JP2767584B2 - Method for producing fine perovskite ceramic powder - Google Patents
Method for producing fine perovskite ceramic powderInfo
- Publication number
- JP2767584B2 JP2767584B2 JP18001487A JP18001487A JP2767584B2 JP 2767584 B2 JP2767584 B2 JP 2767584B2 JP 18001487 A JP18001487 A JP 18001487A JP 18001487 A JP18001487 A JP 18001487A JP 2767584 B2 JP2767584 B2 JP 2767584B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- precipitate
- perovskite
- fine powder
- oxalic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Iron (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はTiを含むシュウ酸溶液とその他の金属元素を
含む酢酸溶液とから沈殿物をつくる、いわゆる湿式法に
よるペロブスカイト型セラミックス微粉末の製造方法に
関する。
〔従来の技術〕
ペロブスカト型セラミックスは一般にABO3として表わ
され、その粉末は強誘電体、圧電体などの電気部材の原
料として用いられている。たとえばPb(Zr,Ti)O3系の
ペロブスカイト型固溶体セラミックスは特に圧電特性が
高いことが知られているが、さらに誘電率や圧電特性な
どを改善するためにある種の金属元素、たとえばSr、B
a、Nb、Ta、Mg、Fe、Mn、Co、Niなどの1種または2種
以上を添加して用いられることが多い。
これらペロブスカイト型セラミックス粉末の製法は乾
式法、湿式法、両者の組み合わせ法など多くの方法が開
発されており、たとえば最近ではシュウ酸エタノール法
(窯協誌、94〔5〕1823頁、1986)やその改良法(特開
昭61−251519)が提案されている。
これら従来法はシュウ酸がエタノールやイソプロパノ
ールに可溶であることおよびPb、Zr、Tiの各シュウ酸塩
がアルコールに難溶であることに着目して開発されたも
のである。具体的にはシュウ酸をアルコールに溶解して
得たシュウ酸アルコール溶液と、Pb、Zr、Tiの各イオン
を溶解させた硝酸溶液とを混合して複合シュウ酸塩から
なる沈殿物を生成させ、得られた沈殿物をアルコールで
洗浄後、過、乾燥、粉砕したものを空気中、500〜110
0℃で仮焼(熱分解)するペロブスカイト型セラミック
ス粉末の製造方法である。
〔発明が解決しようとする問題点〕
従来法では複合シュウ酸塩は硝酸根を含む溶液中で生
成し沈殿させるため、複合シュウ酸塩の粒子表面に硝酸
根が吸着される。生成した複合シュウ酸塩は表面活性が
非常に高いため、吸着した硝酸根は水やアルコールで洗
浄しても充分には除去できない。したがって複合シュウ
酸塩は硝酸根を吸着したまま乾燥され仮焼炉で仮焼され
る。
そのため仮焼の際の温度で硝酸根が遊離分解し、窒素
酸化物となってガス化し、炉壁を侵食し、その耐久性を
低下させたり、また炉から排出した窒素酸化物ガスは環
境を悪化させるなど操業上いくつかの問題点があった。
〔問題点を解決するための手段〕
本発明者らは窒素を含まない化合物を用いて複合シュ
ウ酸塩の沈殿物を生成できる湿式法について研究した結
果、以下に述べるような発明を完成した。
すなわち、本発明の一つは一般式ABO3
(但し、Aは酸素12配位金属元素の1種または2種以上
を、Bは2種以上の金属元素からなり、一つはTi、他は
Ti以外の酸素6配位金属元素から選ばれた1種以上を示
す。)
で表わされるペロブスカイト型セラミックス微粉末の製
造に際し、シュウ酸アルコール溶液にチタンアルコキシ
ドを溶解させた溶液(以下「溶液(I)」と称する)
と、A成分およびTi以外のB成分の金属元素を含む酢酸
水溶液(以下「溶液(II)」と称する)を混合して沈殿
を生成させ、該沈殿物を乾燥し、仮焼してつくるペロブ
スカイト型セラミックス微粉末の製造方法であり、もう
一つの発明は前記製造過程においてNb2O5および/また
はTa2O5の粉末を添加してつくるペロブスカイト型セラ
ミックス微粉末の製造方法を要旨とするものである。
ここで、一般式ABO3で表わされるペロブスカイト型セ
ラミックスとは、B原子が立方格子の中心を占め、6個
のOイオンによって八面体的に囲まれた構造に、A原子
が立方格子の中心に位置してペロブスカイト型構造が形
成されたセラミックスである。従ってB原子は6個のO
原子、A原子は12個のO原子に囲まれ、AO原子は立法最
密充填格子を形成している。
Aの酸素12配位金属元素としては、Pb、Sr、La、Ba、
Caなどがあり、Bの酸素6配位金属元素としては、Ti、
Zr、Mg、Feなどが挙げられる。
以下、本発明の第一発明から順次詳細に説明する。
第一発明に使用する原料はシュウ酸、アルコール、チ
タンアルコキシド、A成分も含む化合物、Tiを除いたB
成分の化合物ならびに酢酸または酢酸塩である。
シュウ酸、アルコールおよびチタンアルコキシドは通
常市販されているものが使用される。アルコールはエタ
ノール、メタノール、n−プロパノール、iso−プロパ
ノール、n−ブタノール等特に限定しないが、好ましく
は30vol%以上のアルコール分を含有し、10vol%以上の
水を含むものがよい。経済性を考えるならメタノールが
安価であり望ましい。
シュウ酸は無水物、2水物いずれを用いてもよい。ま
