JPH0210089B2 - - Google Patents

Info

Publication number
JPH0210089B2
JPH0210089B2 JP58071016A JP7101683A JPH0210089B2 JP H0210089 B2 JPH0210089 B2 JP H0210089B2 JP 58071016 A JP58071016 A JP 58071016A JP 7101683 A JP7101683 A JP 7101683A JP H0210089 B2 JPH0210089 B2 JP H0210089B2
Authority
JP
Japan
Prior art keywords
acid
raw material
aqueous solution
hydroxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58071016A
Other languages
Japanese (ja)
Other versions
JPS59195574A (en
Inventor
Kazumi Okabe
Yutaka Komatsu
Yukio Hamachi
Shozo Kojima
Yoshiharu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP58071016A priority Critical patent/JPS59195574A/en
Publication of JPS59195574A publication Critical patent/JPS59195574A/en
Publication of JPH0210089B2 publication Critical patent/JPH0210089B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は微細な結晶粒径を有するセラミツク
原料粉末の製造方法に関するものである。 従来、セラミツク原料粉末、たとえば
BaTiO3,CaTiO3,SrTiO3などを合成する方法
としては固相反応法がある。しかしながら、この
方法によれば、高温処理を経なければならないた
め粒径が1μm以上と大きくなり、しかも不均一
になるという欠点が見られた。 この他、溶液中での化学反応によりセラミツク
原料を合成する方法がある。この溶液反応による
製造方法としては、たとえばTiイオンとBaなど
Meイオンを、修酸により修酸チタニルバリウム
(BaTiO(C2O4)・4H2O)として沈澱させ、この
沈澱物を700℃以上の温度で加熱分解させて
BaTiO3を合成するという方法(修酸法)があ
る。この修酸法では、0.5μm程度の微粒子を得る
ことができるが、この方法によれば次のような欠
点が見られる。つまり、BaとTiについては同時
に沈澱させることができるが、その他の元素を沈
澱させることができず、BaTiO3以外のその他の
系、およびBaTiO3とその他の系の複合系のセラ
ミツク原料を得る方法としては不適当である。ま
た修酸塩は高価なものであり、工業的な利用面に
おいて不利であるなどの欠点がある。 さらに、この溶液反応による製造方法として
は、たとえば、Ba,Sr,Ca,Ti,Zr,Snなどの
金属アルコキシドのアルコール溶液を作り、各々
所定量を混合したのち水中に加えて加水分解し、
各金属の水酸化物として沈澱させ、過して合成
粉末を得る方法がある。もつともこの場合におい
ては、Ba,Sr,Caなどを水酸化物または塩類の
水溶液として加えても同じ結果が得られることを
付記しておく。 しかしながら、この方法では生成したBa
(OH)2,Sr(OH)2,Ca(OH)2などはほとんどま
たはその一部が水に溶解するので、共沈澱物とは
なり得ず、蒸発乾燥して合成するほかない。また
得られたこれらの析出結晶も他の金属水酸化物と
同等の粒径まで粉砕されるという保証がないなど
の欠点がある。 この発明は上記した従来例の欠点を解消し、微
粉末のセラミツク原料を生成することができる方
法を提供しようとするものである。 すなわち、この発明の要旨とするところは、 (i) 構成元素として少なくともBa,Sr,Caの1
種と構成元素として少なくともTi,Zr,Sn,
Pbの1種とを含む硝酸塩または塩化物の水溶
液に苛性ソーダ、水酸化アンモニウムなどの可
溶性水酸化物水溶液を加えてPHを7〜10に調整
し、少なくともTi,Zr,Sn,Pbの水酸化物の
みを沈澱したのち、PHを前記範囲に保ちつつシ
ユウ酸、クエン酸、酒石酸、およびこれらシユ
ウ酸、クエン酸、酒石酸のアルカリ金属塩、ア
ンモニウム塩からなる有機酸または有機酸塩の
水溶液を加え、少なくともBa,Sr,Caを有機
酸塩として沈澱させる第1の工程と、 (ii) 第1の工程によつて得られた各沈澱物を含む
スラリーを過したのち水洗し、乾燥する第2
の工程と、 (iii) 得られた粉末を仮焼、粉砕する第3の工程
と、からなるセラミツク原料粉末の製造方法で
ある。 上記した第1の工程において、シユウ酸、クエ
ン酸、酒石酸、およびこれらシユウ酸、クエン
酸、酒石酸のアルカリ金属塩、アンモニウム塩の
有機酸または有機酸塩が用いられているが、この
うちシユウ酸、クエン酸、酒石酸のアルカリ金属
塩、アンモニウム塩の有機酸または有機塩として
は、たとえば、シユウ酸ナトリウム、クエン酸ア
ンモニウム、クエン酸ソーダ、酒石酸カリウムな
どがある。 また、上記した工程において、第1の工程で水
酸化物として沈澱させる構成元素として、そのほ
かにBi,Nb,Zn,Y,希土類元素を含有させて
もよく、これらは結晶の粒成長を抑制することが
できる。また、Mn,Al,Siを含有させてもよ
い。これらの元素は鉱化剤としての役割を果す。 さらに、第1の工程において各原料をそれぞれ
所定比率で投入し、完全に沈澱させたスラリーを
第2の工程で過し、さらに第3の工程で仮焼す
ることによつて、比率ズレのないセラミツク原料
を生成することができる。 さらにまた、第1の工程において得られた沈澱
物はその粒子径が約0.01〜0.02μmで、各粒子が
一次粒子同志で隣接する混合物である。そして
過したのち水洗、乾燥することによつて、反応し
やすい活性な原料が得られる。 この原料を第3の工程で仮焼することによつ
て、所定比率のABO3型のセラミツク原料が生成
され、同時に凝集させることができる。セラミツ
ク原料を二次粒子に凝集させるのは、たとえばセ
ラミツクグリーンシートを作るためにバインダと
混練したとき、二次粒子の比表面積(m2/gr)を
小さくし、バインダの使用量が少なくてすむこと
になり、また成形物を焼成したとき収縮率を低下
させることができるからである。なお、仮焼段階
で二次粒子に凝集するが、各原料粒子はあくまで
微粒子同志で混合しており、焼成して得られるセ
ラミツクもフアイングレインのものであり、二次
粒子に凝集させてもフアイングレインのセラミツ
クを得る上で何ら支障となるものではない。 仮焼段階での処理温度は好ましくは700〜1000
℃の範囲で選ばれる。これは700℃未満ではセラ
ミツク原料粉末の合成が十分に行われず、1000℃
を越えると凝集が進みすぎるためである。 また、反応の際、安定剤として過酸化水素水
(H2O2)を加えてもよい。これは溶液が加水分解
して沈澱するのを抑制するためである。 以下、この発明を実施例に従つて詳細に説明す
る。 実施例 1 使用原料として下表に示すものを準備した。
This invention relates to a method for producing ceramic raw material powder having a fine crystal grain size. Traditionally, ceramic raw material powders, such as
A solid phase reaction method is used to synthesize BaTiO 3 , CaTiO 3 , SrTiO 3 , etc. However, this method has disadvantages in that it requires high-temperature treatment, resulting in a large particle size of 1 μm or more and non-uniformity. In addition, there is a method of synthesizing ceramic raw materials by chemical reaction in a solution. As a manufacturing method using this solution reaction, for example, Ti ions and Ba etc.
Me ions are precipitated as titanyl barium oxalate (BaTiO(C 2 O 4 ) 4H 2 O) using oxalic acid, and this precipitate is thermally decomposed at a temperature of 700°C or higher.
There is a method of synthesizing BaTiO 3 (oxidation method). Although this oxalic acid method makes it possible to obtain fine particles of about 0.5 μm, this method has the following drawbacks. In other words, Ba and Ti can be precipitated at the same time, but other elements cannot be precipitated, and this method is used to obtain ceramic raw materials of systems other than BaTiO 3 and composite systems of BaTiO 3 and other systems. It is inappropriate as such. Furthermore, oxalate salts are expensive and disadvantageous in terms of industrial use. Furthermore, as a manufacturing method using this solution reaction, for example, an alcohol solution of metal alkoxide such as Ba, Sr, Ca, Ti, Zr, Sn, etc. is prepared, a predetermined amount of each is mixed, and then added to water and hydrolyzed.
