JPS61251516A - Production of perovskite type oxide - Google Patents

Production of perovskite type oxide

Info

Publication number
JPS61251516A
JPS61251516A JP7723485A JP7723485A JPS61251516A JP S61251516 A JPS61251516 A JP S61251516A JP 7723485 A JP7723485 A JP 7723485A JP 7723485 A JP7723485 A JP 7723485A JP S61251516 A JPS61251516 A JP S61251516A
Authority
JP
Japan
Prior art keywords
ethanol
aqueous solution
amount
oxide
oxalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7723485A
Other languages
Japanese (ja)
Inventor
Kunimasa Takahashi
高橋 邦昌
Michiko Oda
享子 織田
Haruo Shibatani
柴谷 治雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP7723485A priority Critical patent/JPS61251516A/en
Publication of JPS61251516A publication Critical patent/JPS61251516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the titled oxide at a low cost, by specifying the ionic concentration of a specific element and amount of ethanol in a process for producing the titled oxide by reacting the respective component elements in an aqueous solution with oxalic acid in the presence of the ethanol, and thermally decomposing the resultant precipitates. CONSTITUTION:A solution of oxalic acid in ethanol is dropped into an aqueous solution containing ions of elements to constitute a perovskite type oxide expressed by the formula ABO3 (A is one or more of Ba, Sr, Ca and Pb; B is one or more of Ti and Zr) while stirring the aqueous solution. The ionic concentration of the element (A) in the above-mentioned aqueous solution is adjusted to 0.2-1mol/l, and the amount of the ethanol to be used is 0.5-4vol. based on one vol. above-mentioned aqueous solution. Thus, precipitates of a precursor of the above-mentioned oxide are formed and thermally decomposed to give the above-mentioned oxide. According to this process, the sufficient amount of the ethanol to be used is small, and the productivity of reactors, distillation cost of the ethanol and distillation loss, etc., are improved.

Description

【発明の詳細な説明】 j1Vリリ1 羞皇立国 本発明は、ABOa型ペロプスカイト型酸化物の製造法
に関するものである。さらに具体的には、本発明は、こ
の酸化物の公知の製造法において特定の過程で特定のA
イオン濃度の水溶液と、特定の水溶液とエタノールとの
容積比とを使用することによって、粉本特性のすぐれた
該酸化物粉本を低廉な製造価格で製造する方法に関する
ものでおる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an ABOa perovskite oxide. More specifically, the present invention provides that a specific A
The present invention relates to a method for producing an oxide powder with excellent powder properties at a low manufacturing cost by using an aqueous solution with an ionic concentration and a specific volume ratio of the aqueous solution and ethanol.

ペロプスカイト型酸化物は、それ自身あるいは2種以上
のこれら酸化物の固溶体の形で、コンデンサーなどの強
誘電材料や圧電体材料として広く使用されている材料で
ある。これらの材料のほとんどは、その粉末を焼き固め
た焼結体とじて製品化されでいる。その場合の品質は焼
結の度合で著しく左右されるものであり、従って、良好
な焼結体を与えるべき原材料として粉本特性の優れた粉
末が望まれている。
Peropskite-type oxides, either by themselves or in the form of a solid solution of two or more of these oxides, are widely used as ferroelectric and piezoelectric materials in capacitors and the like. Most of these materials are commercialized as sintered bodies obtained by baking and solidifying their powders. The quality in this case is significantly influenced by the degree of sintering, and therefore, a powder with excellent powder properties is desired as a raw material for producing a good sintered body.

先行技術 ペロプスカイト型酸化物の製造法としては、下記の方法
が知られている。
Prior Art The following method is known as a method for producing perovskite-type oxides.

(1)各成分元素の酸化物粉末を混合し、この混合物を
高温に加熱して固相反応を起させる方法。
(1) A method in which oxide powders of each component element are mixed and the mixture is heated to a high temperature to cause a solid phase reaction.

(2)各成分元素のイオンを含む水溶液中にしゆう酸を
滴下して各成分元素をしゆう酸塩として共沈させ、この
共沈しゆう酸塩を熱分解する方法。
(2) A method in which oxalic acid is dropped into an aqueous solution containing ions of each component element to coprecipitate each component element as an oxalate salt, and the coprecipitated oxalate salt is thermally decomposed.

(3)各成分元素のアルコキシドの混合物を加水分解し
て共沈させ、この共沈加水分解物を熱分解する方法。
(3) A method in which a mixture of alkoxides of each component element is hydrolyzed and coprecipitated, and the coprecipitated hydrolyzate is thermally decomposed.

しかしながら、これらの方法には何らかの問題点があっ
て、必ずしも満足すべきものとはいい難い。たとえば、
(1)の固相反応は高温かつ長時間が必要であるという
製造工程上の問題があるばかりでなく、製品粉末にも問
題がある。すなわち、この方法で得られる粉末は焼結し
離<、従って焼結の尾めには高温の採用あるいは焼結促
進剤の使用が必要となるからである。(2)の共沈法に
は、各成分のしゆう酸省の共沈媒体である水に対する溶
解度が異なるので各成分を希望成分比で共沈させること
が困難であって、単−相の組成のものが得難いという欠
点がある。また、(3)の共沈法は高純度で均一性の高
い製品が得られるという利点があるけれども、各成分を
アルコキシドとして利用するところからその製造が容易
ではないという欠点を免れない。
However, these methods have some problems and are not necessarily satisfactory. for example,
The solid-phase reaction (1) not only has problems with the manufacturing process in that it requires high temperatures and long periods of time, but also has problems with the product powder. That is, the powder obtained by this method cannot be sintered and therefore it is necessary to use a high temperature or use a sintering accelerator in the final stages of sintering. In the coprecipitation method (2), it is difficult to coprecipitate each component in the desired ratio because the solubility of each component in water, which is the coprecipitation medium for oxidation, is different, and it is difficult to coprecipitate each component in a single phase. The disadvantage is that it is difficult to obtain a composition with the same composition. Further, although the coprecipitation method (3) has the advantage of producing a product with high purity and high uniformity, it has the disadvantage that it is not easy to manufacture since each component is used as an alkoxide.

