle structure of the barium titanate powder ceramic powder obtained in Example 1.
FIG. 1 shows a product of the present invention, and FIG. 2 shows a product of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山縣 繁樹 東京都江東区亀戸9丁目15番1号 日本 化学工業株式会社研究開発部内 (72)発明者 落合 一男 東京都江東区亀戸9丁目15番1号 日本 化学工業株式会社研究開発部内 (56)参考文献 特開 昭64−3019(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 13/14 - 13/36──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeki Yamagata 9-15-1, Kameido, Koto-ku, Tokyo Inside the Research & Development Department, Japan Chemical Industry Co., Ltd. (72) Inventor Kazuo Ochiai 9-15-1, Kameido, Koto-ku, Tokyo No. Japan Chemical Industry Co., Ltd. Research and Development Department (56) References JP-A-64-3019 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01B 13/14-13/36

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ペロブスカイト(ABO3)系セラミック原料
粉末を水媒体に分散させたのち、炭酸化剤又はシュウ酸
化剤を添加して溶解したAイオンと反応せしめて炭酸塩
又はシュウ酸塩を沈澱させ、次いで過、乾燥及び仮焼
することを特徴とするペロブスカイト系セラミック粉末
の製造方法。
1. A perovskite (ABO 3 ) -based ceramic raw material powder is dispersed in an aqueous medium, and then a carbonating agent or an oxalic oxidizing agent is added to react with dissolved A ions to precipitate a carbonate or an oxalate. A method for producing perovskite ceramic powder, which is followed by drying, drying and calcining.
【請求項2】ペロブスカイト系セラミック原料粉末が、
平均粒径が0.1〜5μmの範囲である請求項1記載のペ
ロブスカイト系セラミック粉末の製造方法。
2. The method according to claim 1, wherein the perovskite ceramic raw material powder is
The method for producing a perovskite-based ceramic powder according to claim 1, wherein the average particle diameter is in a range of 0.1 to 5 µm.
【請求項3】炭酸化剤が、炭酸ガス又は炭酸水である請
求項1記載のペロブスカイト系セラミック粉末の製造方
法。
3. The method for producing a perovskite ceramic powder according to claim 1, wherein the carbonating agent is carbon dioxide or carbonated water.
【請求項4】炭酸化剤が、炭酸アンモニウム溶液である
請求項1記載のペロブスカイト系セラミック粉末の製造
方法。
4. The method for producing a perovskite ceramic powder according to claim 1, wherein the carbonating agent is an ammonium carbonate solution.
【請求項5】シュウ酸化剤が、シュウ酸又はシュウ酸ア
ンモニウムである請求項1記載のペロブスカイト系セラ
ミック粉末の製造方法。
5. The method according to claim 1, wherein the oxidizing agent is oxalic acid or ammonium oxalate.
【請求項6】ペロブスカイト系セラミック粉末が、チタ
ン酸バリウムである請求項1、2、3、4又は5いずれ
か記載のペロブスカイト系セラミック粉末の製造方法。
6. The method for producing a perovskite ceramic powder according to claim 1, wherein the perovskite ceramic powder is barium titanate.
JP29546989A 1989-11-13 1989-11-13 Method for producing perovskite ceramic powder Expired - Lifetime JP2764111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29546989A JP2764111B2 (en) 1989-11-13 1989-11-13 Method for producing perovskite ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29546989A JP2764111B2 (en) 1989-11-13 1989-11-13 Method for producing perovskite ceramic powder

Publications (2)

Publication Number Publication Date
JPH03159903A JPH03159903A (en) 1991-07-09
JP2764111B2 true JP2764111B2 (en) 1998-06-11

Family

ID=17821000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29546989A Expired - Lifetime JP2764111B2 (en) 1989-11-13 1989-11-13 Method for producing perovskite ceramic powder

Country Status (1)

Country Link
JP (1) JP2764111B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL115053A (en) * 1994-09-01 1999-11-30 Cabot Corp Ceramic slip compositions and method for making the same
WO2001010781A1 (en) * 1999-08-05 2001-02-15 Korea Institute Of Science And Technology METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
KR100395218B1 (en) * 2001-03-24 2003-08-21 한국과학기술연구원 METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JP4697836B2 (en) * 2001-07-10 2011-06-08 国立大学法人山梨大学 Method for producing barium titanate
JP5025100B2 (en) * 2005-06-27 2012-09-12 京セラ株式会社 Method for producing barium titanate powder
JP6248802B2 (en) * 2014-02-17 2017-12-20 株式会社村田製作所 Method for producing oxide powder having perovskite structure containing alkaline earth metal and group 4 element

Also Published As

Publication number Publication date
JPH03159903A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
EP0641740B1 (en) Process for the synthesis of crystalline ceramic powders of perovskite compounds
Moon et al. Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts
EP1831107B1 (en) Fine lead-zirkonium-titanates and zirconium-titanates and method of production using titaniumdioxide hydrate particles with a specific surface >50 m^2/g
JP4200427B2 (en) Method for producing composite oxide powder
US4670243A (en) Method of precipitating metal titanate powders
JPS6374915A (en) Manufacture of diatomic cation titanate
JP2008285412A (en) Barium titanate
WO2014077176A2 (en) Coated barium titanate particulate and production method for same
US8431109B2 (en) Process for production of composition
JP2764111B2 (en) Method for producing perovskite ceramic powder
JP2709222B2 (en) Method for producing spherical fine powder comprising titanate and spherical fine powder obtained thereby
KR100360118B1 (en) A Method for Preparing Barium Titanate Powder by Oxalate Synthesis
JP2005075700A (en) Method for manufacturing composition
WO2024183195A1 (en) Preparation process for nanoscale tetragonal-phase barium titanate powder
KR20150032999A (en) Perovskite powder, manufacturing method thereof and paste composition for internal electrode comprising the same
JPH0246531B2 (en)
TWI694979B (en) Method for manufacturing barium titanate powder
JP3772354B2 (en) Manufacturing method of ceramic powder
JPH0210089B2 (en)
KR100290247B1 (en) Method for manufacturing barium titanate and perovskite type composite oxide
JPH07277710A (en) Production of perovskite-type multiple oxide powder
Ando et al. Preparation of Pb (Mg1/3Nb2/3) O3-PbTiO3 powder by a wet chemical process
JPH0210091B2 (en)
JPH0328109A (en) Production of compound oxide powder
JPH0210090B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090403

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090403

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100403

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12