JPS623004A - Production of easily sintering perovskite raw material powder by wet method - Google Patents

Production of easily sintering perovskite raw material powder by wet method

Info

Publication number
JPS623004A
JPS623004A JP60140478A JP14047885A JPS623004A JP S623004 A JPS623004 A JP S623004A JP 60140478 A JP60140478 A JP 60140478A JP 14047885 A JP14047885 A JP 14047885A JP S623004 A JPS623004 A JP S623004A
Authority
JP
Japan
Prior art keywords
precipitate
component
raw material
perovskite
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60140478A
Other languages
Japanese (ja)
Other versions
JPH0367963B2 (en
Inventor
Shinichi Shirasaki
信一 白崎
Kyoji Odan
恭二 大段
Kosuke Ito
伊藤 幸助
Masaru Kurahashi
優 倉橋
Motoharu Hanaki
花木 基治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Ube Corp
Original Assignee
National Institute for Research in Inorganic Material
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Ube Industries Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP60140478A priority Critical patent/JPS623004A/en
Publication of JPS623004A publication Critical patent/JPS623004A/en
Publication of JPH0367963B2 publication Critical patent/JPH0367963B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce perovskite raw material powder having readily sintering properties, uniformity and high bulk density, by forming gradually precipitate of each component of perovskite from a solution, washing and filtering the precipitate by a filter press and calcining the precipitate. CONSTITUTION:In perovskite shown by a general formula ABO3 (A; one or more metallic elements of oxygen 12 coordination, B; one or more metallic elements of oxygen 6 coordination), precipitate of the component A is formed from an aqueous solution of a compound such as hydroxide, carbonate, etc., of the component A such as Pb, Ba, Ca, etc., and a precipitate forming solution of NH3, etc. Then, the above-mentioned reaction solution is blended with an aqueous solution of a compound of the component B such as Ti, Zr, Mg, etc., to form precipitate of the component B. Then, the precipitate is washed and filtered and washed by a rotary filter press, further emulsified and dried. Then, the dried material is calcined at 400-1,000 deg.C, to give easily sintering raw material powder of perovskite type structure and its solid solution at low cost and efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ペロブスカイト型構造の化合物(以下、ペロブスカイト
という)及びその固溶体は、圧電体、オプトエレクトロ
ニクス材、誘電体、半導体、センサー等の機能性セラミ
ックとして広範囲に利用されている。最近はこの機能性
セラミックスの高度化が進展し、その要請に対応できる
易焼結性、均一性、高嵩密度で、且つ低コストのペロブ
スカイト及びその固溶体の原料粉末が多量に効率的に製
造できる技術の開発が要望されている。
[Detailed Description of the Invention] [Industrial Application Field] Compounds with a perovskite structure (hereinafter referred to as perovskites) and their solid solutions are widely used as functional ceramics such as piezoelectric materials, optoelectronic materials, dielectric materials, semiconductors, and sensors. It is used for. Recently, the sophistication of functional ceramics has progressed, and raw material powders of perovskite and its solid solution that meet the demands for easy sintering, uniformity, high bulk density, and low cost can be produced efficiently in large quantities. Development of technology is required.

〔従来技術および問題点〕[Prior art and problems]

従来、ペロブスカイト及びその固溶体の原料粉末の製造
方法としては、乾式法と湿式法が知られている。
Conventionally, dry methods and wet methods are known as methods for producing raw material powders of perovskites and solid solutions thereof.

乾式法は構成原料成分の化合物を乾式で混合し。The dry method involves dry mixing the raw material components.

これを仮焼する方法である。しかし、この方法では、均
一組成の原料粉末が得難いだめ、優れた機能性を持つペ
ロブスカイト及びその固溶体を得難いし、また焼結性も
十分ではない。
This is a method of calcining it. However, with this method, it is difficult to obtain a raw material powder with a uniform composition, it is difficult to obtain a perovskite and its solid solution with excellent functionality, and the sinterability is not sufficient.

湿式法はその構成成分のすべての混合溶液を作り、これ
にアルカリ等の沈殿形成液を添加して共沈させ、この共
沈物を乾燥、仮焼させる方法(以下共沈法と言う)であ
る。
The wet method is a method in which a mixed solution of all the constituent components is prepared, a precipitate-forming liquid such as an alkali is added to this to cause coprecipitation, and this coprecipitate is dried and calcined (hereinafter referred to as the coprecipitation method). be.

この共沈法によると、均一性の優れた粉末が得易いが、
沈殿生成時または乾燥時に粒子が凝結して二次粒子を形
成し、易焼結性になりにくい欠点があった。
According to this coprecipitation method, it is easy to obtain powder with excellent uniformity, but
Particles coagulate during precipitate formation or drying to form secondary particles, which has the disadvantage of being difficult to sinter.