山村らは、これらの従来法の欠点を解消する方法として
前述(2)のしゆう酸塩法の改良を提案している。即ち
、しゆう酸はエタノールに可溶であり、Zrイオン、T
iイオンのしゆう酸塩及びPbXBa。
Yamamura et al. have proposed an improvement to the oxalate method described in (2) above as a method to eliminate the drawbacks of these conventional methods. That is, oxalic acid is soluble in ethanol, and Zr ions, T
i ion oxalate and PbXBa.

SrまたはCaの群から選ばれたイオン(以下これを総
称してAイオンと言う)のしゆう酸塩はいずれもエタノ
ールに全く不溶である性質を利用して、エタノール中で
AイオンとTiイオンとをしゆう酸と反応させてこれら
のイオンをしゆう酸塩として共沈させること(特開昭5
9−39722号公Ti  )イオンとをしゆう酸塩と
して共沈させること(特開昭59−131505号公報
)によって、所望組成の高純度且つ均一粒度の沈澱物(
ペロプスカイト型酸化物の前駆体)が得られ、これを熱
分解すると極めて焼結し易い活性なATiOs、 。
Utilizing the property that oxalates of ions selected from the Sr or Ca group (hereinafter collectively referred to as A ions) are completely insoluble in ethanol, A ions and Ti ions can be combined in ethanol. and react with oxalic acid to co-precipitate these ions as oxalate salts (Japanese Patent Application Laid-open No. 1983-1995).
No. 9-39722 Publication Ti) ions are co-precipitated as oxalate salts (Japanese Patent Application Laid-open No. 59-131505) to obtain a precipitate of high purity and uniform particle size with a desired composition (
Active ATiOs, which is a precursor of perovskite-type oxides, is obtained which is extremely easy to sinter when thermally decomposed.

A Zr Oa またはA (Zr−Ti ) Oa 
 微粉末が得られる。そこに開示された技術において、
Aイオンは当該硝酸塩の水溶液ないし含エタノール水溶
液として使用されている。一方、チタンイオン及びジル
コニウムイオンはオキシ硝酸チタンまたはオキシ硝酸ジ
ルコニウムの水溶液ないLtエタ/−ル溶液として使用
することが好ましいとされている。何故ならば、これら
イオンの供給源として塩化物を使用すると共沈澱物中に
塩素イオンが残存しがちで、共沈澱物を高温焼成しても
塩素イオンが残って、焼成物(すなわち目的酸化物)を
焼結する場合に悪影響を及ぼすことがあるからであり、
またAイオンとしてPbを用いる場合には混合水溶液に
おいて不溶性の塩化鉛が生成するからである。オキシ硝
酸チタンの製造法としては、四重化チタンをアンモニア
水で加水分解して水酸化物として沈澱させ、これを濾過
して得た水酸化チタンを硝酸中に投入して溶解させてオ
キシ硝酸チタン溶液を得る方法が開示されており、オキ
シ硝酸ジルコニウム溶液もオキシ塩化ジルコニウムを原
料としてまったく同様の手法で得られることが開示され
ている。
A Zr Oa or A (Zr-Ti) Oa
A fine powder is obtained. In the technology disclosed therein,
The A ion is used as an aqueous solution or an ethanol-containing aqueous solution of the nitrate. On the other hand, it is said that titanium ions and zirconium ions are preferably used in the form of an Lt ethanol solution rather than an aqueous solution of titanium oxynitrate or zirconium oxynitrate. This is because when chloride is used as a source of these ions, chloride ions tend to remain in the coprecipitate, and even if the coprecipitate is fired at a high temperature, chloride ions remain and the fired product (i.e., the target oxide) ) may have an adverse effect when sintering.
Further, when Pb is used as the A ion, insoluble lead chloride is generated in the mixed aqueous solution. The method for producing titanium oxynitrate is to hydrolyze titanium tetrahedron with aqueous ammonia to precipitate it as a hydroxide, and then filter the resulting titanium hydroxide into nitric acid and dissolve it to form oxynitric acid. A method for obtaining a titanium solution is disclosed, and it is also disclosed that a zirconium oxynitrate solution can be obtained in exactly the same manner using zirconium oxychloride as a raw material.

これらの化合物からのチタンイオンまたはジルコニウム
イオンとAイオンとをエタノールの存在下にしゆう酸と
反応させてしゆう酸塩共沈物を得、これを濾過、乾燥後
、粉砕して、熱分解が完全に終了して重量変化が最早認
められない温度(700−1000℃)で暇焼すれば、
目的のペロプスカイト型酸化物が得られるのであるが、
開示されたところによれば生成■焼物は再度粉砕混合し
ておシ、この粉末について成型および1000−140
0℃で゛の焼結を行なっている。
Titanium ions or zirconium ions from these compounds and A ions are reacted with oxalic acid in the presence of ethanol to obtain an oxalate coprecipitate, which is filtered, dried, and pulverized to prevent thermal decomposition. If the baking is completed at a temperature (700-1000℃) at which weight change is no longer observed,
The desired perovskite type oxide is obtained, but
According to the disclosure, the produced pottery is ground and mixed again, and this powder is molded and heated to 1000-140
Sintering is performed at 0°C.

