JPS6227328A - Production of easily sinterable powdery starting material for perovskite and its solid solution - Google Patents

Production of easily sinterable powdery starting material for perovskite and its solid solution

Info

Publication number
JPS6227328A
JPS6227328A JP60161257A JP16125785A JPS6227328A JP S6227328 A JPS6227328 A JP S6227328A JP 60161257 A JP60161257 A JP 60161257A JP 16125785 A JP16125785 A JP 16125785A JP S6227328 A JPS6227328 A JP S6227328A
Authority
JP
Japan
Prior art keywords
precipitate
perovskite
starting material
powder
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60161257A
Other languages
Japanese (ja)
Inventor
Shinichi Shirasaki
信一 白崎
Kyoji Odan
恭二 大段
Kosuke Ito
伊藤 幸助
Masaru Kurahashi
優 倉橋
Motoharu Hanaki
花木 基治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Ube Corp
Original Assignee
National Institute for Research in Inorganic Material
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Ube Industries Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP60161257A priority Critical patent/JPS6227328A/en
Publication of JPS6227328A publication Critical patent/JPS6227328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a product having sinterability, uniformity and high bulk density at a low cost when a powdery starting material for perovskite contg. oxygen 12 and 6 coordinating metallic elements and a solid soln. thereof is produced by a wet process, by successively forming precipitates of the constituents. CONSTITUTION:When a powdery starting material for perovskite represented by the general formula (where A and B are one or more kinds of metallic elements coordinating oxygen 12 and 6) and a solid soln. thereof is produced, one or more kinds of aqueous solns. of compounds each contg. metallic elements A and/or B are prepd. An aqueous soln. of a compound contg. the remaining metallic element is further prepd. Those solns. are successively added to a precipitate forming soln. to form precipitates. The resulting slurry is heated at 130-300 deg.C to separate the precipitates, which are then washed, dried and calcined at 200-800 deg.C. Thus, a powdery starting material having sinterability, uniformity and high bulk density is obtd. at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ペロブスカイト型構造(以下、ペロブスカイトという)
およびその固溶体は、圧電体、誘電体。
[Detailed description of the invention] [Industrial application field] Perovskite structure (hereinafter referred to as perovskite)
and its solid solutions are piezoelectric and dielectric.

半導体センサー、オプトエレクトロニクス材料等の機能
性セラミックスとして広範囲に利用されている。最近は
この機能性セラミックスの高度化が進展し、その要請に
対応アきる易焼結性、均一性。
It is widely used as functional ceramics such as semiconductor sensors and optoelectronic materials. Recently, the sophistication of functional ceramics has progressed, and easy sinterability and uniformity meet these demands.

高嵩密度で、且つ低コストのペロブスカイトおよびその
固溶体の原料粉末が多重に効率的に製造できる技術の開
発が要望されている。
There is a need for the development of a technology that can efficiently produce multiple raw material powders of perovskite and its solid solution with high bulk density and low cost.

従来、ペロプスカイトおよびその固溶体の原料粉末の製
造方法としては、乾式法と湿式法が知られている。
Conventionally, dry methods and wet methods are known as methods for producing raw material powders of perovskite and solid solutions thereof.

乾式法は構成原料成分の化合物を乾式で混合し。The dry method involves dry mixing the raw material components.

これを仮焼する方法である。しかし、この方法では、均
一組成の原料粉末が得難いため、優れた機能性を持つペ
ロプスカイトおよびその固溶体を得難いし、また焼結性
も十分ではない。
This is a method of calcining it. However, with this method, it is difficult to obtain raw material powder with a uniform composition, so it is difficult to obtain perovskite and its solid solution with excellent functionality, and the sinterability is also not sufficient.

湿式法はその構成成分のすべてを一緒にした混合溶液を
作り、これにアルカリ等の沈殿形成液を添加して共沈さ
せ、この共沈物を乾燥、仮焼させる方法(以下共沈法と
言う)である。
The wet method is a method in which a mixed solution is prepared by combining all of the constituent components, a precipitate forming liquid such as an alkali is added to this solution, and the coprecipitate is dried and calcined (hereinafter referred to as the coprecipitation method). ).

この共沈法によると、均一性の優れた粉末が得易いが、
その均一性なるが故に、沈殿生成時、乾燥時または仮焼
時に粒子が凝結して二次粒子を形成し、易焼結性になり
にくい欠点があった。
According to this coprecipitation method, it is easy to obtain powder with excellent uniformity, but
Because of their uniformity, the particles tend to coagulate to form secondary particles during precipitation, drying, or calcination, resulting in poor sinterability.