There is a method of precipitating the hydroxide of each metal and filtering it to obtain a synthetic powder. However, it should be noted that in this case, the same result can be obtained even if Ba, Sr, Ca, etc. are added as an aqueous solution of hydroxide or salt. However, in this method, the generated Ba
(OH) 2 , Sr(OH) 2 , Ca(OH) 2 , etc. are mostly or partially dissolved in water, so they cannot form co-precipitates and can only be synthesized by evaporation and drying. Further, there is a drawback that there is no guarantee that the resulting precipitated crystals will be crushed to the same particle size as other metal hydroxides. The present invention aims to eliminate the drawbacks of the above-mentioned conventional examples and to provide a method capable of producing a fine powder ceramic raw material. That is, the gist of this invention is that (i) at least one of Ba, Sr, and Ca is used as a constituent element;
Species and constituent elements include at least Ti, Zr, Sn,
A soluble hydroxide aqueous solution such as caustic soda or ammonium hydroxide is added to an aqueous solution of nitrate or chloride containing one type of Pb to adjust the pH to 7 to 10, and at least hydroxides of Ti, Zr, Sn, and Pb are added. After precipitating only oxalic acid, citric acid, tartaric acid, and an aqueous solution of an organic acid or an organic acid salt consisting of an alkali metal salt or ammonium salt of oxalic acid, citric acid, or tartaric acid, while maintaining the pH within the above range, (ii) a second step in which the slurry containing each precipitate obtained in the first step is filtered, washed with water, and dried;
(iii) a third step of calcining and pulverizing the obtained powder. In the first step described above, oxalic acid, citric acid, tartaric acid, and organic acids or organic acid salts of alkali metal salts and ammonium salts of oxalic acid, citric acid, and tartaric acid are used. Examples of organic acids or organic salts of alkali metal salts and ammonium salts of citric acid and tartaric acid include sodium oxalate, ammonium citrate, sodium citrate, and potassium tartrate. In addition, in the above step, Bi, Nb, Zn, Y, and rare earth elements may be included as constituent elements to be precipitated as hydroxide in the first step, and these suppress grain growth of crystals. be able to. Furthermore, Mn, Al, and Si may be contained. These elements act as mineralizing agents. Furthermore, each raw material is added in a predetermined ratio in the first step, the completely precipitated slurry is passed through the second step, and further calcined in the third step, so that there is no difference in ratio. Ceramic raw materials can be produced. Furthermore, the precipitate obtained in the first step has a particle size of about 0.01 to 0.02 μm, and is a mixture of adjacent primary particles. Then, by washing with water and drying, an active raw material that is easily reactive can be obtained. By calcining this raw material in the third step, an ABO 3 type ceramic raw material having a predetermined ratio is produced and can be coagulated at the same time. Agglomerating ceramic raw materials into secondary particles reduces the specific surface area (m 2 /gr) of the secondary particles when kneaded with a binder to make ceramic green sheets, for example, so that the amount of binder used can be reduced. This is also because the shrinkage rate can be reduced when the molded product is fired. Although it aggregates into secondary particles in the calcination stage, each raw material particle is just a mixture of fine particles, and the ceramic obtained by firing is also fine grained, so even if it is aggregated into secondary particles. There is no problem in obtaining fine grain ceramics. The processing temperature at the calcination stage is preferably 700-1000
Selected in the range of °C. This is because the synthesis of ceramic raw material powder does not take place sufficiently at temperatures below 700℃, and at temperatures below 700℃,
This is because aggregation will proceed too much if it exceeds this. Furthermore, during the reaction, hydrogen peroxide (H 2 O 2 ) may be added as a stabilizer. This is to prevent the solution from being hydrolyzed and precipitated. Hereinafter, this invention will be explained in detail according to examples. Example 1 The raw materials shown in the table below were prepared.