また、共沈法では各成分の沈殿形成能が一定でなく1例
えば酸成分は100%沈殿を生成するが。
Furthermore, in the coprecipitation method, the precipitate forming ability of each component is not constant; for example, the acid component forms 100% precipitate.

他の成分は全部沈殿を生成し得ない場合等があり。There are cases where all other components cannot form a precipitate.

所望組成となし難いことがある。It may be difficult to achieve the desired composition.

更にペロブスカイト及びその固溶体には、鉛とチタンを
同時に含むものが極めて多い。このようなものを工業的
に製造する場合、チタン原料として安価な四塩化チタン
を使用することが望ましい。
Furthermore, perovskites and their solid solutions often contain both lead and titanium. When producing such materials industrially, it is desirable to use inexpensive titanium tetrachloride as the titanium raw material.

しかし、これを共沈法に使用すると、四塩化チタン中の
塩素イオンが鉛イオンと反応して白色沈殿を生成するた
め、使用し難い。この場合、四塩化チタンに代え、オキ
シ硝酸チタン[Ti0(、N03)2 ]を使用すれば
この白色沈殿の生成を防ぐことができるが、オキシ硝酸
チタンは高価であるため、工業的生産としては実用的で
はない。
However, when this is used in a coprecipitation method, the chlorine ions in titanium tetrachloride react with lead ions to produce a white precipitate, making it difficult to use. In this case, the formation of this white precipitate can be prevented by using titanium oxynitrate [Ti0(,N03)2] instead of titanium tetrachloride, but titanium oxynitrate is expensive, so it is not suitable for industrial production. Not practical.

また共沈法においては、沈殿物(共沈物)の粒子が微小
であシ、洗浄4口過等によって沈殿物から不純物を除去
する操作において長時間を要していた。また自然沈降法
によると沈殿物と液の分離において、沈殿物内の組成お
よび形状が不均一になるなどの問題点があった。
Further, in the coprecipitation method, the particles of the precipitate (coprecipitate) are very small, and it takes a long time to remove impurities from the precipitate by washing and passing through four mouths. Furthermore, the natural sedimentation method has problems such as the composition and shape of the precipitate becoming non-uniform during separation of the precipitate and liquid.

〔発明の目的〕[Purpose of the invention]

本発明は従来の共沈法における欠点をなくすことができ
る方法、さらには、湿式法によって、易焼結性、均一性
、低コスト、高嵩密度の四つの要件を満足したペロブス
カイト及びその固溶体の原料粉末を効率よく製造するこ
とができる方法を提供するにある。
The present invention provides a method that can eliminate the drawbacks of conventional coprecipitation methods, and furthermore, a method for producing perovskites and their solid solutions that satisfy the four requirements of easy sinterability, uniformity, low cost, and high bulk density. An object of the present invention is to provide a method that can efficiently produce raw material powder.

〔発明の構成〕[Structure of the invention]

本発明者らは前記目的を達成すべく鋭意研究の結果、一
般式ABO3(ただし、Aは酸素12配位金属元素の1
種または2s以上を、Bは酸素6配位金属元素の1種ま
たは2種以上を表わす。)で示されるペロブスカイト及
びその固溶体の原料粉末の製造に際し、A成分化合物の
水溶液と沈殿形成液とによりA成分の沈殿を生成し2次
いでB成分化合物の水溶液を添加してB成分の沈殿を生
成させるか、あるいは、A成分とB成分の沈殿の生成を
前記と順序を代えて沈殿を生成させ、得られた沈殿物を
母液から分離して乾燥後、400℃以上の温度で仮焼す
ることにより原料粉末を製造すると、従来法の共沈法に
おける欠点を#1ぼ解消できることが分った。また前記
沈殿物を母液から分離して乾燥するに際して、沈殿物を
ロータリーフィルタープレスにて洗浄、ロ過した後、乳
化処理。
As a result of intensive research to achieve the above object, the present inventors found the general formula ABO3 (where A is 1 of the oxygen 12-coordinated metal element).
species or 2s or more, and B represents one or more oxygen hexacoordination metal elements. ) When producing the raw material powder of perovskite and its solid solution shown in (), a precipitate of component A is generated using an aqueous solution of the component A compound and a precipitation forming liquid, and then an aqueous solution of the component B compound is added to generate a precipitate of component B. Alternatively, the order of forming the precipitates of component A and component B may be changed from the above to produce precipitates, and the resulting precipitate may be separated from the mother liquor, dried, and then calcined at a temperature of 400°C or higher. It has been found that by producing a raw material powder using the method, the drawbacks of the conventional coprecipitation method can be overcome by #1. Further, when the precipitate is separated from the mother liquor and dried, the precipitate is washed and filtered using a rotary filter press, and then subjected to emulsification treatment.