たチタンアルコキシドとしてはチタンテトライソプロポ
キシドが好ましいが、シュウ酸アルコール溶液に可溶な
アルコキシドならば特に限定しない。
A成分を含む化合物、およびTi以外のB成分を含む化
合物としては酢酸塩、炭酸塩、水酸化等窒素を含まず、
かつ酢酸に溶解するものが用いられる。
次にシュウ酸、アルコール、チタンアルコキシドを用
いて溶液(I)をつくる方法を述べる。
シュウ酸をアルコールに溶解させる方法、および得ら
れたシュウ酸アルコール溶液にチタンアルコキシドを溶
解させて溶液(I)をつくる方法はいずれも慣用の方法
で行う。
シュウ酸の使用量は用いる化合物の種類や量によって
異なるが、複合シュウ酸塩として沈殿させるために必要
な量以上あればよく、特に限定しない。アルコールの使
用量はシュウ酸を完全に溶解させるに足る量以上であれ
ばよい。
A成分およびTi以外のB成分を含むそれぞれの化合物
から溶液(II)をつくる方法は、それらの化合物が酢酸
塩であれば水に溶解させればよく、炭酸塩や水酸化物の
場合には酢酸水溶液に溶解させる。溶解のさせ方はいず
れも慣用の方法による。
上記溶液(II)をつくるさいのA成分およびTi以外の
B成分の各化合物の溶解量および溶液(I)と(II)の
混合量は、終局的に得られるペロブスカイト微粉末に含
まれる金属元素が所望の構成比になるように溶解しなけ
ればならないが、本発明においてはその構成比を特に限
定しない。
溶液(I)および(II)の混合は単に一方の溶液を撹
拌しながら他方の溶液を添加すればよく、それによって
それぞれの金属元素を含むシュウ酸塩が生成し、複合シ
ュウ酸塩として混合された状態で共沈する。
得られた沈殿物は過し、乾燥したのち、空気中400
〜1100℃、好ましくは500〜900℃で仮焼することにより
粒径がサブミクロンのペロブスカイト型セラミックス微
粉末が得られる。
本発明の第二の発明は前記第一の発明の製造過程にお
いて、Nb2O5および/またはTa2O5の粉末を添加して多元
系ペロブスカイト型セラミックス微粉末を製造する方法
である。
Nb2O5およびTa2O5はいずれも市販のものが使用され
る。
それら化合物の添加は第一発明の仮焼工程前ならどの
工程で行なってもよい。たとえば溶液(I)および溶液
(II)のいずれかの製造過程、溶液(I)と溶液(II)
を混合する過程、混合したのちの懸濁液中、沈殿の乾燥
物等々いずれの段階で添加してもよい。添加はNb2O5お
よび/またはTa2O5の粉末を2分し、それぞれを適当な
段階で添加するようにしても効果は同じである。なお添
加はできるだけ早い段階で行なうのが、混合が十分にな
るので好ましい。
Nb2O5およびTa2O5の添加は一方だけでもよく、また両
化合物であってもよい。その添加量は本発明では特に限
定しない。
Nb2O5およびTa2O5の細かさは均一に分散させるために
できるだけ細かい方がよい。特に懸濁液に添加する場合
は平均粒径3μm以下であると、沈殿物との沈降分離が
起こらないので望ましい。
以下本発明を実施例によって説明する。
〔実施例1〕
Pb(Ti,Zr)O3を以下のようにして製造した。
シュウ酸(二水物)140g(1.1モル)をメタノール(9
9vol%)1に溶解させた溶液に、撹拌しながらチタン
テトライソプロポキシド(Ti濃度3.323モル/)72.2m
lを霧状にして加え、透明な溶液(I)をつくった。
一方、酢酸ジルコニル(Zr濃度、1.458モル/)に
純水300mlを加え、次いで撹拌しながら酢酸鉛(三水
塩)189.7g(PbO換算0.5モル)を加えて溶解させて透明
な溶液(II)をつくった。
溶液(I)を撹拌しながら溶液(II)を霧状にして加
え沈殿を生成させ、吸引過(紙5C)して沈殿を分別
した。この沈殿物を70℃、24時間乾燥したのち、大気中
600℃、1時間電気炉で仮焼した。
この微粉末の細かさおよび生成鉱物について自動沈降
式粒度測定器およびX線回折計で調べたところ、平均粒
径は0.3μmの単一鉱物のペロブスカイト型セラミック
ス微粉末であった。
〔実施例2〕
(Pb,La)(Ti,Zr,Mg)O3からなるペロブスカイト型
セラミックス微粉末を以下のようにして製造した。
シュウ酸二水塩126.0gをメタノール(99.9vol%)300
mlに溶解させた溶液を撹拌しながら、チタンテトライソ
プロポキシド(Ti濃度3.323モル/)52.7mlを霧状に
して加え、さらに純水500mlを加えて透明な溶液(I)
をつくった。
一方溶液(II)は次のようにしてつくった。すなわち
酢酸ジルコニル(Zr濃度1.458モル/)222.9mlに純水
400mlを加え、撹拌しながら酢酸鉛三水塩174.5g(PbO換
算0.46モル)を溶解させた透明な溶液と、酢酸50mlに純
水50mlを加え撹拌しながらLa2O3粉末6.5gとMgCO3粉末1.
7g(MgO換算0.8g)を加えて溶解させた溶液とを混合し
て透明な溶液(II)をつくった。
次いで、溶液(I)を撹拌しながら、溶液(II)を霧
状にして加え沈殿を生成させ、吸引過して沈殿を分別
した。
得られた沈殿を70℃、24時間乾燥したのち、大気中70
0℃、2時間電気炉で仮焼した。
得た仮焼物について細かさおよび生成鉱物を調べたと
ころ、平均粒径は0.5μmの正方晶ペロブスカイト型酸
化物の単一相からなる微粉末であった。
〔実施例3〕
(Pb,Sr)(Ti,Zr)O3−Nb2O5系ペロブスカイト固溶
体を以下のようにして製造した。
シュウ酸(2水物)113.4g(0.9モル)をメタノール
(水を10vol%を含む)1に溶解させた溶液に、撹拌
しながらチタンテトライソプロポキシド(Ti濃度3.328
モル/)70.7mlを霧状にして加え透明な溶液(I)を
つくった。
一方イオン交換水500mlに酢酸鉛(3水塩)180.17g
(PbO換算0.475モル)と酢酸ストロンチウム(1/2水