【表】 槽中、BaCl2,TiCl2,SnCl2,SiCl4および
MnCl4・4H2Oの各水溶液を混合し、安定剤であ
る30%過酸化水素水15mlを加え、これに水酸化ア
ンモニウム(NH4OH)を加えてPHを9〜9.5に
調整し、Ti,Sn,Si,Mnを含む水酸化物を沈澱
させた。水酸化物が完全に沈澱したのちPHを9〜
9.5に保ち、クエン酸アンモニウム水溶液を加え、
クエン酸バリウムとして沈澱させた。 次いで、混合した沈澱物のスラリーを過した
のち水洗し、この水洗原料をボールミルで混合
し、ひきつづいて過、乾燥したところ、0.02μ
mの微粒子状のセラミツク原料粉末を得た。 そののち、900℃の温度で1時間仮焼し、Ba
(Ti,Sn)O3系の仮焼粉末を得た。 この仮焼粉末にバインダを加えて造粒し、圧力
1000Kg/cm2で成形して10mmφ、1mmtの円板と
し、これを1300℃、2時間の条件で焼成して円板
磁器を得た。この円板磁器の両面に銀ペーストを
塗布し、800℃、30分間の条件で焼き付けて電極
を形成し、コンデンサを得た。 このコンデンサの誘電率(ε)、誘電損失
(tanδ)、誘電率の温度特性(TC)、および耐電圧
特性を測定し、その結果を下表に示した。 誘電率(ε)、誘電損失(tanδ)は1KHz,
1Vr.m.s.の条件で測定し、また誘電率の温度特性
(Tc)は+25℃を基準にして+10℃〜+85℃の温
度範囲で測定した値である。
[Table] BaCl 2 , TiCl 2 , SnCl 2 , SiCl 4 and
Mix each aqueous solution of MnCl 4 4H 2 O, add 15 ml of 30% hydrogen peroxide as a stabilizer, add ammonium hydroxide (NH 4 OH) to adjust the pH to 9 to 9.5, and , hydroxides containing Sn, Si, and Mn were precipitated. After the hydroxide is completely precipitated, the pH is adjusted to 9~
Maintain the temperature at 9.5, add ammonium citrate aqueous solution,
It was precipitated as barium citrate. Next, the slurry of mixed precipitates was filtered and washed with water, and the washed raw materials were mixed in a ball mill, successively filtered and dried, and the result was 0.02μ
A ceramic raw material powder in the form of fine particles of m was obtained. After that, it was calcined at a temperature of 900℃ for 1 hour, and Ba
(Ti, Sn)O 3 -based calcined powder was obtained. Add a binder to this calcined powder, granulate it, and pressurize it.
It was molded at 1000 Kg/cm 2 to form a disk of 10 mmφ and 1 mm thick, which was fired at 1300° C. for 2 hours to obtain a disk porcelain. Silver paste was applied to both sides of this porcelain disc and baked at 800°C for 30 minutes to form electrodes and obtain a capacitor. The dielectric constant (ε), dielectric loss (tan δ), temperature characteristic of dielectric constant (TC), and withstand voltage characteristics of this capacitor were measured, and the results are shown in the table below. Dielectric constant (ε) and dielectric loss (tanδ) are 1KHz,
It was measured under the condition of 1 Vr.ms, and the temperature characteristic (Tc) of the dielectric constant was measured in a temperature range of +10°C to +85°C with +25°C as a reference.