また、共沈法では各成分の該沈殿形成液に対する沈殿形
成能が同じでない場合は1例えば酸成分は100%沈殿
を生成するが、他の成分は全部沈殿を生成し得ないこと
が起り、所望組成となし難いことがある。
In addition, in the coprecipitation method, if the precipitate forming ability of each component in the precipitate forming liquid is not the same, for example, the acid component may form 100% precipitate, but all other components may not be able to form precipitate. It may be difficult to achieve the desired composition.

更に、ペロブスカイト機能材料には鉛とチタンを同時に
含むことが極めて多い。この様なものを工業的に製造す
る場合、チタン原料として安価な四塩化チタンを使用す
ることが望ましい。しかしこれを共沈法に使用すると、
四塩化チタン中の塩素イオンが鉛と反応して白色沈殿を
生成するため。
Furthermore, perovskite functional materials very often contain lead and titanium at the same time. When producing such materials industrially, it is desirable to use inexpensive titanium tetrachloride as the titanium raw material. However, when this is used in the coprecipitation method,
Because chlorine ions in titanium tetrachloride react with lead to form a white precipitate.

使用し難い。この場合、四塩化チタンに代え、オキシ硝
酸チタン〔T10(NO3)2〕を使用すればこの白色
沈殿の生成を防ぐことができるが、オキシ硝酸チタンは
高価であるため工業生産としては実用的でない。
Difficult to use. In this case, the formation of this white precipitate can be prevented by using titanium oxynitrate [T10(NO3)2] instead of titanium tetrachloride, but titanium oxynitrate is expensive and is not practical for industrial production. .

一方、特開昭51−59400号公報や特公昭54−3
1600号公報には、共沈法による沈殿物を含むけんだ
く液を150〜300℃で水熱反応させる方法が記載さ
れている。しかしこの方法では鉛の原料として塩化鉛を
使用するために十分均一な溶液を作ることができなく、
中和によって均一沈殿粒子を得ることが難しく、そのた
め、仮焼粉末において広い粒度分布を示し、また焼結体
において高い密度のものが得られなかった。
On the other hand, Japanese Patent Application Publication No. 51-59400 and Japanese Patent Publication No. 54-3
No. 1600 describes a method in which a suspension containing a precipitate obtained by a coprecipitation method is subjected to a hydrothermal reaction at 150 to 300°C. However, this method cannot create a sufficiently homogeneous solution because lead chloride is used as the raw material for lead.
It was difficult to obtain uniform precipitated particles by neutralization, and as a result, the calcined powder showed a wide particle size distribution, and the sintered body could not have a high density.

〔発明の目的〕[Purpose of the invention]

本発明は従来の共沈法における欠点をなくすことができ
る方法、さらには、湿式法によって、易焼結性、均一性
、低コスト、高嵩密度の四つの要件を満足したペロブス
カイトおよびその固溶液原料粉末を効率よく製造するこ
とができる方法を提供するにある。
The present invention provides a method that can eliminate the drawbacks of conventional coprecipitation methods, and furthermore, a perovskite and its solid solution that satisfies the four requirements of easy sinterability, uniformity, low cost, and high bulk density, by a wet method. An object of the present invention is to provide a method that can efficiently produce raw material powder.

〔発明の構成〕[Structure of the invention]

本発明者らは前記目的を達成すべく鋭意研究の結果、一
般式ABO3(ただし、Aは酸素12配位金属元素の1
種または2種以上を、Bは酸素6配位金属元素の1種ま
たは2種以上を示す。)で表わされるペロブスカイトお
よびその固溶体の原料粉末の製造に際し、A成分および
/またはB成分の金属元素を含んだ化合物の水溶液を1
種または2種以上作り、さらに前記以外の金属元素を含
んだ化合物の水溶液を作り、これらの溶液を沈殿形成液
に遂次添加して沈殿を形成させ1次いで前記沈殿物スラ
リーを130〜ろ00℃で加熱し、得られた沈殿物(ペ
ロブスカイト前駆体)を水洗、乾燥後、200〜800
℃で仮焼することにより原料粉末を製造すると、従来法
の共沈法における欠点を解消でき、得られる原料粉末は
粒度が揃っており。
As a result of intensive research to achieve the above object, the present inventors found the general formula ABO3 (where A is 1 of the oxygen 12-coordinated metal element).
B represents one or more oxygen hexacoordination metal elements. ) When producing the raw material powder of perovskite and its solid solution represented by
A seed or two or more species are prepared, and an aqueous solution of a compound containing a metal element other than the above is prepared, and these solutions are sequentially added to a precipitate forming solution to form a precipitate. ℃, the obtained precipitate (perovskite precursor) was washed with water, dried, and heated to 200 to 800℃.
Producing the raw material powder by calcination at °C eliminates the drawbacks of the conventional coprecipitation method, and the resulting raw material powder has a uniform particle size.