塩)5.37g(SrO換算0.025モル)を撹拌しながら溶解さ
せ、さらに酢酸ジルコニル水溶液(Zr濃度1.458モル/
)181.7mlを加えて溶液(II)をつくった。
溶液(I)を撹拌しながら溶液(II)を霧状にして加
え沈殿を生成させ、さらに平均粒径0.8μmの五酸化ニ
オブ粉末1.7gを懸濁し、一時間程充分に撹拌したのち、
吸引過(紙5C)して沈殿を分別した。この沈殿物を
70℃、24時間乾燥したのち、大気中600℃、1時間電気
炉で仮焼した。
この微粉末の細かさおよび生成鉱物について自動沈降
式粒度測定器およびX線回折計で調べたところ、平均粒
径は0.3μm、X線プロファイルは正方晶相ペロブスカ
イト型のもので、SrCO3やSrO、Nb2O5などのピークは存
在しなかった。
〔発明の効果〕
本発明は従来法で用いていた硝酸塩を全く用いていな
いため、沈殿物を洗浄する必要がなく、仮焼工程におい
て窒素酸化物の発生がなく、炉の保全や環境上の諸問題
は解決され、さらに従来法では不可能であったTa、Nbな
ど溶液になりにくい元素も添加することが可能になり、
多くの種類のペロブスカイト型セラミックス微粉末の製
造に適用できる。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is to produce a perovskite-type ceramic fine powder by a so-called wet method for forming a precipitate from an oxalic acid solution containing Ti and an acetic acid solution containing another metal element. About the method. [Prior Art] Perobusukato ceramics are generally expressed as ABO 3, the powder ferroelectric is used as a raw material for an electrical member such as a piezoelectric element. For example, Pb (Zr, Ti) O 3 -based perovskite solid solution ceramics are known to have particularly high piezoelectric properties. However, in order to further improve the dielectric constant and the piezoelectric properties, certain metal elements such as Sr, B
In many cases, one or more of a, Nb, Ta, Mg, Fe, Mn, Co, and Ni are added and used. Many methods for producing these perovskite-type ceramic powders have been developed, including a dry method, a wet method, and a combination of both methods. For example, recently, an oxalic acid ethanol method (Kamakyogyo, 94 [5], p. 1823, 1986), An improved method (JP-A-61-251519) has been proposed. These conventional methods were developed focusing on the fact that oxalic acid is soluble in ethanol and isopropanol and that the oxalates of Pb, Zr, and Ti are hardly soluble in alcohol. Specifically, an oxalic acid alcohol solution obtained by dissolving oxalic acid in alcohol and a nitric acid solution in which Pb, Zr, and Ti ions are dissolved are mixed to form a precipitate composed of a complex oxalate. After washing the obtained precipitate with alcohol, excess, dried and pulverized in air, 500-110
This is a method for producing perovskite ceramic powder that is calcined (pyrolyzed) at 0 ° C. [Problems to be Solved by the Invention] In the conventional method, the complex oxalate is formed and precipitated in a solution containing a nitrate group, so that the nitrate group is adsorbed on the surface of the composite oxalate particles. Since the formed complex oxalate has a very high surface