【表】 実施例 2 使用原料として下表に示すものを準備した。【table】 Example 2 The raw materials shown in the table below were prepared.

【表】 槽中において、Ba(NO32,Ca(NO32
4H2O,TiCl4,ZrOCl2・8H2O,SnCl4,Bi
(NO33・5H2O,Pb(NO32,Sm(NO33・6H2O
の各水溶液を混合し、これに安定剤である30%過
酸化水素水15mlを加え、さらに苛性ソーダ
(NaOH)を加えてPHを7〜10に調整し、Ti,
Zr,Sn,Bi,Pb,Snを含む水酸化物を沈澱させ
た。さらにシユウ酸ソーダと少量の塩酸を加えて
シユウ酸バリウム(BaC2O4)、シユウ酸カルシ
ウム(CaC2O4)を沈澱させた。 次に、混合した沈澱物のスラリーを過したの
ち水洗した。この水洗原料をボールミルで混合
し、ひきつづき過、乾燥したところ、0.015μm
の微粒子状のセラミツク原料粉末を得た。 そののち、800℃の温度で1時間仮焼し、(Ba,
Ca,Pb)(Ti,Zr,Sn,Bi)O3系の仮焼粉末を
得た。 この仮焼粉末を実施例1と同様に処理してコン
デンサを作成し、その電気特性を測定してその結
果を下表に示した。 なお、焼成温度は1120℃であつた。
[Table] In the tank, Ba(NO 3 ) 2 , Ca(NO 3 ) 2 .
4H 2 O, TiCl 4 , ZrOCl 2・8H 2 O, SnCl 4 , Bi
(NO 3 ) 3・5H 2 O, Pb(NO 3 ) 2 , Sm(NO 3 ) 3・6H 2 O
Mix each aqueous solution of Ti, add 15 ml of 30% hydrogen peroxide as a stabilizer, and further add caustic soda (NaOH) to adjust the pH to 7 to 10.
Hydroxides containing Zr, Sn, Bi, Pb, and Sn were precipitated. Further, sodium oxalate and a small amount of hydrochloric acid were added to precipitate barium oxalate (BaC 2 O 4 ) and calcium oxalate (CaC 2 O 4 ). Next, the slurry of mixed precipitates was filtered and washed with water. When this water-washed raw material was mixed in a ball mill, successively filtered and dried, it was found to have a particle size of 0.015 μm.
A ceramic raw material powder in the form of fine particles was obtained. After that, it was calcined at a temperature of 800℃ for 1 hour, and (Ba,
A calcined powder of Ca, Pb) (Ti, Zr, Sn, Bi) O 3 system was obtained. This calcined powder was treated in the same manner as in Example 1 to prepare a capacitor, and its electrical characteristics were measured and the results are shown in the table below. Note that the firing temperature was 1120°C.