しかも組成が均一であり、極めて工業的に有利に易焼結
性ペロブスカイトおよびその固溶液原料粉末を製造でき
ることを知見し9本発明に到達した。
In addition, the present invention was achieved by discovering that the composition is uniform and that easily sinterable perovskite and its solid solution raw material powder can be manufactured very industrially advantageously.

本発明は、一般式ABO3(ただし、Aは酸素12配位
金属元素の1種または2種以上を、Bは酸素6配位金属
元素の1種または2種以上を示す。)で表わされるペロ
ブスカイト型構造およびその固溶体の原料粉末の製造に
際し、A成分および/またはB成分の金属元素を含んだ
化合物の水溶液を1種または2種以上作り、さらに前記
以外の金属元素を含んだ化合物の水溶液を作り、これら
の溶液を沈殿形成液に遂次添加して沈殿を形成させ。
The present invention relates to a perovskite represented by the general formula ABO3 (where A represents one or more kinds of 12-coordinated metal elements of oxygen, and B represents one or more kinds of 6-coordinated metal elements of oxygen). When producing the raw material powder for the mold structure and its solid solution, one or more aqueous solutions of compounds containing the metal elements of component A and/or component B are prepared, and an aqueous solution of compounds containing metal elements other than the above is further prepared. These solutions are sequentially added to a precipitate forming solution to form a precipitate.

次いで前記沈殿物スラリーを130〜600℃で加熱し
、得られた沈殿物を水洗、乾燥後、200〜800℃で
仮焼することを特徴とする易焼結性ペロブスカイトおよ
びその固溶液原料粉末の製造方法に関するものである。
Next, the precipitate slurry is heated at 130 to 600°C, and the obtained precipitate is washed with water, dried, and then calcined at 200 to 800°C. This relates to a manufacturing method.

前記一般式AB○3のA成分の酸素12配位金属として
1例えば+ P b+ Ba、 Ca、 S r及びL
a等の希土類元素が挙げられる。またB成分の酸素6配
位金属元素としては9例えば、Ti、Zr・M7・Sc
・Hf+  Th+  W、Nb+  Ta+  Or
、Mo、Mn、Fe+  Cot  Ni。
As the oxygen 12-coordination metal of the A component of the general formula AB○3, 1, for example, + P b + Ba, Ca, S r and L
Examples include rare earth elements such as a. In addition, the oxygen hexacoordination metal element of component B is 9, for example, Ti, Zr, M7, Sc.
・Hf+ Th+ W, Nb+ Ta+ Or
, Mo, Mn, Fe+ Cot Ni.

Zn、ca、At、Sn、As+Bi等が挙げられる。Examples include Zn, ca, At, Sn, As+Bi, and the like.

ペロブスカイトおよびその固溶体の構成成分であるA成
分および/=!たはB成分の各化合物の水溶液を調製す
るだめの成分化合物としては、特に限定されないがそれ
らの水酸化物、炭酸塩、オキ/塩、硫酸塩、硝酸塩、塩
化物等の無機塩、酢酸塩、しゅう酸塩等の有機酸塩、酸
化物などがある。
A component which is a constituent of perovskite and its solid solution and /=! The component compounds used to prepare an aqueous solution of each compound of component B include, but are not particularly limited to, their hydroxides, carbonates, inorganic salts such as carbonates, sulfates, nitrates, and chlorides, and acetates. , organic acid salts such as oxalate, and oxides.

これらは一般に水溶液として使用される。水に可溶でな
い場合には酸を添加して可溶させればよい。
These are generally used as aqueous solutions. If it is not soluble in water, an acid may be added to make it soluble.

沈殿形成液としては、アンモニア、炭酸アンモニウム、
苛性アルカリ等が挙げられる。
Precipitation forming liquids include ammonia, ammonium carbonate,
Examples include caustic alkali.

構成成分の沈殿を生成するには沈殿形成液を攪拌しなが
ら、沈殿形成液に、各構成成分の水溶液を添加してもよ
く、その反対に添加してもよい。
In order to generate precipitates of the constituent components, an aqueous solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa.

添加に際しては液を十分に攪拌しながら行うことが好ま
しい・ また沈殿の生成に際し2例えば一つの成分の沈殿を生成
した後、陰イオンを除去するために水洗した後、沈殿物
を新しい水に分散して、さらに他成分の水溶液と沈殿形
成液を添加して沈殿を生成してもよい。
When adding, it is preferable to stir the liquid sufficiently. When forming a precipitate, for example, after forming a precipitate of one component, washing with water to remove anions, and then dispersing the precipitate in fresh water. Then, an aqueous solution of other components and a precipitate forming liquid may be further added to form a precipitate.