すなわち、この先行改良技術においては、共沈澱物の■
焼によって得られた微粉末状のペロプスカイト型酸化物
は粒子相互で融着を起こしていて直接金型成型に供する
ことができないので、再粉砕混合工程が必要であったの
である。
That is, in this prior improved technology, the coprecipitate ■
The finely powdered perovskite oxide obtained by sintering cannot be used directly for molding because the particles are fused together, so a re-pulverization and mixing step was necessary.

先行改良発明で必要であるこの再粉砕混合工程は、工程
費の増加及び不純物の混入による最終製品の信頼性の低
下をもたらすばかりでなく、ペロプスカイト型酸化物粉
末の特性からいっても問題である。すなわち、これらペ
ロプスカイト型酸化物粉末をポリ弗化ビニIJデン樹脂
、ポリオキシメチレン樹脂、ニトリルブタジェンゴム等
と複合して、可撓性に富む圧電フィルムを製造する技術
の開発が進められつつあるところ、この場合には粒径分
布が均一で結晶歪のない易分散型の微粉末が必要とされ
ているのであるが、再粉砕混合で得た微粉末では結晶歪
が生起して、期待する性能が得られなくなることが知ら
れているからでちる。
This re-grinding and mixing step, which is necessary in the prior improved invention, not only increases the process cost and reduces the reliability of the final product due to the contamination of impurities, but it is also problematic considering the characteristics of the perovskite-type oxide powder. be. In other words, the development of technology for manufacturing highly flexible piezoelectric films by compounding these perovskite-type oxide powders with polyvinyl fluoride IJ resin, polyoxymethylene resin, nitrile butadiene rubber, etc. is progressing. In this case, an easily dispersible fine powder with a uniform particle size distribution and no crystal distortion is required, but the fine powder obtained by re-grinding and mixing causes crystal distortion and does not meet expectations. This is because it is known that the performance that can be obtained cannot be obtained.

山村及び本発明者らは■焼物微粒子の相互融着現象につ
いて鋭意検討を加え、この先行改良技術において、出発
原料イオンの混合水溶液に少量残存する塩素イオンが■
焼段階において微粒子の相互融着現象を誘起している事
実を見出し、更に塩素イオン濃度を所定値以下に下げる
ことで融着を抑止できることを見出して先願発明(特、
願昭60−13910号)に到達した。
Yamamura and the present inventors have conducted intensive studies on the phenomenon of mutual fusion of fine particles of baked goods, and in this advanced improved technology, a small amount of chlorine ions remaining in the mixed aqueous solution of starting material ions are
It was discovered that the mutual fusion phenomenon of fine particles was induced during the firing stage, and furthermore, it was discovered that fusion could be suppressed by lowering the chlorine ion concentration to a predetermined value or less.
Application No. 13910/1983) was reached.

先行技術の問題点 B元素1原子当り塩素イオンがO,OS原子以上含まな
い水溶液ないし含エタノール水溶液からエタノールの存
在下しゆう酸塩を沈澱させる山村および本発明者らの方
法によって易分散型のペロプスカイト型酸化物の微粉末
を得ることが可能となった。しかしながら、該方法の実
施にあたっては沈澱剤として使用するしゆう酸1モルに
対して200モル程度の多量のエタノールを使用するこ
とが好ましいとされており、工業プロセスとして考える
場合には反応器の生産性の低さ、大量のエタノールの蒸
留コスト及び蒸留損失等最終製品の価格を著しく高いも
のとする反応条件が用いられている。従って、チタンの
出発原料として高価なチタンアルコキシドの使用が好ま
れることと相俟って、山村および本発明者らの方法は、
従来の酸化物仮焼失に比較して高価な粉体製造法といわ
ざるを得ない面をもっていた。
Problem with the prior art B: An easily dispersible type can be obtained by the method of Yamamura and the present inventors, in which sulfuric acid salts are precipitated in the presence of ethanol from an aqueous solution containing no more than an O or OS atom of chlorine ions per atom of element B or an aqueous solution containing ethanol. It became possible to obtain fine powder of perovskite-type oxide. However, when carrying out this method, it is said that it is preferable to use a large amount of ethanol, about 200 moles per mole of oxalic acid used as a precipitant. Reaction conditions are used that significantly increase the price of the final product, such as poor performance, high ethanol distillation costs, and distillation losses. Therefore, coupled with the preference for using expensive titanium alkoxides as starting materials for titanium, Yamamura and our method
This method has the disadvantage of being an expensive powder manufacturing method compared to the conventional oxide calcining method.

本発明者らは山村および本発明者らの先行出願(%願昭
60−13910号)の反応条件について鋭意検討を加
え、次の新しい知見を得て本発明に到った。
The present inventors conducted extensive studies on the reaction conditions of Yamamura and the present inventors' prior application (% Application No. 13910/1981), and obtained the following new knowledge, leading to the present invention.