activity, the adsorbed nitrate cannot be sufficiently removed by washing with water or alcohol. Therefore, the composite oxalate is dried while adsorbing nitrate and calcined in a calciner. Therefore, at the temperature of calcination, nitrate radicals are decomposed and gasified as nitrogen oxides, which erode the furnace wall and reduce its durability, and the nitrogen oxide gas discharged from the furnace reduces the environment. There were some operational problems such as worsening. [Means for Solving the Problems] The present inventors have studied the wet method capable of forming a composite oxalate precipitate using a compound containing no nitrogen, and as a result, have completed the invention described below. That is, one of the present invention is a compound represented by the general formula ABO 3 (where A is one or more kinds of oxygen 12 coordination metal elements, B is two or more kinds of metal elements, one is Ti, and the other is Ti.
One or more selected from oxygen six-coordinate metal elements other than Ti are shown. A solution obtained by dissolving a titanium alkoxide in an alcoholic oxalate solution (hereinafter referred to as "solution (I)") in the production of the perovskite-type ceramic fine powder represented by
And an acetic acid aqueous solution (hereinafter, referred to as "solution (II)") containing a component A and a metal component B other than Ti to form a precipitate, which is dried and calcined to form a perovskite. Another aspect of the present invention is a method for producing a perovskite-type ceramic fine powder produced by adding a powder of Nb 2 O 5 and / or Ta 2 O 5 in the production process. It is. Here, the perovskite-type ceramics represented by the general formula ABO 3 has a structure in which B atoms occupy the center of a cubic lattice and are octahedrally surrounded by six O ions, and A atoms are located in the center of the cubic lattice. It is a ceramic on which a perovskite structure is formed. Therefore, the B atom has six O
The atoms, A atoms, are surrounded by 12 O atoms, and the AO atoms form a cubic close-packed lattice. The oxygen 12-coordinating metal element of A includes Pb, Sr, La, Ba,
There are Ca and the like. As the oxygen 6-coordinate metal element of B, Ti,
Zr, Mg, Fe and the like can be mentioned. Hereinafter, the present invention will be described in detail from the first invention. The raw materials used in the first invention are oxalic acid, alcohol, titanium alkoxide, a compound containing the A component, and B containing no Ti.