更にまたA成分および/またはB成分の沈殿を生成した
後、沈殿形成液の種類と濃度を適当に選ぶことによって
、前記以外の金属元素を含んだ化合物の沈殿を生成して
もよい。
Furthermore, after forming the precipitate of component A and/or component B, by appropriately selecting the type and concentration of the precipitate-forming liquid, a precipitate of a compound containing a metal element other than those mentioned above may be formed.

前記方法により得られた沈殿物を含むスラリーを160
〜300’Cで加熱(水熱)処理する方法としては、オ
ートクレーブを使用するのが一般的である。この処理に
より沈殿物は、所望の金属原子比のペロブスカイト前駆
体粒子となり、均一な結晶粒子が得られる。加熱(水熱
)処理温度が、低すぎると十分に結晶化が進行せず1粒
子が揃い焼結に適したペロブスカイト前駆体を得ること
が困難であり、また高すぎると経済的でなり、シかも粒
子径の大きい粒子になる。従って熱処理温度は160〜
ろOOoCで行う必要があり、この熱処理によって焼結
に適した0、01〜0.05μmの均一な結晶粒子のペ
ロブスカイト前4駆体が得られる。また水熱処理する場
合、沈殿物のスラリーのpHを苛性アルカリでpH11
以上にして行うのが好適である。
The slurry containing the precipitate obtained by the above method was heated to 160 ml.
As a method for heating (hydrothermal) treatment at ~300'C, it is common to use an autoclave. Through this treatment, the precipitate becomes perovskite precursor particles with a desired metal atomic ratio, and uniform crystal grains are obtained. If the heating (hydrothermal) treatment temperature is too low, crystallization will not progress sufficiently and it will be difficult to obtain a perovskite precursor with uniform particles that are suitable for sintering; if the heating (hydrothermal) treatment temperature is too high, it will be uneconomical and The particles become larger in size. Therefore, the heat treatment temperature is 160~
This heat treatment yields a perovskite precursor with uniform crystal grains of 0.01 to 0.05 μm suitable for sintering. In addition, in the case of hydrothermal treatment, the pH of the slurry of the precipitate is adjusted to pH 11 with caustic alkali.
It is preferable to carry out the above procedure.

このようにして得られた結晶沈殿粒子を乾燥し。The crystal precipitated particles thus obtained are dried.

200〜800℃で仮焼すると2粒度の揃った組成的に
均一かつ易焼結性のペロブスカイトおよびその固溶体の
原料粉末が再現性よく製造される。また多成分元素のペ
ロブスカイトにおいて所望の金属元素組成のものを製造
することができる。
When calcined at 200 to 800° C., a compositionally uniform and easily sinterable raw material powder of perovskite and its solid solution with two uniform particle sizes is produced with good reproducibility. Further, a multi-element perovskite with a desired metal element composition can be manufactured.

〔実施例〕〔Example〕

以下に実施例および比較例を示し、さらに詳しく本発明
について説明する。
EXAMPLES The present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例1 硝酸鉛66.2 a y 、オキン硝酸ジルコニウム2
3.127を水に溶解して溶液1tを調製した。この水
溶液を攪拌しながら、6N−アンモニア水1tを添加し
て上記二成分の沈殿物を作り、これに四塩化チタン18
.99を溶解した水溶液400 CCを添加してPb、
Zr、Tiの均質な沈殿物を作製した。
Example 1 Lead nitrate 66.2 a y, Okine zirconium nitrate 2
1 t of solution was prepared by dissolving 3.127 in water. While stirring this aqueous solution, 1 t of 6N ammonia water was added to form a precipitate of the above two components, and titanium tetrachloride 18
.. Pb, by adding 400 CC of an aqueous solution containing 99
A homogeneous precipitate of Zr and Ti was produced.

この沈殿物スラリーからアンモニア分を除去した後、苛
性ソーダによってpHを12程度にしてオートクレーブ
に移し、250℃で2時間水熱処理を行なった。
After removing the ammonia content from this precipitate slurry, the pH was adjusted to about 12 with caustic soda, and the slurry was transferred to an autoclave and subjected to hydrothermal treatment at 250° C. for 2 hours.

水熱処理した沈殿物(ペロブスカイト前、駆体)を十分
に洗浄し、乾燥した後、マツフル炉にて500″C,2
時間熱処理してPb(Zr65 Tio、5 ) 03
粉末を得た。
After thoroughly washing and drying the hydrothermally treated precipitate (pre-perovskite, precursor), it was heated in a Matsufuru furnace at 50″C, 2
Pb (Zr65 Tio, 5) 03 after heat treatment for a time
A powder was obtained.