特願昭60−13910号出願の方法でオキシ硝酸チタ
ンを合成すると2〜3モルTi/Lという高濃度水溶液
が合成でき0−10℃の温度領域で安定である。一方、
山村らの方法(特開昭59−39722号公報)で合成
したオキシ硝酸チタン濃度としては実施例1で0.01
912 ?/Cr、が開示されている。これは0.39
9モルTi/lに相通する。山村らは硝酸鉛との混合溶
液を調製し、硝酸鉛濃度として0.133モル/lの水
溶液を得ている。この溶液1容に対してエタノール約4
.9容を用いてしゆう酸塩沈澱反応を行っている。この
漬は沈澱反応で得られるPbTi0a 1yに対して約
120−のエタノールに相轟する。
When titanium oxynitrate is synthesized by the method disclosed in Japanese Patent Application No. 13910/1982, a highly concentrated aqueous solution of 2 to 3 mol Ti/L can be synthesized and is stable in the temperature range of 0 to 10°C. on the other hand,
The concentration of titanium oxynitrate synthesized by the method of Yamamura et al. (Japanese Unexamined Patent Publication No. 59-39722) was 0.01 in Example 1.
912? /Cr is disclosed. This is 0.39
Compatible with 9 mol Ti/l. Yamamura et al. prepared a mixed solution with lead nitrate and obtained an aqueous solution with a lead nitrate concentration of 0.133 mol/l. Approximately 4 ml of ethanol per 1 volume of this solution
.. The oxalate precipitation reaction is carried out using 9 volumes. This solution is mixed with ethanol of about 120 - to the PbTiOa 1y obtained by the precipitation reaction.

山村及び本発明者らの先行出願においてもまったく同じ
量のエタノールを使用する条件が開示されている。
The previous application by Yamamura and the present inventors also discloses conditions in which exactly the same amount of ethanol is used.

本発明者らは塩素含有量が少ない水m液中では高濃度の
オキシ硝酸チタンが安定に存在し得る点に注目し、硝酸
鉛をどの程度の濃度まで溶解できるかについて検討を加
えたところ、m液温度が0℃近傍において約0.6モル
Pb/lの濃度においても硝酸鉛および/またはオキシ
硝酸チタンの沈澱ろ水溶液系においては、山村ら、山村
および本発明者らの先行出願で開示された低い金属イオ
ン濃度をとらなくても水溶液は安定であることが見出さ
れた。
The present inventors focused on the fact that high concentrations of titanium oxynitrate can exist stably in aqueous liquids with low chlorine content, and investigated to what concentration lead nitrate can be dissolved. In a precipitated filtration aqueous solution system of lead nitrate and/or titanium oxynitrate even at a concentration of about 0.6 mol Pb/l at a liquid temperature of around 0°C, the method disclosed in the prior application of Yamamura et al., Yamamura and the present inventors It was found that the aqueous solution was stable even without the low metal ion concentrations used.

水使用量はPb −Ti系では従来出願の輪程度まで低
下させ得るので、溶液1容に対するエタノールの添加量
を従来通りにしてもその使用量を6に減らせる可能性が
見出された。
Since the amount of water used in the Pb-Ti system can be reduced to about the same level as in the conventional application, it has been found that it is possible to reduce the amount of ethanol used to 6 even if the amount of ethanol added per volume of solution remains the same as before.

一方高濃度金属イオン溶液からしゅう酸塩を合成すると
、副生ずる硝酸イオン濃度も比例して高くなる。硝酸イ
オンが沈澱の溶解度に及ぼす効果としては、塩効果が考
えられる。特に硝酸溶液中では水素イオン濃度以外の影
響が現われて溶解度が増すことが多い(蟇目清一部、「
重量分析」5章、共立出版、1965)、ことが知られ
ているので、金属沈澱の再溶解が懸念された。
On the other hand, when oxalate is synthesized from a high-concentration metal ion solution, the concentration of by-product nitrate ions also increases proportionally. The effect of nitrate ions on the solubility of the precipitate is considered to be a salt effect. In particular, in nitric acid solutions, effects other than hydrogen ion concentration often appear and increase solubility (Kimome Seibu, ``
``Gravimetric Analysis'' Chapter 5, Kyoritsu Shuppan, 1965), there was a concern that the metal precipitate would be redissolved.

一方、副生じた硝酸としゆう酸チタニル鉛とが反応して
次式に従って多量のT1を母液中に残存させる可能性が
卵入らの研究(電気通信研究所・研究実用化報告別冊2
8号(1965)など)で知られている。
On the other hand, there is a possibility that the by-produced nitric acid reacts with titanyl lead peroxide, resulting in a large amount of T1 remaining in the mother liquor according to the following formula.
No. 8 (1965), etc.).

Pb Ti O(0204) t + 2 HNO3→
PbCzO4+ Ti 0(NO3)2 + HzCz
O<先行する発明においてすらTiの溶解はエタノール
の存在によっても完全に抑制できないことが知られてい
るので、高濃度になれば更に多量のTiが再溶出するこ
と、及び先行発明では水溶液への溶出が事実上無視され
ていたPbが再溶出すること等が考えられた。これらの
事実から、高濃度溶液系でエタノール量を低減できる可
能性は低いものと予測された。
Pb Ti O (0204) t + 2 HNO3→
PbCzO4+ Ti 0(NO3)2 + HzCz
O<It is known that even in the prior invention, the dissolution of Ti cannot be completely suppressed even by the presence of ethanol, so if the concentration becomes high, an even larger amount of Ti will be re-eluted, and in the prior invention, the dissolution of Ti cannot be completely suppressed even by the presence of ethanol. It was thought that Pb, whose elution was virtually ignored, might re-elute. From these facts, it was predicted that the possibility of reducing the amount of ethanol in a highly concentrated solution system was low.