して乾燥後、400℃以上の温度で仮焼すると。After drying, calcining at a temperature of 400°C or higher.

さらに沈殿物の口過、洗浄に要する時間を短縮でき、得
られる原料粉末は粒度が揃っておシ、シかも組成が均一
であシ、極めて工業的に有利に易焼結性ペロブスカイト
及びその固溶体の原料粉末を製造できることを知見し2
本発明に到達した。
Furthermore, the time required for filtering and washing the precipitate can be shortened, and the resulting raw material powder has uniform particle size and composition, making it extremely industrially advantageous to easily sinter perovskites and their solid solutions. We discovered that it is possible to produce raw material powder of 2
We have arrived at the present invention.

本発明は。The present invention is.

(1)一般式ABO3(ただし、Aは酸素12配位金属
元素の1種または2種以上゛を、Bは酸素6配位金属元
素の1種または2種以上を表わす。)で示されるペロブ
スカイト型構造及びその固溶体の原料粉末の製造に際し
、A成分化合物の水溶液と沈殿形成液とによ#)A成分
の沈殿を生成し1次いでB成分化合物の水溶液を添加し
てB成分の沈殿を生成させるか、あるいは、A成分とB
成分の沈殿の生成を前記と順序を代えて沈殿を生成させ
る第1工程。
(1) Perovskite represented by the general formula ABO3 (where A represents one or more 12-coordinate oxygen metal elements, and B represents one or more 6-coordination metal elements of oxygen). When producing the raw material powder for the mold structure and its solid solution, a precipitate of the A component is produced using an aqueous solution of the A component compound and a precipitate forming solution, and then an aqueous solution of the B component compound is added to produce a B component precipitate. or A component and B
A first step of generating a precipitate by changing the order of generating the precipitate of the components.

(2)第1工程により得られた沈殿物をロータリーフィ
ルタープレスにて洗浄1口過する第2工程。
(2) A second step in which the precipitate obtained in the first step is washed and passed through a rotary filter press.

(3)第2工程における沈殿物を乳化処理した後。(3) After emulsifying the precipitate in the second step.

乾燥する第6エ程。The 6th step is drying.

(4)第3工程により得られた乾燥物を400〜100
0’Cで仮焼する第4工程。
(4) 400 to 100% of the dried product obtained in the third step
The fourth step is calcination at 0'C.

の各工程からなることを特徴とする易焼結性ペロブスカ
イト型構造及びその固溶体の原料粉末の製造方法に関す
るものである。
The present invention relates to a method for producing a raw material powder of an easily sinterable perovskite structure and a solid solution thereof, which is characterized by comprising the following steps.

次に2本発明の各工程について説明する。Next, each step of the second invention will be explained.

第1工程: 前記一般式のA成分の酸素12配位金属と
しては1例えばs Pb、Ba、Ca、Sr及びLa等
の希土類元素が挙げられる。またB成分の酸素6配位金
属元素としては9例えば+ Ti、Zr、M7゜Sc、
Hf、Th、W、Nb、Ta、C!r、Mo、Mn、P
e、(!O,Ni。
First step: Examples of the oxygen 12-coordination metal of component A in the general formula include rare earth elements such as s Pb, Ba, Ca, Sr, and La. In addition, the oxygen hexacoordination metal elements of the B component include 9, for example, +Ti, Zr, M7°Sc,
Hf, Th, W, Nb, Ta, C! r, Mo, Mn, P
e, (!O, Ni.

Zn 、 C!d 、 Atl an、 As 、 B
i等が挙げられる。
Zn, C! d, Atlan, As, B
Examples include i.

ペロブスカイト及びその固溶体におけるB成分の2種以
上の元素の組合せは・T1  とZr  の組合せのよ
うに等原子価数のものの組合せ、また任意にその割合を
変えたもの(A成分の場合も同様)。
Combinations of two or more elements in the B component in perovskites and their solid solutions are combinations of elements with equal valences, such as the combination of T1 and Zr, and combinations in which the proportions are arbitrarily changed (the same applies to the case of the A component). .

またB位置全体で電気的中性条件を満足するような1例
えば+Fe”、: −) N”” r + ”3+と+
W6+。
In addition, 1 such that the entire B position satisfies the electrical neutrality condition, for example +Fe'',: -) N'''' r + ``3+ and +
W6+.

+M1  と十】bのようなものでもよく、更にA成分
の位置またはB成分の位置において、過剰または不足の
電荷を有し、これらの電荷を陽イオン欠陥、陰イオン欠
陥の生成によって補償するような。
+M1 and [0]b may be used, and furthermore, it may have an excess or deficiency of charge at the position of the A component or the position of the B component, and these charges may be compensated by the generation of cation defects and anion defects. Na.