Component compounds as well as acetic acid or acetate. As oxalic acid, alcohol and titanium alkoxide, those commercially available are usually used. The alcohol is not particularly limited, such as ethanol, methanol, n-propanol, iso-propanol, and n-butanol, but preferably contains 30 vol% or more of alcohol and 10 vol% or more of water. Considering economy, methanol is cheap and desirable. As oxalic acid, either anhydride or dihydrate may be used. The titanium alkoxide is preferably titanium tetraisopropoxide, but is not particularly limited as long as the alkoxide is soluble in an oxalic acid alcohol solution. The compound containing the component A and the compound containing the component B other than Ti do not contain nitrogen such as acetate, carbonate, and hydroxide,
Further, those that dissolve in acetic acid are used. Next, a method for preparing the solution (I) using oxalic acid, alcohol, and titanium alkoxide will be described. The method of dissolving oxalic acid in alcohol and the method of dissolving titanium alkoxide in the obtained alcoholic oxalic acid solution to prepare the solution (I) are both carried out by conventional methods. The amount of oxalic acid used varies depending on the type and amount of the compound used, but is not particularly limited as long as it is at least the amount necessary for precipitation as a complex oxalate. The amount of the alcohol used may be an amount sufficient to completely dissolve oxalic acid. The solution (II) is prepared from each compound containing the component A and the component B other than Ti by dissolving the compound in water if the compound is an acetate, and in the case of a carbonate or a hydroxide. Dissolve in acetic acid aqueous solution. The dissolution is performed by a conventional method. The dissolution amount of each compound of the component A and the component B other than Ti and the mixing amount of the solutions (I) and (II) in forming the solution (II) are determined by the amount of the metal element contained in the perovskite fine powder finally obtained. Must be dissolved to have a desired composition ratio, but the composition ratio is not particularly limited in the present invention. The mixing of the solutions (I) and (II) can be performed by simply adding one solution while stirring the other solution, whereby oxalates containing the respective metal elements are formed and mixed as a composite oxalate. Co-precipitate in a wet state The resulting precipitate is dried after drying in the air.
By calcining at 1100 ° C., preferably 500-900 ° C., a fine powder of perovskite ceramics having a submicron particle size can be obtained. A second invention of the present invention is a method for producing a multi-component perovskite ceramic fine powder by adding a powder of Nb 2 O 5 and / or Ta 2 O 5 in the production process of the first invention. Nb 2 O 5 and Ta 2 O 5 are both commercially available. These compounds may be added at any step before the calcination step of the first invention. For example, the production process of either solution (I) or solution (II), solution (I) and solution (II)
May be added at any stage, such as in the process of mixing, in the suspension after mixing, or in the dried product of the precipitate. The same effect can be obtained by adding Nb 2 O 5 and / or Ta 2 O 5 powder in two parts and adding them at appropriate stages. It is preferable that the addition be performed as early as possible because mixing becomes sufficient. Only one of Nb 2 O 5 and Ta 2 O 5 may be added, or both compounds may be added. The addition amount is not particularly limited in the present invention. The fineness of Nb 2 O 5 and Ta 2 O 5 is preferably as fine as possible for uniform dispersion. In particular, when it is added to a suspension, it is desirable that the average particle size is 3 μm or less since sedimentation and separation from a precipitate do not occur. Hereinafter, the present invention will be described with reference to examples. Example 1 Pb (Ti, Zr) O 3 was produced as follows. Oxalic acid (dihydrate) 140 g (1.1 mol) was added to methanol (9
9vol%) 72.2m of titanium tetraisopropoxide (Ti concentration 3.323 mol /) was added to the solution dissolved in 1 while stirring.
l was added as a mist to produce a clear solution (I). On the other hand, 300 ml of pure water was added to zirconyl acetate (Zr concentration, 1.458 mol /), and then, with stirring, 189.7 g of lead acetate (trihydrate) (0.5 mol in terms of PbO) was added to dissolve the transparent solution (II). Was made. The solution (II) was atomized while stirring the solution (I) to form a precipitate, and the precipitate was separated by suction (paper 5C). After drying this precipitate at 70 ° C for 24 hours,
Calcination was performed in an electric furnace at 600 ° C. for 1 hour. When the fineness of the fine powder and the resulting mineral were examined by an automatic sedimentation type particle size analyzer and an X-ray diffractometer, it was a single mineral perovskite-type ceramic fine powder having an average particle diameter of 0.3 μm. Example 2 A perovskite-type ceramic fine powder composed of (Pb, La) (Ti, Zr, Mg) O 3 was produced as follows. 126.0 g of oxalic acid dihydrate in methanol (99.9 vol%) 300
While stirring the solution dissolved in 5 ml, 52.7 ml of titanium tetraisopropoxide (Ti concentration 3.323 mol /) was added in the form of a mist, and 500 ml of pure water was further added to obtain a transparent solution (I).