この粉末の一部分を取りボールミル処理した後。After taking a portion of this powder and ball milling it.

走査型電子顕微鏡にて仮焼品粉末の粒子形状を観察した
結果、二次凝集粒子はほとんど含まれず。
Observation of the particle shape of the calcined powder using a scanning electron microscope revealed that it contained almost no secondary agglomerated particles.

平均粒径が0.33μmで粒子の巾は0.12〜0.4
2μアの範囲であった。
The average particle size is 0.33 μm and the particle width is 0.12 to 0.4
It was in the range of 2μA.

この粉末にポリビニルアルコール(以下、PVAと略記
)を0.8チ添加して1トンメ帰 で成型し1100’
Cで鉛雰囲気で約4時間焼成したその密度は7.99 
f/COであった。
0.8 g of polyvinyl alcohol (hereinafter abbreviated as PVA) was added to this powder and molded at 1 tonm.
Its density after firing in a lead atmosphere for about 4 hours at C was 7.99.
It was f/CO.

比較例1 実施例1において沈殿物スラリーをオートクレーブで水
熱処理を行なわなかった他は実施例1と同様に操作して
Pb(ZrO2Tio、5)03  の仮焼粉末を作製
した。
Comparative Example 1 A calcined powder of Pb(ZrO2Tio, 5)03 was prepared in the same manner as in Example 1 except that the precipitate slurry was not hydrothermally treated in an autoclave.

この粉末の走査型電子顕微鏡による粒子観察の結果、平
均粒子径は0.38μmでありその粒子分布は0.01
〜0.56 μmであった。
As a result of particle observation of this powder using a scanning electron microscope, the average particle diameter was 0.38 μm and the particle distribution was 0.01 μm.
It was ~0.56 μm.

この粉末にPVAを0.8%添加して1トン/crAで
成形し1100’Cで鉛雰囲気下で約4時間焼成した結
果その密度は7.80 ?/QCであった。
This powder was added with 0.8% PVA, molded at 1 ton/crA, and fired at 1100'C in a lead atmosphere for about 4 hours, resulting in a density of 7.80? /QC.

実施例2 実施例1において沈殿物スラリーの水熱処理温度を25
0”Cを200℃に変えたほかは、実施例1と同様に操
作してPt)(Zro、s Tio、5)03仮焼粉末
を得た。
Example 2 In Example 1, the hydrothermal treatment temperature of the precipitate slurry was changed to 25
Pt) (Zro, s Tio, 5) 03 calcined powder was obtained in the same manner as in Example 1, except that 0''C was changed to 200°C.

この粉末の走査型電子顕微鏡による粒子の観察の結果平
均粒子径は0.34μmであり9粒子分布は0.13〜
0.51μmであった。
As a result of observing the particles of this powder using a scanning electron microscope, the average particle diameter was 0.34 μm, and the 9-particle distribution was 0.13 to
It was 0.51 μm.

この粉末にPVAを0,8%添加して1t/iで成形し
、1100℃で鉛雰囲気下で約4時間焼成した結果、そ
の密度は7.95グ/CCであった。
PVA was added to this powder by 0.8%, it was molded at 1 t/i, and it was fired at 1100° C. in a lead atmosphere for about 4 hours, and the density was 7.95 g/CC.

比較例2 塩化鉛55.6 f 、オキシ塩化ジルコニウム32.
22、を水400 Coに加え、これに攪拌しながら1
.9モル四塩化チタン水溶液51 (A:jを加えて、
全体で500 CGの溶液にする。
Comparative Example 2 Lead chloride 55.6 f, zirconium oxychloride 32.
Add 22 to 400 Co of water and add 1 while stirring.
.. 9 mol titanium tetrachloride aqueous solution 51 (A: add j,
Make a total solution of 500 CG.

この溶液に充分攪拌しながら1ON−苛性ソーダ水溶液
を100 QC加えて7さらに水を加えて全量700 
ccのスラリーにした。
Add 100 QC of 1ON caustic soda aqueous solution to this solution while stirring thoroughly, and add water to make the total volume 700.
I made it into a cc slurry.

上記沈殿スラリーをオートクレーブに入れ250℃で水
熱処理を4時間行なった。
The above precipitate slurry was placed in an autoclave and subjected to hydrothermal treatment at 250°C for 4 hours.

得られた沈殿物を水洗した後70℃で20時間乾燥した
後、マック炉にて500’C2時間熱処理してPb(Z
rO,5Ti(1,5) 03粉末を得た。
The obtained precipitate was washed with water, dried at 70°C for 20 hours, and then heat-treated at 500°C for 2 hours in a Mac furnace to form Pb(Z
rO,5Ti(1,5)03 powder was obtained.