例えばB成分のT1 とW との組合せ(陽イオン欠陥
補償)、T1  とAt  との組合せ(陰イオン欠陥
補償)、あるいはA成分のLa とBa との組合せ(
陽イオン欠陥補償)等であってもよい。また本発明にお
けるペロブスカイト及びその固溶体としては、A成分と
B成分のモル比を1.0よシ高い値もしくは低い値にず
らして、B位置またはA位置に空孔を導入した不定比性
ペロブスカイトも含む。
For example, the combination of T1 and W of the B component (cation defect compensation), the combination of T1 and At (anion defect compensation), or the combination of the A component of La and Ba (
cation defect compensation), etc. In addition, the perovskite and its solid solution in the present invention may also include non-stoichiometric perovskites in which the molar ratio of the A component and the B component is shifted to a value higher or lower than 1.0, and vacancies are introduced at the B position or the A position. include.

ペロブスカイト及びその固溶体の構成成分であるA成分
とB成分の各化合物の水溶液を調製するための成分化合
物としては、特に限定されないがそれらの水酸化物、炭
酸塩、オキシ塩、硫酸塩。
Component compounds for preparing an aqueous solution of each compound of component A and component B, which are constituent components of perovskite and its solid solution, include, but are not particularly limited to, their hydroxides, carbonates, oxysalts, and sulfates.

硝酸塩、塩酸塩等の無機酸塩、酢酸塩、ぎ酸塩。Inorganic acid salts such as nitrates and hydrochlorides, acetates, and formates.

しゅう酸塩等の有機酸塩、酸化物、金属等を挙げること
ができる。これらが水に可溶でない場合は塩酸の如き鉱
酸等を添加して可溶してもよい。
Examples include organic acid salts such as oxalate, oxides, and metals. If these are not soluble in water, they may be soluble by adding a mineral acid such as hydrochloric acid.

沈殿形成液としてはアンモニア、炭酸アンモニウム、苛
性アルカリ、しゅう酸等が挙げられ、これらより選べば
よい。構成成分の沈殿を生成するには、沈殿形成液を攪
拌しながら、沈殿形成液に各構成成分の水溶液を添加し
てもよく、その反対に添加してもよい。添加に際しては
液を攪拌しながら行うことが好ましい。
Examples of the precipitate-forming liquid include ammonia, ammonium carbonate, caustic alkali, oxalic acid, and the like, and any one may be selected from these. In order to generate a precipitate of the constituent components, an aqueous solution of each constituent component may be added to the precipitate forming liquid while stirring the precipitate forming liquid, or vice versa. The addition is preferably carried out while stirring the liquid.

また沈殿の生成に際も9例えばA成分の沈殿を生成した
後、以後の工程を妨害する陰イオンを除去した後B成分
の水溶液を添加して沈殿を生成させてもよい。
In addition, when forming a precipitate, for example, after forming a precipitate of component A, an aqueous solution of component B may be added after removing anions that would interfere with subsequent steps to form a precipitate.

更にまた。A成分の沈殿を生成後、沈殿形成液の種類と
濃度を適宜選択調節してB成分の沈殿を生成するのに適
するようにしてもよい。
Yet again. After producing the precipitate of component A, the type and concentration of the precipitate forming liquid may be selected and adjusted as appropriate to make it suitable for producing the precipitate of component B.

またA成分、B成分のほか、ペロブスカイトの焼結性や
特性を制御するだめの微量成分を添加させてもよい。ま
た、前記したようにA成分およびB成分の沈殿の生成を
必要に応じ、多段にしてもよく、更に交互に沈殿させて
もよい。このように沈殿を形成させることによって、全
成分を含んだ均密な沈殿が得られる。
In addition to the A component and the B component, a trace component for controlling the sinterability and properties of the perovskite may be added. Furthermore, as described above, the precipitation of component A and component B may be formed in multiple stages, or may be caused to precipitate alternately, if necessary. By forming the precipitate in this manner, a homogeneous precipitate containing all the components can be obtained.

該工程により得られる沈殿物は、従来法であるペロブス
カイト及びその固溶体の構成成分であるA成分およびB
成分の化合物すべてを一緒に混合した混合溶液を作シ、
これにアルカリ等の沈殿形成液を添加して共沈させると
いう共沈法に較べて。
The precipitate obtained by this process contains component A and component B, which are the constituent components of perovskite and its solid solution, which is a conventional method.
Create a mixed solution by mixing all of the component compounds together,
Compared to the coprecipitation method, which involves adding a precipitate-forming liquid such as an alkali to the solution and causing coprecipitation.

均密な沈殿が得られるという特徴を有する。It has the characteristic that a uniform precipitate can be obtained.