【表】 また、この原料を用いて積層コンデンサを作成
し、その電気特性を測定した。 試料の作成は、仮焼原料粉末にバインダ、分散
剤などを加えてペースト状とし、これを印刷方式
で厚み20μmの誘電体セラミツク層を作成し、内
部電極としてAg:Pd=70:30のAg―Pd系ペー
ストを印刷し、これを交互に繰り返して誘電体セ
ラミツク層の積層枚数を10枚とした。次いで焼成
温度1120℃、焼成時間2時間の条件で焼成し、両
端面に外部接続電極を形成して積層コンデンサを
得た。得られた積層コンデンサの大きさは4mm×
3mm×0.15mmであり、その静電容量は0.43μFであ
つた。また焼成後の誘導体セラミツク層の1枚当
りの厚みは12μmであつた。 実施例 3 使用原料として下表に示すものを準備した。
[Table] In addition, a multilayer capacitor was created using this raw material and its electrical characteristics were measured. To prepare the sample, binder, dispersant, etc. were added to the calcined raw material powder to form a paste, which was then printed to form a dielectric ceramic layer with a thickness of 20 μm, and an Ag:Pd ratio of 70:30 was used as the internal electrode. - Pd-based paste was printed and this was repeated alternately to make 10 dielectric ceramic layers. Next, it was fired at a firing temperature of 1120° C. for a firing time of 2 hours, and external connection electrodes were formed on both end faces to obtain a multilayer capacitor. The size of the obtained multilayer capacitor is 4mm×
It was 3 mm x 0.15 mm, and its capacitance was 0.43 μF. The thickness of each dielectric ceramic layer after firing was 12 μm. Example 3 The raw materials shown in the table below were prepared.

【表】 槽中において、BaCl2・2H2O,NdCl3
6H2O,TiCl4,Bi(NO33・5H2O,MnCl4
4H2O,SiCl4の各水溶液を混合し、安定剤である
30%過酸化水素水10mlを加え、これに水酸化アン
モニウム(NH4OH)を加えてPHを9〜9.5に調
整し、Nd,Ti,Bi,Mn,Siを含む水酸化物を
沈澱させた。さらにPHを9〜9.5に保ちつつ、酒
石酸カリウム水溶液と少量の硝酸を加えて、酒石
酸バリウムを沈澱させた。 次に、混合した沈澱物のスラリーを過したの
ち水洗した。この水洗原料をボールミルで混合
し、ひきつづき過したところ、0.01μmの微粒
子状の原料粉末を得た。 そののち、800℃の温度で1時間仮焼し、(Ba,
Nd)(Ti,Bi)O7系の仮焼粉末を得た。 この仮焼粉末を実施例1と同様に処理してコン
デンサを作成し、その電気特性を測定してその結
果を下表に示した。 なお、焼成温度は1100℃であつた。また誘電率
の温度特性(TC)は+25℃を基準にして−55〜
+125℃の温度範囲で測定した値である。
[Table] In the tank, BaCl 2・2H 2 O, NdCl 3
6H 2 O, TiCl 4 , Bi(NO 3 ) 3・5H 2 O, MnCl 4
Mix the aqueous solutions of 4H 2 O and SiCl 4 , which are stabilizers.
10 ml of 30% hydrogen peroxide solution was added, and ammonium hydroxide (NH 4 OH) was added to adjust the pH to 9 to 9.5 to precipitate hydroxides containing Nd, Ti, Bi, Mn, and Si. . Further, while maintaining the pH at 9 to 9.5, an aqueous potassium tartrate solution and a small amount of nitric acid were added to precipitate barium tartrate. Next, the slurry of mixed precipitates was filtered and washed with water. The water-washed raw materials were mixed in a ball mill and successively passed to obtain raw material powder in the form of fine particles of 0.01 μm. After that, it was calcined at a temperature of 800℃ for 1 hour, and (Ba,
A calcined powder of Nd)(Ti,Bi)O 7 system was obtained. This calcined powder was treated in the same manner as in Example 1 to prepare a capacitor, and its electrical characteristics were measured and the results are shown in the table below. Note that the firing temperature was 1100°C. In addition, the temperature characteristic (TC) of the dielectric constant is -55 to +25℃.
This is a value measured in a temperature range of +125℃.