Was made. On the other hand, the solution (II) was prepared as follows. That is, pure water was added to 222.9 ml of zirconyl acetate (Zr concentration 1.458 mol /).
400 ml was added, and a clear solution in which 174.5 g (0.46 mol in terms of PbO) of lead acetate trihydrate was dissolved with stirring, and 50 ml of pure water was added to 50 ml of acetic acid, and 6.5 g of La 2 O 3 powder and MgCO 3 were stirred. Powder 1.
A transparent solution (II) was prepared by mixing 7 g (0.8 g in terms of MgO) of a solution dissolved therein. Next, while stirring the solution (I), the solution (II) was atomized to form a precipitate, and the precipitate was separated by suction. After drying the obtained precipitate at 70 ° C for 24 hours,
Calcination was performed in an electric furnace at 0 ° C. for 2 hours. The obtained calcined product was examined for fineness and generated minerals. As a result, it was a fine powder composed of a single phase of a tetragonal perovskite oxide having an average particle size of 0.5 μm. Example 3 A (Pb, Sr) (Ti, Zr) O 3 —Nb 2 O 5 perovskite solid solution was produced as follows. While stirring, a solution of 113.4 g (0.9 mol) of oxalic acid (dihydrate) in methanol (containing 10 vol% of water) was mixed with titanium tetraisopropoxide (Ti concentration 3.328).
70.7 ml of mol /) were nebulized and a clear solution (I) was prepared. On the other hand, 180.17 g of lead acetate (trihydrate) in 500 ml of ion-exchanged water
(0.475 mol in terms of PbO) and 5.37 g (0.025 mol in terms of SrO) of strontium acetate (1/2 water salt) were dissolved with stirring, and further an aqueous zirconyl acetate solution (Zr concentration: 1.458 mol /
) 181.7 ml was added to make solution (II). While stirring the solution (I), the solution (II) was atomized to form a precipitate, and 1.7 g of niobium pentoxide powder having an average particle size of 0.8 μm was further suspended. The mixture was sufficiently stirred for about one hour.
The precipitate was separated by suction (paper 5C). This precipitate
After drying at 70 ° C. for 24 hours, it was calcined in an electric furnace at 600 ° C. for 1 hour in the atmosphere. When the fineness of this fine powder and the minerals formed were examined by an automatic sedimentation type particle size analyzer and an X-ray diffractometer, the average particle size was 0.3 μm, the X-ray profile was a tetragonal phase perovskite type, and SrCO 3 and SrO 3 were used. , Nb 2 O 5 and the like were not present. [Effect of the Invention] Since the present invention does not use nitrate used in the conventional method at all, there is no need to wash the precipitate, there is no generation of nitrogen oxides in the calcination step, furnace maintenance and environmental Various problems have been solved, and it has become possible to add elements that are difficult to become solutions, such as Ta and Nb, which were impossible with the conventional method.
It can be applied to the production of many kinds of perovskite type ceramic fine powder.