第2工程: 第1工程により得られた沈殿物をロータリ
ーフィルタープレスにて口過、洗浄する。
2nd step: The precipitate obtained in the 1st step is filtered and washed using a rotary filter press.

この口過、洗浄はロータリーフィルタープレスで同時に
行ってもよいが、よシ洗浄効果を高めるために、別に洗
浄槽を設け、ロータリーフィルタープレスと組合せて行
うこともできる。
The filtration and washing may be performed simultaneously using a rotary filter press, but in order to improve the washing effect, a separate washing tank may be provided and the washing may be performed in combination with the rotary filter press.

ロータリーフィルタープレスによる口過、洗浄は1口液
に含まれる硝酸イオンおよび塩素イオン濃度が100 
ppm以下、好ましくは10 ppm以下になるように
行うのが好適である。
The concentration of nitrate ions and chloride ions contained in one mouthful of filtration and rinsing using a rotary filter press is 100%.
It is suitable to carry out so that it is below ppm, preferably below 10 ppm.

ロータリーフィルタープレスの炉布としては。As a furnace cloth for rotary filter press.

通気量0.01〜2 cc / sea −crA +
特に0.02〜1cc/5ec−iが好適である。
Airflow amount 0.01~2 cc/sea-crA+
Particularly suitable is 0.02 to 1 cc/5ec-i.

ロータリーの回転数は300〜1500rpm+特に8
00〜1ろOOrpmが好適である。
The rotation speed of the rotary is 300 to 1500 rpm + especially 8
00-100 rpm is suitable.

口過圧は1KgZ−以上、特に1〜5に9/cAが好適
である。
The mouth overpressure is preferably 1 kgZ- or more, particularly 1 to 5 to 9/cA.

口過、洗浄に要する時間は、ロータリーフィルタープレ
スの濾過面積、沈殿物量、洗浄水量によって異なる。口
液に含まれる硝酸イオン、塩素イオン濃度の定量は1通
常の分析化学的方法1例えば滴定法、イオンクロマト法
等により行われる。
The time required for filtration and washing varies depending on the filtration area of the rotary filter press, the amount of precipitate, and the amount of washing water. The concentration of nitrate ions and chloride ions contained in oral fluids is determined by a conventional analytical chemical method such as a titration method or an ion chromatography method.

該工程で得られる沈殿物のスラリー濃度が極端に高い場
合や低い場合には1次工程(第3工程)において好適な
乳化物が得られない場合もあるので、スラリー濃度(固
形物換算)としては1〜15重量%、好ましくは5〜1
6重量%となるようにするのがよい。
If the slurry concentration of the precipitate obtained in this step is extremely high or low, a suitable emulsion may not be obtained in the first step (third step), so the slurry concentration (in terms of solids) is 1 to 15% by weight, preferably 5 to 1% by weight.
It is preferable to adjust the amount to 6% by weight.

第6エ程: 第2工程における沈殿物を乳化処理した後
、乾燥する。
Sixth step: After the precipitate in the second step is emulsified, it is dried.

乳化処理は、粘度が20℃(換算)において。Emulsification treatment is performed at a viscosity of 20°C (converted).

5〜50センチボイズ、特に10〜30センチポイズに
なるようにするのが好適である。
It is preferable to set it to 5 to 50 centipoise, particularly 10 to 30 centipoise.

乳化する方法としては、特に限定されないが。The emulsification method is not particularly limited.

例えばホモジナイザー、アトライター、サンドミル、ボ
ールミル、ラインミル等を挙げることができる。
Examples include homogenizers, attritors, sand mills, ball mills, line mills, and the like.

乳化処理の温度としては、特に限定されないが。The temperature of the emulsification treatment is not particularly limited.

10〜50℃1特に20〜40゛Cが好適である。A temperature of 10 to 50°C, particularly 20 to 40°C is suitable.

乾燥は、乳化した沈殿物を沈殿物スラリーのまま、瞬時
に乾燥するのが、ペロブスカイト原料粉末の粒子および
組成を均一にすることができるので好適である。乾燥方
法としては、特に限定されないが2例えばドラム乾燥法
、スプレー乾燥法等を好適に挙げることができる。乾燥
温度は1通常50〜300℃の温度範囲が好適である。
For drying, it is preferable to instantaneously dry the emulsified precipitate as a precipitate slurry, since this can make the particles and composition of the perovskite raw material powder uniform. The drying method is not particularly limited, but suitable examples include drum drying, spray drying, and the like. The drying temperature is usually preferably in the range of 50 to 300°C.

第4工程: 第3工程における乾燥粉末を仮焼する。仮
焼温度は、過度に低いと沈殿物の脱水。
Fourth step: The dry powder in the third step is calcined. If the calcination temperature is too low, the precipitate will dehydrate.