しかしながら、本発明で規定する高濃度金属イオン水溶
液系においては、水溶液1容に対して従来量のエタノー
ル(即ちしゆう酸1モルに対して200モル以上のエタ
ノール)を必要としないばかりか、0.5〜4容好まし
くは1〜3容のエタノールの添加によって、Pbの溶出
量を事実上無視し得る量に止め得るばかりでなく、Ti
の溶出絶対量も従来量みの量に抑制できることが実験に
よって確められたのである。
However, in the high-concentration metal ion aqueous solution system defined in the present invention, not only does the conventional amount of ethanol per volume of aqueous solution (i.e., 200 moles or more of ethanol per mole of oxalic acid) not require 0. By adding .5 to 4 volumes, preferably 1 to 3 volumes of ethanol, not only can the amount of Pb eluted be kept to a virtually negligible amount, but also the amount of Ti
Experiments have confirmed that the absolute amount of elution can be suppressed to the conventional amount.

即ち、高濃度Ti O(NOx )2水溶液を合成する
手法を開発したことが、Pb−Ti水溶液の従来では作
り得なかった高濃度化を可能とし、その結果、予想し得
なかったことであるが、エタノールの使用量を従来法の
1/1o程度にまで減らしても生成する沈澱に何ら影響
を及ぼさない事実を見出して、本発明に到った。
In other words, the development of a method for synthesizing a high-concentration TiO(NOx)2 aqueous solution made it possible to increase the concentration of a Pb-Ti aqueous solution that could not be made conventionally, and as a result, something that could not have been predicted. However, it was discovered that even if the amount of ethanol used was reduced to about 1/1 of the conventional method, the produced precipitate was not affected at all, leading to the present invention.

りl」 即ち本願実施例1で開示する反応条件においてはPbT
iO21を当り約lidのエタノールを用いるにすぎず
、先行出願のエタノール使用量(約120d)の9%に
まで使用量を減らして、従来量9の物性のPb Ti 
Os粉末を合成することに成功している。
In other words, under the reaction conditions disclosed in Example 1 of the present application, PbT
Only about 1 lid of ethanol is used per iO21, reducing the amount of ethanol used to 9% of the amount of ethanol used in the previous application (about 120 d).
We have succeeded in synthesizing Os powder.

水溶液量及びエタノール量の著減は反応器生産効率の向
上を主因とする機器関連費用の削減に結びついて生産コ
ストの低減を計ることができる。
A significant reduction in the amount of aqueous solution and ethanol can lead to a reduction in equipment-related costs mainly due to improved reactor production efficiency, leading to a reduction in production costs.

更に1 反応に用いたエタノールを蒸留精製によって再
利用する際の蒸留塔サイズの小型化及びエネルギー費の
低減を計ることができる。更に、蒸留操作毎に数聾の蒸
留損失が生じるが、単位生産量当りの使用量の著減は高
価な補充用エタノール量の著減を意味し、変動費の大巾
削減をもたらす。
Furthermore, it is possible to reduce the size of the distillation column and reduce energy costs when reusing the ethanol used in the reaction through distillation purification. Furthermore, although several distillation losses occur for each distillation operation, a significant reduction in the amount used per unit of production means a significant reduction in the amount of expensive replenishment ethanol, resulting in a significant reduction in variable costs.

更に、本発明では生成沈澱中に残存する硝酸根、未反応
しゆう酸等を含む反応母液をエタノールで洗浄除去する
工程についても改良を加え、特願昭60−13910号
ではPbTi0a 1 を当り120dのエタノールを
使用していたものを沈澱砕解方法を改めることで約lO
−にまで減らしても得られる酸化物の相互融着や粒子径
等の物性に支障を来たさないことを見出した。洗浄工程
のエタノール使用量の著減は反応用途同様蒸留精製費の
著減に結びつき、生産費の低減に寄与するところ大であ
る。
Furthermore, in the present invention, improvements have been made to the process of washing and removing the reaction mother liquor containing nitrate radicals, unreacted oxalic acid, etc. remaining in the produced precipitate with ethanol, and in Japanese Patent Application No. 13910/1983, PbTi0a 1 was heated at 120 d/min. By changing the precipitation and disintegration method, the amount of ethanol that used to be used was reduced to about 10
It has been found that even if the amount is reduced to -, the physical properties such as mutual fusion and particle size of the resulting oxides are not affected. A significant reduction in the amount of ethanol used in the washing process will lead to a significant reduction in distillation and purification costs, as in reaction applications, and will greatly contribute to lower production costs.

本発明で対象とするペロプスカイト型酸化物はABOa
型のものであって、A元素がBa、  Sr、(:aお
よびPbからなる群から選ばれた少なくとも1種の元素
であり、B元素がTiおよびZrからなる群から選ばれ
た少なくとも1種の元素であるもの、である。
The peropskite oxide targeted by the present invention is ABOa
type, in which the A element is at least one element selected from the group consisting of Ba, Sr, (:a and Pb, and the B element is at least one element selected from the group consisting of Ti and Zr. That which is an element of.

本発明で用いるTi及びZrはいずれもオキシ硝酸チタ
ン及びオキシ硝酸ジルコニウムとして反応に供される。
Both Ti and Zr used in the present invention are subjected to the reaction as titanium oxynitrate and zirconium oxynitrate.

本発明の方法で合成可能なペロプスカイト型酸化物とし
ては、PbTi Oa 、PbZrOs、Pb(Ti−
Zr)Ox、BaTiO3、Sr Ti O3、CaT
iO3、BaZrO3、SrZrO3および(:a Z
r O3等をあげることができる。
Peropskite oxides that can be synthesized by the method of the present invention include PbTiOa, PbZrOs, and Pb(Ti-
Zr) Ox, BaTiO3, Sr TiO3, CaT
iO3, BaZrO3, SrZrO3 and (:a Z
rO3 etc. can be mentioned.