この粉末の走査型電子顕微鏡による粒子観察の結果、平
均粒子径は0.56μmでありその粒子の分布は0.0
5〜1.2μmの広い範囲であった。
As a result of particle observation of this powder using a scanning electron microscope, the average particle diameter was 0.56 μm, and the particle distribution was 0.0 μm.
It was in a wide range of 5 to 1.2 μm.

またこの粉末にPVAを0.8%添加して1トンLで成
型し、1100℃で鉛雰囲気で約4時間焼成した。その
密度は7.53 if/CCであった。
Further, 0.8% PVA was added to this powder, molded in 1 ton L, and fired at 1100° C. in a lead atmosphere for about 4 hours. Its density was 7.53 if/CC.

実施例3 硝酸鉛(Pb(NO3)2 ) 60.28 ? *硝
酸ランタン(La (NO3)3 ・6H20)7.7
9 f 、オキシ硝酸ジルコニウム(ZrO(NO3)
2−2H20) 33.98 ft’を1tの水に溶解
した水溶液を、攪拌した2Nアンモニア水1を中に滴下
して、沈殿物を生成した。この沈殿物を十分に分散した
スラリ溶液となるように攪拌しつつ、四塩化チタン(T
iq14) 13.Oqtを溶解した7に溶液a o 
o acを添加して、鉛、ランタン、ジルコニウム、チ
タンの水酸化物の均密沈殿を得た。この沈殿物スラリー
を洗浄後6N’−苛性ソーダ(NaoH)を加えて、p
H=12程度にしてオートクレーブに移し、270℃で
2時間水熱処理を行なった。
Example 3 Lead nitrate (Pb(NO3)2) 60.28 ? *Lanthanum nitrate (La (NO3)3 ・6H20) 7.7
9 f, zirconium oxynitrate (ZrO(NO3)
2-2H20) An aqueous solution in which 33.98 ft' was dissolved in 1 t of water was dropped into 1 part of stirred 2N ammonia water to form a precipitate. Titanium tetrachloride (T
iq14) 13. Add solution ao to 7 in which Oqt was dissolved.
o ac was added to obtain a dense precipitate of lead, lanthanum, zirconium, and titanium hydroxides. After washing this precipitate slurry, 6N'-caustic soda (NaoH) was added and p
The mixture was adjusted to H=12 and transferred to an autoclave, where it was subjected to hydrothermal treatment at 270° C. for 2 hours.

水熱処理した沈殿物(ベロフスカイト形成)を十分に洗
浄し乾燥した後、マツノル炉にて500゛C22時間熱
処理してPb O,9、I La o、o 9 (Zr
6.65 rTi(1,3s)す、q’T’l五O3の
組成の粉末を得た。
After thoroughly washing and drying the hydrothermally treated precipitate (belovskite formation), it was heat-treated at 500°C for 22 hours in a Matsunolu furnace to form PbO,9,ILao,o9 (Zr
A powder having a composition of 6.65 rTi(1,3s), q'T'l5O3 was obtained.

この粉末をエタノールによる湿式ボールミルによシ粉砕
した後、粉末を走査型電子顕微鏡により粒子を観察した
ところ平均粒子径0.11μmのほぼ均一粒子径を有す
る粉末を得た。X線回折法で組成変動を測定した結果は
とんど変動が認められなかった。
After this powder was pulverized using a wet ball mill using ethanol, the particles of the powder were observed using a scanning electron microscope, and a powder having a substantially uniform particle size with an average particle size of 0.11 μm was obtained. As a result of measuring compositional fluctuations using X-ray diffraction, almost no fluctuations were observed.

この粉末を1.5t/cTAで成型し、酸素ガスと鉛蒸
気の混合雰囲気下で1120℃で40時間焼結した。そ
の時の密度7.83であり、透過率74係(1鳩厚さ)
の透光性PLZTが得られた。
This powder was molded at 1.5 t/cTA and sintered at 1120° C. for 40 hours in a mixed atmosphere of oxygen gas and lead vapor. The density at that time is 7.83, and the transmittance is 74 coefficient (1 pigeon thickness)
Translucent PLZT of 100% was obtained.

実施例4 硝酸鉛(Pb(NO3)z ) 66.2 a y 、
硝酸ジルコニラA (ZrO(NO3)2) 6.12
6 S’ 、硝酸マグネシウム(Mf(NO3)z・6
H20) 8.5461を水300m/に溶解した溶液
を1ON−苛性ソーダ200m/!に加え。
Example 4 Lead nitrate (Pb(NO3)z) 66.2 ay,
Zirconyl nitrate A (ZrO(NO3)2) 6.12
6 S', magnesium nitrate (Mf(NO3)z・6
H20) 1ON solution of 8.5461 dissolved in 300 m/of water - 200 m/! of caustic soda! In addition to.