【表】 実施例 4 使用原料として下表に示すものを準備した。【table】 Example 4 The raw materials shown in the table below were prepared.

【表】 槽中において、CaCl2,TiCl4,Nb2Cl5の各水
溶液を混合し、安定剤である30%過酸化水素水25
mlを加え、これに苛性ソーダ(NaOH)を加え
てPHを9〜9.5に調整し、Ti,Nbを含む水酸化物
を沈澱させた。さらに少量のアンモニア水を加え
てPHを9〜9.5に保ちつつ、シユウ酸を加えて酒
石酸カルシウムとして沈澱させた。 次に、混合した沈澱物のスラリーを過したの
ち水洗した。この水洗原料をボールミルで混合
し、ひきつづき過、乾燥したところ、0.01μm
の微粒子状の原料粉末を得た。 そののち、800℃の温度で1時間仮焼し、Ca
(Ti,Nb)O3系の仮焼粉末を得た。 この仮焼粉末を実施例1と同様にしてコンデン
サを作成し、その電気特性を測定してその結果を
下表に示した。 なお、焼成温度は1100℃であつた。また誘電率
の温度特性(TC)は+25℃を基準にして−55〜
+125℃の温度範囲で測定した値である。
[Table] Mix aqueous solutions of CaCl 2 , TiCl 4 , and Nb 2 Cl 5 in a tank, and add 30% hydrogen peroxide solution 25 as a stabilizer.
ml was added thereto, and the pH was adjusted to 9 to 9.5 by adding caustic soda (NaOH) to precipitate hydroxides containing Ti and Nb. Further, a small amount of aqueous ammonia was added to maintain the pH at 9 to 9.5, and oxalic acid was added to precipitate calcium tartrate. Next, the slurry of mixed precipitates was filtered and washed with water. When this water-washed raw material was mixed in a ball mill, successively filtered and dried, it was found to have a particle diameter of 0.01 μm.
A finely divided raw material powder was obtained. After that, the Ca
(Ti, Nb) O 3 -based calcined powder was obtained. A capacitor was prepared from this calcined powder in the same manner as in Example 1, and its electrical characteristics were measured. The results are shown in the table below. Note that the firing temperature was 1100°C. In addition, the temperature characteristic (TC) of the dielectric constant is -55 to +25℃.
This is a value measured in a temperature range of +125℃.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (i) 構成元素として少なくともBa,Sr,Ca
の1種と構成元素として少なくともTi,Zr,
Sn,Pbの1種とを含む硝酸塩または塩化物の
水溶液に苛性ソーダ、水酸化アンモニウムなど
の可溶性水酸化物水溶液を加えてPHを7〜10に
調整し、少なくともTi,Zr,Sn,Pbの水酸化
物のみを沈澱したのち、PHを前記範囲に保ちつ
つシユウ酸、クエン酸、酒石酸、およびこれら
シユウ酸、クエン酸、酒石酸のアルカリ金属
塩、アンモニウム塩からなる有機酸または有機
酸塩の水溶液を加え、少なくともBa,Sr,Ca
を有機酸塩として沈澱させる第1の工程と、 (ii) 第1の工程によつて得られた各沈澱物を含む
スラリーを過したのち水洗し、乾燥する第2
の工程と、 (iii) 得られた粉末を仮焼、粉砕する第3の工程
と、 からなるセラミツク原料粉末の製造方法。 2 第1の工程において、少なくともTi,Zr,
Sn,Pbの1種のほか、構成元素としてさらにBi,
Nb,Zn,Y,希土類元素、Mn,Al,Siのうち
少なくとも1種を含有させ、水酸化物として沈澱
させることからなる特許請求の範囲第1項記載の
セラミツク原料粉末の製造方法。 3 第3の工程における仮焼温度は700℃〜1000
℃である特許請求の範囲第1項記載のセラミツク
原料粉末の製造方法。
[Claims] 1 (i) At least Ba, Sr, Ca as constituent elements
and at least Ti, Zr,
Add a soluble hydroxide aqueous solution such as caustic soda or ammonium hydroxide to an aqueous solution of nitrate or chloride containing at least one of Sn, Pb, and adjust the pH to 7 to 10. After precipitating only the oxide, an aqueous solution of an organic acid or organic acid salt consisting of oxalic acid, citric acid, tartaric acid, and an alkali metal salt or ammonium salt of these oxalic acid, citric acid, or tartaric acid is added while maintaining the pH within the above range. In addition, at least Ba, Sr, Ca
(ii) a second step in which the slurry containing each precipitate obtained in the first step is filtered, washed with water, and dried;
and (iii) a third step of calcining and pulverizing the obtained powder. 2 In the first step, at least Ti, Zr,
In addition to Sn and Pb, additional constituent elements include Bi,
A method for producing ceramic raw material powder according to claim 1, which comprises containing at least one of Nb, Zn, Y, rare earth elements, Mn, Al, and Si and precipitating it as a hydroxide. 3 The calcination temperature in the third step is 700℃~1000℃
The method for producing ceramic raw material powder according to claim 1, wherein the temperature is .degree.
JP58071016A 1983-04-21 1983-04-21 Manufacture of ceramic raw material powder Granted JPS59195574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071016A JPS59195574A (en) 1983-04-21 1983-04-21 Manufacture of ceramic raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071016A JPS59195574A (en) 1983-04-21 1983-04-21 Manufacture of ceramic raw material powder