熱分解が不十分となシ、過度に高いと粉末が粗大化する
ので、特に400〜1000℃の範囲の温度から選ばれ
るのが好適である。
If the thermal decomposition is insufficient, and if the temperature is too high, the powder will become coarse, so it is particularly preferable to select a temperature in the range of 400 to 1000°C.

〔実施例〕〔Example〕

以下に実施例および参考例を示し、さらに詳しく本発明
について説明する。
EXAMPLES The present invention will be explained in more detail by showing Examples and Reference Examples below.

実施例1 四塩化チタン(B成分) L897Kf、オキシ塩化ジ
ルコニウム(B成分) 3.223に9を、水100を
中に溶解して、 Ti  とZr  の等モルの混合水
溶液を作った。この溶液を攪拌した6Nアンモニア水j
00を中に徐々に滴下して白色のZrとT1の水酸化物
共沈物を生成させた。この共沈体の分散液に、攪拌を続
行しながら、硝酸鉛6,624に9を30tの水に溶解
した溶液を添加して、 Zr、Ti及びpbの水酸化物
の均密な沈殿を作った。この沈殿物ネラリーをロータリ
ーフィルタープレス(コトブキ技研工業製)によって吸
着している塩素イオン、硝酸イオンを洗浄し口過した。
Example 1 Titanium tetrachloride (component B) L897Kf, zirconium oxychloride (component B) 3.223 and 9 were dissolved in water 100 to prepare an equimolar mixed aqueous solution of Ti and Zr. This solution was stirred with 6N ammonia water.
00 was gradually dropped into the solution to form a white hydroxide coprecipitate of Zr and T1. While continuing stirring, a solution of lead nitrate 6,624 and 9 dissolved in 30 t of water was added to the dispersion of this coprecipitate to uniformly precipitate the hydroxides of Zr, Ti, and PB. Had made. The chlorine ions and nitrate ions adsorbed on this precipitate nerary were washed using a rotary filter press (manufactured by Kotobuki Giken Kogyo), and the mixture was passed through the mouth.

洗浄は2.57/hrの水を用い、4時間行った。その
時点での口液の塩素イオン、硝酸イオン濃度はそれぞれ
10 、ppm以下であった。
Washing was performed for 4 hours using 2.57/hr water. At that time, the concentrations of chloride ions and nitrate ions in the oral fluid were less than 10 ppm, respectively.

洗浄した沈殿物スラリーをホモジナイザーにより、  
10000rpm、 0.5時間攪拌し乳化した。
Using a homogenizer, the washed precipitate slurry is
The mixture was emulsified by stirring at 10,000 rpm for 0.5 hours.

乳化物の粘度は20℃で21センチボイズであった。こ
の乳化物をスプレードライヤーによって。
The viscosity of the emulsion was 21 centivoise at 20°C. This emulsion is spray-dried.

設定温度t、oo”c、(乾燥温度150’c)″c′
乾燥し粉末を得た。
Set temperature t, oo"c, (drying temperature 150'c)"c'
It was dried to obtain a powder.

この乾燥粉末を650℃で約2時間仮焼してpb(Z 
ro、s・T io、s ) 03  粉末が得られた
。この粉末をボールミルで粉砕した。粉砕した粉末の一
部分を取シ走査型電子顕微鏡により粒子を観察したとこ
ろ、平均粒子径は0.25μmと小さく、50個の粒子
分布は0.10〜0.45μ鏑であり粒度の揃った均一
な粉末が得られていた。またX線回折法によるβCO8
θ〜sinθ(ただし、βは回折線の半価幅、θはフラ
ッグ角を表わす。)の関係をプロットした結果、横軸(
5ine軸)に平行で組成変動を含まない均一組成のも
のであることが確認された。
This dry powder was calcined at 650°C for about 2 hours to produce pb(Z
ro, s·T io, s ) 03 powder was obtained. This powder was ground in a ball mill. When we took a portion of the crushed powder and observed the particles using a scanning electron microscope, we found that the average particle size was as small as 0.25 μm, and the distribution of 50 particles was 0.10 to 0.45 μm, indicating that the particles were uniform and uniform in size. A fine powder was obtained. Also, βCO8 by X-ray diffraction method
As a result of plotting the relationship between θ and sin θ (where β represents the half width of the diffraction line and θ represents the flag angle), the horizontal axis (
It was confirmed that the composition was parallel to the 5ine axis) and had a uniform composition without any compositional fluctuations.

また、この粉末にポリビニルアルコール(以下。In addition, polyvinyl alcohol (below) is added to this powder.