沈殿を生成し、さらにこの液に四塩化チタン(Tict
4) 13.85 rと塩化ニオブ(N bcz、 )
18.012を100.Jの水に溶解した溶液を加えて
沈殿を生成させた。この沈殿物を250℃で2時間水熱
反応を行なった。水熱処理した沈殿物(複合ペロブスカ
イト形成)を十分に洗浄し、乾燥した後マツフル炉にて
600’C,2時間熱処理して50〔P寒S’l/3 
Nb2/3) 03’:l −!16.5 (pbTi
o3) −13,5(PbZrO+)の組成の粉末を得
だ。
A precipitate is formed, and titanium tetrachloride (Tict) is added to this solution.
4) 13.85 r and niobium chloride (N bcz, )
18.012 to 100. A solution of J dissolved in water was added to form a precipitate. This precipitate was subjected to a hydrothermal reaction at 250°C for 2 hours. The hydrothermally treated precipitate (composite perovskite formation) was thoroughly washed, dried, and then heat treated in a Matsufuru furnace at 600'C for 2 hours to 50[P cold S'l/3
Nb2/3) 03':l -! 16.5 (pbTi
o3) A powder with a composition of -13,5(PbZrO+) was obtained.

この粉末をエタノールによる湿式ボールミルにより処理
した後、走査型電子顕微鏡観察したところ平均粒予約0
.2輛で均一粒子であった。
After processing this powder in a wet ball mill using ethanol, it was observed using a scanning electron microscope and found that the average grain size was 0.
.. The particles were uniform in both cases.

この粉末を1.5 t/17Aで成型し1150℃で鉛
雰囲気で2時間焼結した。その時の密度7.9497C
Cであった。
This powder was molded at 1.5 t/17A and sintered at 1150°C in a lead atmosphere for 2 hours. Density at that time is 7.9497C
It was C.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、従来の共沈法における全成分を
同時に共沈させる方法とは異なり、逐次に沈殿を生成さ
せ、しかもその沈殿物を水熱処理によって結晶化させる
ため1粒子が高度に分散した状態で得られ、乾燥時また
は仮焼時に粒成長が抑制され、二次粒子が少なく、得ら
れた粉末は、゛粒子が揃い1組成的に均一な、易焼結性
、高嵩密度のペロブスカイト及びその固溶体の原料粉末
が効率的に製造できる。
According to the method of the present invention, unlike the conventional coprecipitation method in which all components are coprecipitated at the same time, precipitates are generated sequentially and the precipitates are crystallized by hydrothermal treatment, so that each particle is highly dispersed. The powder is obtained in a state where the grain growth is suppressed during drying or calcination, and there are few secondary particles. Raw material powders of perovskite and its solid solution can be efficiently produced.

さらに安価な四塩化チタンの如き塩化物を原料として使
用しても、鉛を含む化合物の溶液とを分けて多段に沈殿
を生成することにより好適なペロブスカイトおよびその
固溶体の原料粉末を得ることができる。
Furthermore, even if an inexpensive chloride such as titanium tetrachloride is used as a raw material, it is possible to obtain a suitable raw material powder for perovskite and its solid solution by separating it from a solution of a lead-containing compound and producing precipitation in multiple stages. .

また最初に沈殿させる成分を適宜選択することによって
、生成する沈殿の粉末特性を制御し易くすることができ
る。
Furthermore, by appropriately selecting the components to be precipitated first, the powder characteristics of the produced precipitate can be easily controlled.

Claims (1)

【特許請求の範囲】[Claims]  一般式ABO_3(ただし、Aは酸素12配位金属元
素の1種または2種以上を、Bは酸素6配位金属元素の
1種または2種以上を示す。)で表わされるペロブスカ
イト型構造およびその固溶体の原料粉末の製造に際し、
A成分および/またはB成分の金属元素を含んだ化合物
の水溶液を1種または2種以上作り、さらに前記以外の
金属元素を含んだ化合物の水溶液を作り、これらの溶液
を沈殿形成液に遂次添加して沈殿を形成させ、次いで前
記沈殿物スラリーを130〜600℃で加熱し、得られ
た沈殿物を水洗、乾燥後、200〜800℃で仮焼する
ことを特徴とする易焼結性ペロブスカイトおよびその固
溶液原料粉末の製造方法。
The perovskite structure represented by the general formula ABO_3 (where A represents one or more 12-coordinate oxygen metal elements, and B represents one or more 6-coordinate oxygen metal elements) and its When producing solid solution raw material powder,
Making one or more aqueous solutions of compounds containing metal elements of component A and/or component B, further making aqueous solutions of compounds containing metal elements other than those mentioned above, and sequentially converting these solutions into a precipitation forming solution. Easy sinterability characterized by adding the precipitate to form a precipitate, then heating the precipitate slurry at 130 to 600°C, washing the obtained precipitate with water, drying, and then calcining at 200 to 800°C. A method for producing perovskite and its solid solution raw material powder.
JP60161257A 1985-07-23 1985-07-23 Production of easily sinterable powdery starting material for perovskite and its solid solution Pending JPS6227328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161257A JPS6227328A (en) 1985-07-23 1985-07-23 Production of easily sinterable powdery starting material for perovskite and its solid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161257A JPS6227328A (en) 1985-07-23 1985-07-23 Production of easily sinterable powdery starting material for perovskite and its solid solution