Claims (1)
を、Bは2種以上の金属元素からなり、一つはTi、他は
Ti以外の酸素6配位金属元素から選ばれた1種以上を示
す。) で表わされるペロブスカイト型セラミックス微粉末の製
造に際し、シュウ酸アルコール溶液にチタンアルコキシ
ドを溶解させた溶液と、A成分およびTi以外のB成分の
金属元素を含む酢酸水溶液を混合して沈殿物を生成させ
たのち、該沈殿物を乾燥し、仮焼することを特徴とする
ペロブスカイト型セラミックス微粉末の製造方法。 2.特許請求の範囲第(1)項記載のベロブスカイト型
セラミックス微粉末の製造方法において、粉末状のNb2O
5および/またはTa2O5を添加することを特徴とするペロ
ブスカイト型セラミックス微粉末の製造方法。(57) [Claims] General formula ABO 3 (where A is one or more of oxygen 12 coordination metal elements, B is two or more metal elements, one is Ti, the other is
One or more selected from oxygen six-coordinate metal elements other than Ti are shown. In the production of perovskite-type ceramic fine powder represented by), a solution in which a titanium alkoxide is dissolved in an oxalic acid alcohol solution and an aqueous acetic acid solution containing a metal element of component A and component B other than Ti are mixed to form a precipitate. A method for producing perovskite-type ceramic fine powder, comprising drying the precipitate and calcining the precipitate. 2. The method for producing a bevelskite-type ceramic fine powder according to claim (1), wherein the powdery Nb 2 O
5. A method for producing perovskite-type ceramic fine powder, characterized by adding 5 and / or Ta 2 O 5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18001487A JP2767584B2 (en) | 1987-03-11 | 1987-07-21 | Method for producing fine perovskite ceramic powder |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-54099 | 1987-03-11 | ||
JP5409987 | 1987-03-11 | ||
JP18001487A JP2767584B2 (en) | 1987-03-11 | 1987-07-21 | Method for producing fine perovskite ceramic powder |
Publications (3)
Publication Number | Publication Date |
---|---|
JPS643019A JPS643019A (en) | 1989-01-06 |
JPH013019A JPH013019A (en) | 1989-01-06 |
JP2767584B2 true JP2767584B2 (en) | 1998-06-18 |
Family
ID=26394838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18001487A Expired - Lifetime JP2767584B2 (en) | 1987-03-11 | 1987-07-21 | Method for producing fine perovskite ceramic powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2767584B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58161227A (en) * | 1982-03-19 | 1983-09-24 | 富士通株式会社 | Electromagnetic relay and method of producing same |
FR2671067A1 (en) * | 1990-12-28 | 1992-07-03 | Rhone Poulenc Chimie | COMPOUNDS, IN PARTICULAR BASED ON TITANIUM, VANADIUM, NIOBIUM, REDUCED, PARTICULARLY OF THE TYPE TITANITES AND THEIR PREPARATION. |
FR2671066A1 (en) * | 1990-12-28 | 1992-07-03 | Rhone Poulenc Chimie | COMPOUNDS, IN PARTICULAR BASED ON TITANIUM, VANADIUM OR REDUCED NIOBIUM, PARTICULARLY TITANITE TYPE, AND PROCESS FOR THEIR PREPARATION. |
BE1005383A3 (en) * | 1991-09-09 | 1993-07-13 | Solvay | Method for producing a mixed metal oxide powder and its use for obtaining a powder for the manufacture of capacitors and electrical resistance. |
-
1987
- 1987-07-21 JP JP18001487A patent/JP2767584B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS643019A (en) | 1989-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63156057A (en) | Manufacture of high density perovskite ceramics | |
Takahashi et al. | Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO—Ln2O3—TiO2 (Ln= La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single‐Phase Powder of Ternary Compound in the BaO—La2O3—TiO2 System | |
JPS6214489B2 (en) | ||
JP2598786B2 (en) | Method for producing perovskite-based functional ceramic | |
JP2767584B2 (en) | Method for producing fine perovskite ceramic powder | |
JPH0159967B2 (en) | ||
JPS6153113A (en) | Production of powdery raw material of easily sintering perovskite and its solid solution by wet process | |
JPH013019A (en) | Method for producing perovskite ceramic fine powder | |
JPH0210089B2 (en) | ||
JPH0818871B2 (en) | Method for manufacturing lead zirconate titanate-based piezoelectric ceramic | |
JPS6236023A (en) | Production of calcined powder of easily sinterable perovskite | |
JPS6363511B2 (en) | ||
JPH0210091B2 (en) | ||
JPS6259529A (en) | Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof | |
JPH0159205B2 (en) | ||
JPH0818870B2 (en) | Method for manufacturing lead zirconate titanate-based piezoelectric ceramic | |
JPH0331647B2 (en) | ||
JPH0457615B2 (en) | ||
JPH0651570B2 (en) | Method for manufacturing piezoelectric ceramic raw material powder | |
JPS6265907A (en) | Production of easy-to-sinter perovskite powder | |
JPH0367965B2 (en) | ||
JPH01122907A (en) | Production of perovskite oxide powder | |
JPS63285146A (en) | Production of perovskite ceramic | |
JPS61232217A (en) | Production of low-temperature sinterable powdery raw material for producing dielectric ceramic | |
JPH0629139B2 (en) | Method for producing raw material powder for producing dielectric porcelain |