PVAと略記)を0.8重量%添加して、1t/crA
で成型し、1150℃で鉛雰囲気下約2時間焼結した結
果、その密度は7.99であった。なお、成型時での実
密度は4.85で、理論密度の約60%であった。
1t/crA by adding 0.8% by weight of PVA (abbreviated as PVA)
As a result of molding and sintering at 1150° C. for about 2 hours in a lead atmosphere, the density was 7.99. The actual density at the time of molding was 4.85, which was about 60% of the theoretical density.

参考例1 実施例1と同様にしてペロブスカイト前駆体の沈殿を生
成した後、500.!の容器に移し、300tの水で5
回洗浄し2通常の口過器(ヌッチェ)にて口過した。参
考までに、これまでの所要期間は7日間であった。この
ケーキを箱型乾燥器で。
Reference Example 1 After producing a perovskite precursor precipitate in the same manner as in Example 1, 500. ! Transfer to a container and add 300 tons of water.
The mixture was washed twice and passed through a normal mouth filter (Nutche) twice. For reference, the required time so far was 7 days. Put this cake in a box dehydrator.

100℃の乾燥温度で、12時間乾燥した後、粉砕し、
650℃の仮焼温度で約2時間仮焼し。
After drying for 12 hours at a drying temperature of 100°C, pulverize,
Calcinate at a calcining temperature of 650℃ for about 2 hours.

Pb(Zr@、5 Tio、5 ) 03 粉末を得た
Pb(Zr@,5Tio,5)03 powder was obtained.

この粉末を走査型電子顕微鏡により粒子を観察したとこ
ろ、平均粒子径が0.34μmで、50個の粒子範囲は
0.03〜0.65μmであった。
When the particles of this powder were observed using a scanning electron microscope, the average particle diameter was 0.34 μm, and the range of the 50 particles was 0.03 to 0.65 μm.

また、この粉末にPVAを0.8重量%添加して。Additionally, 0.8% by weight of PVA was added to this powder.

11/−で成型し、1150℃で鉛雰囲気下で約2時間
焼結した結果、その密度は7.45であった。
11/- and sintered at 1150° C. in a lead atmosphere for about 2 hours, the density was 7.45.

なお、成型時での嵩密度は、4.62で理論密度の約5
7%であった。
The bulk density at the time of molding is 4.62, which is about 5% of the theoretical density.
It was 7%.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、従来法における全成分を共沈さ
せず、逐次に沈殿を生成させるため、二相以上の相が高
度に相互分散した状態の沈殿物が得られ、しかも沈殿物
スラリーをロータリーフィルタープレスにて洗浄1口過
した後、沈殿物を乳化処理後、乾燥し、仮焼するので、
沈殿生成時。
According to the method of the present invention, since all the components are not co-precipitated as in the conventional method, but the precipitates are generated sequentially, a precipitate in which two or more phases are highly interdispersed can be obtained, and the precipitate slurry can be After one wash with a rotary filter press, the precipitate is emulsified, dried, and calcined.
When a precipitate is formed.

乾燥時または仮焼時に凝結を起しに<〈、得られた粉末
は9粒度および組成が均一であり、易焼結性、高嵩密度
のペロブスカイト及びその固溶体の原料粉末が効率的に
製造できる。
The resulting powder is uniform in particle size and composition, and is easy to sinter and can efficiently produce raw material powders for perovskite and its solid solution with high bulk density. .

さらに安価な四塩化チタンの如き塩化物を原料として使
用しても塩素をはとんど含有することがない均一微粒子
を得ることができ、また沈殿物の洗浄、ロ過も短時間に
大量に処理でき、乳化処理するため迅速乾燥できるため
、低コストで大量に再現性よくペロブスカイト及びその
固溶体の原料粉末を製造できる。
Furthermore, even if a cheap chloride such as titanium tetrachloride is used as a raw material, uniform fine particles containing almost no chlorine can be obtained, and precipitates can be washed and filtered in large quantities in a short period of time. Since it can be processed and dried quickly due to emulsification treatment, raw material powders of perovskite and its solid solution can be produced in large quantities at low cost and with good reproducibility.

Claims (4)