これらの化合物を合成するに必要なA元素の水溶性化合
物を適宜組み合わせしゆう酸塩沈澱形成反応゛に供する
ことができるが、塩化物以外の塩、特に硝酸塩、が最も
適当である。いずれの場合にも、各種イオンを溶解した
水溶液ないし含エタノール水溶液において、Ct/ T
t % Ct/ Zr 1 またはC1/ (Tt +
 Zr ) カ0.05 以下、好マシくハ0.02以
下、になるように原料の純度を選定することが必要であ
ることは、先頭発明と同じである。
Water-soluble compounds of element A necessary for synthesizing these compounds can be suitably combined and subjected to the sulfate precipitate formation reaction, but salts other than chlorides, especially nitrates, are most suitable. In either case, in an aqueous solution containing various ions or an ethanol-containing aqueous solution, Ct/T
t % Ct/ Zr 1 or C1/ (Tt +
Zr) It is the same as the first invention that it is necessary to select the purity of the raw material so that Ka is 0.05 or less, preferably Ha 0.02 or less.

共沈 ペロプスカイト型酸化物前駆体は、A元素イオンおよび
B元素イオンを与える各元素の化合物の水溶液をエタノ
ールの存在下にしゆう酸と反応させて、共沈澱物として
得られる。
The coprecipitated perovskite-type oxide precursor is obtained as a coprecipitate by reacting an aqueous solution of a compound of each element that provides element A ions and element B ions with oxalic acid in the presence of ethanol.

具体的には、該水溶液にしゆう酸のエタノール溶液を好
ましくは激しく攪拌しながら滴下する。
Specifically, an ethanol solution of citric acid is added dropwise to the aqueous solution, preferably with vigorous stirring.

逆にしゆう酸のエタノール溶液に該水溶液若しくは該含
エタノール含有水溶液を滴下する手法を用いてもよい。
Conversely, a method may be used in which the aqueous solution or the ethanol-containing aqueous solution is dropped into an ethanol solution of oxalic acid.

本発明の実施に当って、該水溶液中のA元素のイオン濃
度を0.2−1モル/1%好ましくは0.3−1モル/
 tz更に好ましくは0.5−1モル/lKとることお
よび該水溶液1容に対してしゆう酸と共に加えるエタノ
ールの量が0.5−4 L 好tしくは1−3容にとる
ことが特徴となる。
In carrying out the present invention, the ion concentration of element A in the aqueous solution is adjusted to 0.2-1 mol/1%, preferably 0.3-1 mol/1%.
tz is more preferably 0.5-1 mol/lK, and the amount of ethanol added together with oxalic acid is 0.5-4 L, preferably 1-3 volumes per volume of the aqueous solution. becomes.

本発明の方法によれば先願発明の特許請求の囲である含
エタノール水溶液は全く必要としない。
According to the method of the present invention, there is no need for an ethanol-containing aqueous solution as claimed in the prior invention.

本発明の実施態様中入元素イオン濃度は使用する元素化
合物の硝酸々化チタンが共存する水溶液への溶解量によ
って0.2−1モル/lの範囲で選択されるべきもので
ちり、反応温度とも密接に関係して変動する量である。
Embodiments of the present invention The concentration of the elemental ions to be used should be selected in the range of 0.2-1 mol/l depending on the amount of the elemental compound used dissolved in the aqueous solution in which titanium nitrate coexists. It is a quantity that fluctuates and is closely related to both.

従って、硝酸バリウムの如き比較的難溶な塩を用いる時
には、室温近傍の反応温度で0.3モル/を程度のイオ
ン濃度が選択されるべきである。一方、硝酸カルシウム
や硝酸鉛の如き易溶な塩を用いる時には0℃で0.6モ
ル/を程度のイオン濃度を容易に選択することができる
Therefore, when using a relatively sparingly soluble salt such as barium nitrate, an ion concentration of about 0.3 mol/ml should be selected at a reaction temperature near room temperature. On the other hand, when using easily soluble salts such as calcium nitrate and lead nitrate, an ion concentration of about 0.6 mol/ml at 0°C can be easily selected.

該水溶液1容に対するエタノール使用量はAイオン濃度
との相関は認められず、生成する前駆体沈澱に対して0
.5−4容の範囲で決められる。例えば、PbTiO3
前駆体では2容で充分所期目標が達成できる。
There was no correlation between the amount of ethanol used per volume of the aqueous solution and the A ion concentration;
.. It can be determined in the range of 5-4 volumes. For example, PbTiO3
For the precursor, 2 volumes is enough to achieve the desired goal.

しゆう酸量は少なくとも各元素金属イオンをしゆう酸塩
に完全に転化させる量であることが必要であるが、理論
量の25%増程度の添加が好ましい。しゆう酸塩形成反
応の温度は、0℃から室温近傍にとることができる。
The amount of oxalic acid needs to be at least an amount that completely converts each elemental metal ion into an oxalate salt, but it is preferable to add about 25% more than the theoretical amount. The temperature of the oxalate salt formation reaction can be from 0°C to around room temperature.

しゆう酸の添加にともなって、白色沈澱が生成する。こ
れを濾過して白色ケーキを得る。ケーキ中に含まれる硝
酸イオン、未反応しゆう酸および塩素イオン等を除くた
めに、エタノール中にケーキを再分散させて、残存母液
をエタノールで置換除去することが好ましい。
A white precipitate forms upon addition of oxalic acid. Filter this to obtain a white cake. In order to remove nitrate ions, unreacted oxalic acid, chloride ions, etc. contained in the cake, it is preferable to redisperse the cake in ethanol and remove the remaining mother liquor by replacing it with ethanol.