Publications (2)

Publication Number Publication Date
JPS59195574A JPS59195574A (en) 1984-11-06
JPH0210089B2 true JPH0210089B2 (en) 1990-03-06

Family

ID=13448290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071016A Granted JPS59195574A (en) 1983-04-21 1983-04-21 Manufacture of ceramic raw material powder

Country Status (1)

Country Link
JP (1) JPS59195574A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227328A (en) * 1985-07-23 1987-02-05 Ube Ind Ltd Production of easily sinterable powdery starting material for perovskite and its solid solution
US4814128A (en) * 1985-08-01 1989-03-21 Gte Laboratories Incorporated Process for making a homogeneous doped silicon nitride article
US4834928A (en) * 1985-08-01 1989-05-30 Gte Laboratories Incorporated Doped silicon nitride article
JPS6236023A (en) * 1985-08-06 1987-02-17 Ube Ind Ltd Production of calcined powder of easily sinterable perovskite
JPS6278108A (en) * 1985-10-02 1987-04-10 Natl Inst For Res In Inorg Mater Production of powdery raw material of perovskite and solid solution thereof
JPS62202821A (en) * 1986-03-04 1987-09-07 Ube Ind Ltd Production of powdery raw material of easily sintering composite perovskite by multi-stage wet process
DK168738B1 (en) * 1991-04-30 1994-05-30 Topsoe Haldor As Ceramic binder, manufacture and use thereof

Also Published As

Publication number Publication date
JPS59195574A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
US4537865A (en) Process for preparing a particulate ceramic material
JPH0459261B2 (en)
US5180699A (en) Process for producing powder material for lead perovskite ceramic
JPH0210089B2 (en)
JPH0665603B2 (en) Method for producing composite oxide ceramic powder
JPH0210091B2 (en)
JP3163649B2 (en) Manufacturing method of ceramic raw material powder
JPH0246531B2 (en)
JP2764111B2 (en) Method for producing perovskite ceramic powder
JPH0210090B2 (en)
JPH0580427B2 (en)
US4820669A (en) Process for preparing powdered ceramic raw materials of complex oxide
JP2885599B2 (en) Barium titanate-based powder composition and method for producing semiconductor porcelain composition using the same
JP2767584B2 (en) Method for producing fine perovskite ceramic powder
JPH0769645A (en) Production of lead-containing multiple oxide
JPS6328844B2 (en)
KR100555400B1 (en) The Preparation of Barium Titanate based powder with dielective composition by oxalate snythesis
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPH013019A (en) Method for producing perovskite ceramic fine powder
JPH0676258B2 (en) Method for manufacturing ceramic dielectric
JPH0463815B2 (en)
JPH0329729B2 (en)
JPS6325223A (en) Production of ceramic raw material powder
JPH05116943A (en) Production of barium titanate powder