【特許請求の範囲】[Claims] (1)一般式ABO_3(ただし、Aは酸素12配位金
属元素の1種または2種以上を、Bは酸素6配位金属元
素の1種または2種以上を表わす。)で示されるペロブ
スカイト型構造及びその固溶体の原料粉末の製造に際し
、A成分化合物の水溶液と沈殿形成液とによりA成分の
沈殿を生成し、次いでB成分化合物の水溶液を添加して
B成分の沈殿を生成させるか、あるいは、A成分とB成
分の沈殿の生成を前記と順序を代えて沈殿を生成させる
第1工程、
(1) Perovskite type represented by the general formula ABO_3 (where A represents one or more 12-coordinated metal elements of oxygen, and B represents one or more 6-coordinated metal elements of oxygen). When producing the raw material powder of the structure and its solid solution, a precipitate of the A component is generated using an aqueous solution of the A component compound and a precipitate forming liquid, and then an aqueous solution of the B component compound is added to generate a precipitate of the B component, or , a first step of producing precipitates by changing the order of producing the precipitates of component A and component B;
(2)第1工程により得られた沈殿物をロータリーフィ
ルタープレスにて洗浄、ロ過する第2工程、
(2) a second step of washing and filtering the precipitate obtained in the first step with a rotary filter press;
(3)第2工程における沈殿物を乳化処理した後、乾燥
する第3工程、
(3) a third step of drying after emulsifying the precipitate in the second step;
(4)第3工程により得られた乾燥物を400〜100
0℃で仮焼する第4工程、 の各工程からなることを特徴とする易焼結性ペロブスカ
イト型構造及びその固溶体の原料粉末の製造方法。
(4) 400 to 100% of the dried product obtained in the third step
A method for producing a raw material powder of an easily sinterable perovskite structure and a solid solution thereof, comprising the following steps: a fourth step of calcining at 0°C.
JP60140478A 1985-06-28 1985-06-28 Production of easily sintering perovskite raw material powder by wet method Granted JPS623004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140478A JPS623004A (en) 1985-06-28 1985-06-28 Production of easily sintering perovskite raw material powder by wet method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140478A JPS623004A (en) 1985-06-28 1985-06-28 Production of easily sintering perovskite raw material powder by wet method

Publications (2)

Publication Number Publication Date
JPS623004A true JPS623004A (en) 1987-01-09
JPH0367963B2 JPH0367963B2 (en) 1991-10-24

Family

ID=15269539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140478A Granted JPS623004A (en) 1985-06-28 1985-06-28 Production of easily sintering perovskite raw material powder by wet method

Country Status (1)

Country Link
JP (1) JPS623004A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278107A (en) * 1985-10-02 1987-04-10 Natl Inst For Res In Inorg Mater Production of powdery raw material of perovskite and solid solution thereof
JPS62148322A (en) * 1985-12-23 1987-07-02 Natl Inst For Res In Inorg Mater Production of raw material powder of perovskite and its solid solution
JPS6325264A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density bzn base ferroelectric ceramic
JPS6325265A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density bznt base ferroelectric ceramic
JPS6325263A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density bzt base ferroelectric ceramic
EP0735116A1 (en) * 1995-03-28 1996-10-02 Rhone-Poulenc Chimie S.A. Use of terbium based compounds as colouring pigment
JP2008308385A (en) * 2007-06-18 2008-12-25 Sumitomo Metal Mining Co Ltd Method of manufacturing indium oxide-based sputtering target

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278107A (en) * 1985-10-02 1987-04-10 Natl Inst For Res In Inorg Mater Production of powdery raw material of perovskite and solid solution thereof
JPS62148322A (en) * 1985-12-23 1987-07-02 Natl Inst For Res In Inorg Mater Production of raw material powder of perovskite and its solid solution
JPS6325264A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density bzn base ferroelectric ceramic
JPS6325265A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density bznt base ferroelectric ceramic
JPS6325263A (en) * 1986-07-17 1988-02-02 科学技術庁無機材質研究所長 Manufacture of high density bzt base ferroelectric ceramic
EP0735116A1 (en) * 1995-03-28 1996-10-02 Rhone-Poulenc Chimie S.A. Use of terbium based compounds as colouring pigment
FR2732352A1 (en) * 1995-03-28 1996-10-04 Rhone Poulenc Chimie USE AS A COLORING PIGMENT OF TERBIUM-BASED COMPOUNDS
JP2008308385A (en) * 2007-06-18 2008-12-25 Sumitomo Metal Mining Co Ltd Method of manufacturing indium oxide-based sputtering target

Also Published As

Publication number Publication date
JPH0367963B2 (en) 1991-10-24

Similar Documents

Publication Publication Date Title
JP2635048B2 (en) Preparation of perovskite-based products
US5096642A (en) Process for producing a high density ceramic of perovskite
US20060045840A1 (en) Process for preparing perovskite-type crystalline compound powders
JPS6214489B2 (en)
US7001585B2 (en) Method of making barium titanate
JPS6214490B2 (en)
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JPH0367964B2 (en)
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH06305729A (en) Fine powder of perovskite type compound and its production
JPH0159967B2 (en)
JP7533032B2 (en) Method for producing cerium-based composite oxide particles
JP3772354B2 (en) Manufacturing method of ceramic powder
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPH0159205B2 (en)
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPS6363511B2 (en)
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JP2767584B2 (en) Method for producing fine perovskite ceramic powder
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JPS61251516A (en) Production of perovskite type oxide
JP2694851B2 (en) PLZT ceramic raw material powder manufacturing method
JPH0367965B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term