得られた白色ケーキは乾燥後、砕解してペロプスカイト
型酸化物前駆本粉末とする。この段階での砕解け、後に
続く■焼に際して、適切な量の酸素の流通を確保する上
で重要である。なお、乾燥ケーキは弱い磨砕力で容易に
微粉化できるし、この段階で粒子を完全分散状態にする
必要もないので、砕解手段からの不純物の混入の恐れは
ない。
The obtained white cake is dried and then crushed to obtain a perovskite-type oxide precursor powder. It is important to ensure the flow of an appropriate amount of oxygen during the crushing at this stage and the subsequent sintering. Note that the dry cake can be easily pulverized by a weak grinding force, and there is no need to completely disperse the particles at this stage, so there is no risk of contamination with impurities from the pulverizing means.

ペロプスカイト型酸化物微粉末の製造 前記前駆本粉末を適当温度、たとえば5OO−1000
℃、で■焼する。この■焼温度は低温であることが望ま
しいが、熱分解が完全に終了する温度が化合物によって
異なるので、重量変化が最早認められない温度で■焼を
行なうことが必要でに説明する。
Preparation of perovskite type oxide fine powder
Bake at ℃. It is desirable that the firing temperature is low, but since the temperature at which thermal decomposition is completely completed varies depending on the compound, it is necessary to carry out the firing at a temperature at which no weight change is observed.

市販のテトライソプロピルチタン500−を蒸留水70
00mに滴下して水酸化物を得、これを濾過した後、純
水10100Oで3回洗浄を繰返して、水酸化チタンを
得た。これを氷冷した市販特級濃硝酸200dに加え、
昼夜放置後濾過して、オキシ硝酸チタン溶液を得た。T
i 、11度t−Ti 02として重量分析法で決定し
て、0.002フロモルーTi/vの結果が得られた。
Commercially available tetraisopropyl titanium 500 - distilled water 70
00m to obtain hydroxide, which was filtered and washed three times with 10,100O pure water to obtain titanium hydroxide. Add this to 200 d of ice-cooled commercial special grade concentrated nitric acid,
After standing for day and night, it was filtered to obtain a titanium oxynitrate solution. T
i, determined gravimetrically as 11 degrees t-Ti 02, giving a result of 0.002 fromo Ti/v.

オキシ硝酸チタン溶液427dを特級硝酸鉛332.8
6 fと純水1277dの混合溶液に加え、Pb濃度0
.588モル/L−水溶液Ti / Pb (原子比)
 = 1.17の溶液を得て101(DSUS−27展
反応器にとり、これを−1℃に冷却した。エタノール3
.4tにしゆう酸2水和物547.2 fを溶かしてし
ゆう酸−エタノール液を調製し、−2℃に冷却した。前
記冷却溶液を激しく攪拌している中に約100 d /
 minの速度でしゆう酸エタノールをロータリーポン
プを用いて供給し、白色沈澱を得た。この白色沈澱を含
む反応液を濾過面積530dの加圧濾過器(AAF紙使
用)に移し、背圧1辞/dGで濾過し、F液4180m
を回収した。得られた白色ケーキを上記ioz反応器に
移し、純エタノール1.5tを加えて15分間激しく攪
拌してケーキを砕解し、上記加圧濾過器で濾過した。こ
の洗浄操作を更に1回繰返して得られた白色ケーキを減
圧乾燥器にて150℃で2時間乾燥して得た乾燥ケーキ
の一部をメノウ乳鉢で粉砕し、マツフル炉で800℃で
1時間焼成して、BET表面積3.8 W?/f、Ti
/Pb比(原子比) = 1.02、X線よりもとめら
れる゛結晶形は正方晶Pb Ti O3が主であり、微
量のPb’l’130y が共存した。その202面回
折ピークから求めた結晶粒径450X、BET表面積か
ら求めた粒子径0.20μmの特性をもつチタン酸鉛粉
末を得た。
Titanium oxynitrate solution 427d to special grade lead nitrate 332.8
In addition to a mixed solution of 6f and 1277d of pure water, a Pb concentration of 0
.. 588 mol/L-aqueous solution Ti/Pb (atomic ratio)
A solution of = 1.17 was obtained and placed in a 101 (DSUS-27) reactor, which was cooled to -1°C. Ethanol 3
.. Oxalic acid-ethanol solution was prepared by dissolving 547.2 f of oxalic acid dihydrate in 4 t and cooled to -2°C. About 100 d/d of the cooled solution was stirred vigorously.
Oxalic acid ethanol was supplied using a rotary pump at a rate of 10 min to obtain a white precipitate. The reaction solution containing this white precipitate was transferred to a pressure filter (using AAF paper) with a filtration area of 530 d, and filtered with a back pressure of 1 g/dG.
was recovered. The obtained white cake was transferred to the above-mentioned Ioz reactor, 1.5 t of pure ethanol was added thereto, and the mixture was vigorously stirred for 15 minutes to break up the cake, which was then filtered using the above-mentioned pressure filter. This washing operation was repeated one more time, and the resulting white cake was dried in a vacuum dryer at 150°C for 2 hours. A portion of the dried cake was crushed in an agate mortar and then heated in a Matsufuru furnace at 800°C for 1 hour. After firing, the BET surface area is 3.8 W? /f, Ti
/Pb ratio (atomic ratio) = 1.02, and the crystal form determined by X-rays was mainly tetragonal PbTiO3, with a small amount of Pb'l'130y coexisting. A lead titanate powder was obtained having a crystal grain size of 450× determined from the 202 plane diffraction peak and a particle size of 0.20 μm determined from the BET surface area.