Publications (1)

Publication Number Publication Date
JPS6227328A true JPS6227328A (en) 1987-02-05

Family

ID=15731651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161257A Pending JPS6227328A (en) 1985-07-23 1985-07-23 Production of easily sinterable powdery starting material for perovskite and its solid solution

Country Status (1)

Country Link
JP (1) JPS6227328A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278108A (en) * 1985-10-02 1987-04-10 Natl Inst For Res In Inorg Mater Production of powdery raw material of perovskite and solid solution thereof
JPS63206316A (en) * 1987-02-20 1988-08-25 Sony Corp Production of lead titanate zirconate fine particle
JPH01239025A (en) * 1988-03-19 1989-09-25 Sony Corp Production of particulate lanthanum-incorporated lead titanium zirconate
JPH0489317A (en) * 1990-07-30 1992-03-23 Denki Kagaku Kogyo Kk Easily-sintering powder material for microwave dielectric material
US6852665B2 (en) 2000-07-27 2005-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, process for producing the same, catalyst for purifying exhaust gas, and process for producing the same
JP2012096962A (en) * 2010-11-02 2012-05-24 Ngk Insulators Ltd Lead-based piezoelectric material and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431600A (en) * 1977-08-12 1979-03-08 Matsushita Electric Ind Co Ltd Material for dielectric resonator
JPS59195574A (en) * 1983-04-21 1984-11-06 株式会社村田製作所 Manufacture of ceramic raw material powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431600A (en) * 1977-08-12 1979-03-08 Matsushita Electric Ind Co Ltd Material for dielectric resonator
JPS59195574A (en) * 1983-04-21 1984-11-06 株式会社村田製作所 Manufacture of ceramic raw material powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278108A (en) * 1985-10-02 1987-04-10 Natl Inst For Res In Inorg Mater Production of powdery raw material of perovskite and solid solution thereof
JPS63206316A (en) * 1987-02-20 1988-08-25 Sony Corp Production of lead titanate zirconate fine particle
JPH01239025A (en) * 1988-03-19 1989-09-25 Sony Corp Production of particulate lanthanum-incorporated lead titanium zirconate
JPH0489317A (en) * 1990-07-30 1992-03-23 Denki Kagaku Kogyo Kk Easily-sintering powder material for microwave dielectric material
US6852665B2 (en) 2000-07-27 2005-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, process for producing the same, catalyst for purifying exhaust gas, and process for producing the same
JP2012096962A (en) * 2010-11-02 2012-05-24 Ngk Insulators Ltd Lead-based piezoelectric material and production method therefor

Similar Documents

Publication Publication Date Title
GB2163142A (en) A process for producing a composition which includes perovskite compound
Takahashi et al. Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO—Ln2O3—TiO2 (Ln= La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single‐Phase Powder of Ternary Compound in the BaO—La2O3—TiO2 System
JP3800651B2 (en) Method for producing composite metal oxide powder
JPS6214489B2 (en)
EP0254574A2 (en) Method for producing PLZT powder
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
JPS6153115A (en) Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPH0159967B2 (en)
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
Das et al. Low temperature chemical synthesis of nanosized ceramic powders
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JPS61163118A (en) Process for preparing raw material powder of easily sinterable perovskite by wet powder dispersion process
JPS623005A (en) Production of easily sintering perovskite raw material powder by powder dispersing
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPS6363511B2 (en)
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0527571B2 (en)
JPH0367966B2 (en)
JPS6385014A (en) Production of lead-containing compound oxide solid solution of perovskite type
JPS63285146A (en) Production of perovskite ceramic
JPS6395119A (en) Production of perovskite raw material powder
JPH0193419A (en) Production of piezoelectric ceramics raw material powder
JPS63156065A (en) Manufacture of perovskite ceramics containing zirconium
JPH0367965B2 (en)