このチタン酸鉛を水中で約30秒、超音波洗浄器で振動
を加えて懸濁させ、懸濁液の一部をスポイトで走査型電
子顕微鏡試料台に落とした後、乾燥し、通常の処理を行
なった後に粒子状態を観察した。0.1〜0.4μmの
径を持つ粒子がよく分散している状態が認められた。
This lead titanate is suspended in water for about 30 seconds by applying vibrations using an ultrasonic cleaner, and a portion of the suspension is dropped onto a scanning electron microscope sample stage using a dropper, then dried and processed normally. After performing this, the state of the particles was observed. It was observed that particles having a diameter of 0.1 to 0.4 μm were well dispersed.

Claims (1)

【特許請求の範囲】 1、ABO_3型ペロプスカイト型酸化物(ただし、A
はBa、Sr、CaおよびPbからなる群から選ばれた
少なくとも1種の元素を示し、BはTiおよびZrから
なる群から選ばれた少なくとも1種の元素を示す)を構
成すべき元素のイオンを含む水溶液をエタノールの存在
下にシュウ酸と接触させて該酸化物の前駆体の沈澱を生
成させ、この前駆体沈澱を熱分解して該酸化物を製造す
る方法において、該水溶液中のA元素のイオン濃度が0
.2−1モル/lであり、該水溶液1容に対してエタノ
ールの使用量が0.5−4容であることを特徴とする、
ペロプスカイト型酸化物の製造法。 2、A元素のイオン濃度が0.3−1モル/lであるこ
とを特徴とする特許請求の範囲第1項に記載の方法。 3、該水溶液1容に対してエタノールの使用量が1−3
容であることを特徴とする特許請求の範囲第1項に記載
の方法。
[Claims] 1. ABO_3 type perovskite oxide (however, ABO_3 type perovskite oxide
represents at least one element selected from the group consisting of Ba, Sr, Ca and Pb, and B represents at least one element selected from the group consisting of Ti and Zr). A in the aqueous solution is brought into contact with oxalic acid in the presence of ethanol to produce a precipitate of a precursor of the oxide, and the precursor precipitate is thermally decomposed to produce the oxide. The ion concentration of the element is 0
.. 2-1 mol/l, and the amount of ethanol used is 0.5-4 volumes per 1 volume of the aqueous solution.
A method for producing perovskite-type oxides. 2. The method according to claim 1, wherein the ion concentration of element A is 0.3-1 mol/l. 3. The amount of ethanol used per 1 volume of the aqueous solution is 1-3
A method according to claim 1, characterized in that:
JP7723485A 1985-04-11 1985-04-11 Production of perovskite type oxide Pending JPS61251516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7723485A JPS61251516A (en) 1985-04-11 1985-04-11 Production of perovskite type oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7723485A JPS61251516A (en) 1985-04-11 1985-04-11 Production of perovskite type oxide

Publications (1)

Publication Number Publication Date
JPS61251516A true JPS61251516A (en) 1986-11-08

Family

ID=13628171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7723485A Pending JPS61251516A (en) 1985-04-11 1985-04-11 Production of perovskite type oxide

Country Status (1)

Country Link
JP (1) JPS61251516A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252509A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Production of compound having perovskite type structure
WO1991013042A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric composition and method of preparation
WO1991013043A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric compositions and method for enhancing dielectric properties
JP2008150290A (en) * 2008-03-19 2008-07-03 Osaka Titanium Technologies Co Ltd Titanium-based compound oxide powder
JP2010202641A (en) * 2009-02-06 2010-09-16 Ngk Insulators Ltd Method for producing ceramic precursor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252509A (en) * 1988-03-31 1989-10-09 Matsushita Electric Ind Co Ltd Production of compound having perovskite type structure
WO1991013042A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric composition and method of preparation
WO1991013043A1 (en) * 1990-02-28 1991-09-05 E.I. Du Pont De Nemours And Company Improved ceramic dielectric compositions and method for enhancing dielectric properties
JP2008150290A (en) * 2008-03-19 2008-07-03 Osaka Titanium Technologies Co Ltd Titanium-based compound oxide powder
JP2010202641A (en) * 2009-02-06 2010-09-16 Ngk Insulators Ltd Method for producing ceramic precursor

Similar Documents

Publication Publication Date Title
US5900223A (en) Process for the synthesis of crystalline powders of perovskite compounds
JPS6214489B2 (en)
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JPS61251516A (en) Production of perovskite type oxide
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
JPH0246531B2 (en)
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPS61186223A (en) Production of fine powder of dielectric material
JPS61251517A (en) Production of perovskite type oxide
JPH0524089B2 (en)
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPH0159205B2 (en)
JPH0249251B2 (en)
JPS6272523A (en) Production of abo3 perovskite type oxide
JPS6272524A (en) Production of abo3 perovskite type oxide
JPH01294529A (en) Production of oxide of perovskite type of abo3 type
JPH01294528A (en) Production of oxide of perovskite type of abo3 type
JP3216772B2 (en) Method for producing lead zirconate titanate powder
JPS5939722A (en) Manufacture of perovskite type oxide powder
JPH0524090B2 (en)
JPS63222014A (en) Production of oxide fine powder of perovskite type
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
JPH0361609B2 (en)
JPS61215218A (en) Production of functional oxide powder