JPS63288960A - Production of (pb, bi) (zr, ti)o3 - Google Patents

Production of (pb, bi) (zr, ti)o3

Info

Publication number
JPS63288960A
JPS63288960A JP62122571A JP12257187A JPS63288960A JP S63288960 A JPS63288960 A JP S63288960A JP 62122571 A JP62122571 A JP 62122571A JP 12257187 A JP12257187 A JP 12257187A JP S63288960 A JPS63288960 A JP S63288960A
Authority
JP
Japan
Prior art keywords
powder
pbzt
contg
soln
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62122571A
Other languages
Japanese (ja)
Inventor
Kazunori Suzuki
一徳 鈴木
Shinichi Shirasaki
信一 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Denso Corp
Original Assignee
National Institute for Research in Inorganic Material
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, NipponDenso Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP62122571A priority Critical patent/JPS63288960A/en
Publication of JPS63288960A publication Critical patent/JPS63288960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title ceramic having high density and high transparency by forming a coprecipitated body contg. a part of metallic constituents (except Zr) constituting (Pb, Bi) (Zr, Ti)O3 and contg. also Zr, adding residual constituents thereto, molding the mixture, and sintering the molded body. CONSTITUTION:A soln. (e.g. mixture of aq. soln. of TiCl4 and zirconyl nitrate) contg. an appropriate amt. of at least one metallic constituent (e.g. Ti) except Zr constituting (Pb, Bi) (Zr, Ti)O3 (abbreviated to PBZT hereunder) contg. also Zr is prepd. A coprecipitated body is produced by allowing the soln. to react with a precipitate-forming soln. (e.g. aq. ammonia). The coprecipitate is dried and then calcined at 700-1,300 deg.C, producing thus a powdery product having submicron particle size contg. scarcely agglomerated particles. Then, the powdery product is mixed with a compd. contg. residual constituents of the aimed PBZT compsn., calcining the mixture at 500-1,300 deg.C, molding the calcined product and sintering the molded body at 1,000-1,300 deg.C, to obtain PBZT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はPBZTの製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing PBZT.

PBZTは偏光素子、光シャッタ、画像記憶素子などの
オプトセラミックスとして広範囲の応用が期待されてい
る。
PBZT is expected to have a wide range of applications as opto-ceramics such as polarizing elements, optical shutters, and image storage elements.

〔従来の技術〕[Conventional technology]

PBZTの構成金属成分であるPb 、 Bi 、 Z
r 、 Tiの酸化物原料粉末の中で、ジルコニヤ原料
粉末は極めて凝集し易い、この様なジルコニヤ原料粉末
を使用して軟式法でPBZT原料粉末を作成しても平均
粒径は1〜2μ鍮以上のものとなる。この程度の粒度の
1)[lZT原料粉末を使用しても、高密度且つ透光性
が高く光学的に均一なP[lZTを得ることは難しい。
The constituent metal components of PBZT are Pb, Bi, and Z.
r, Among Ti oxide raw material powders, zirconia raw material powders are extremely easy to agglomerate. Even if PBZT raw material powders are made by a soft method using such zirconia raw material powders, the average particle size is 1 to 2 μm. It becomes more than that. Even if 1) [lZT raw material powder with such a particle size is used, it is difficult to obtain optically uniform P[lZT with high density and high translucency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記のPBZTの乾式法による合成における欠
点を解消すべくなされたもので、その目的は、分散性の
良いサブミクロン級の変成ジルコニヤ原料粉末を作成し
、該粉末を用いて単なる乾式法によって易焼結性且つ高
嵩密度のPBZT粉末をき成し、更にこの粉末を焼結し
て高密度且つ透光性が高く光学的に均一なPBZTを製
造する方法を提供することにある。
The present invention was made in order to eliminate the drawbacks of the above-mentioned dry method synthesis of PBZT, and its purpose is to create a submicron grade modified zirconia raw material powder with good dispersibility, and to use this powder to perform a simple dry method synthesis. The object of the present invention is to provide a method for producing a PBZT powder that is easily sinterable and has a high bulk density, and further sintering this powder to produce a PBZT that has a high density, high translucency, and is optically uniform.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記目的を達成すべく鋭意研究の結果、 一般式(Pb+−xBix) (Zr+ −yTiy)
 I−1/403 。
As a result of intensive research to achieve the above object, the present inventors found that the general formula (Pb+ -xBix) (Zr+ -yTiy)
I-1/403.

O<X≦0.3.0≦Y≦1.0.で示されるPBZT
の乾式法による製造過程において、ジルコニウム以外の
少なくとも一金属成分の適量とジルコニウムとを含有す
る溶液と沈殿形成液を反応させて共沈体を形成すると系
の不均一のためZ「含有粒子の凝集が起こりにくくなり
、その後乾燥を行ない、700〜1300°Cで仮焼す
ると、凝集の極めて少ないサブミクロン級の粉末(変成
ジルコニヤ粉末)と成し得ることが分った。これを原料
とし、目的とするPBZT組成の残りの構成部分の化合
物を乾式法によって混合すれば、サブミクロン級の粉末
特性の優れた原料粉末が容易に得られ、これを成型して
焼結すると、ホットプレスやI−I I P (熱間ガ
ス圧焼結)などの操作を省略しても極めて高密度且つ透
光性が高く光学的に均一なr’BZTが容易に得られる
ことを究明し得た。この知見に基いて本発明を完成した
O<X≦0.3.0≦Y≦1.0. PBZT denoted by
In the dry method manufacturing process, if a solution containing zirconium and an appropriate amount of at least one metal component other than zirconium is reacted with a precipitate-forming solution to form a coprecipitate, the system will be non-uniform and the particles will agglomerate. It was found that by drying and calcining at 700 to 1300°C, submicron-grade powder (modified zirconia powder) with extremely low agglomeration could be produced. If the remaining components of the PBZT composition are mixed by a dry method, a raw material powder with excellent submicron powder properties can be easily obtained, and when this is molded and sintered, hot press or I- It was found that r'BZT with extremely high density, high translucency, and optical uniformity can be easily obtained even if operations such as IIP (hot gas pressure sintering) are omitted.This knowledge The present invention was completed based on this.

本発明の要旨は次の3つの工程の組み合わせにある。The gist of the present invention lies in the combination of the following three steps.

(1) PBZTを構成するジルコニウム以外の少なく
とも一成分の、共沈体の凝集を抑制に足る適量と、ジル
コニウムとを含有する溶液を作り、これと沈殿形成液と
を反応せしめ共沈体を形成し、乾94 tit700〜
1300℃で仮焼する工程、この工程では共沈体の凝集
が避けられ、またPLZT 、 PZTなどの製造にも
使用することができる変成ジルコニヤが製造される。
(1) Prepare a solution containing zirconium and at least one component other than zirconium constituting PBZT in an appropriate amount sufficient to suppress agglomeration of the coprecipitate, and react this with a precipitate forming solution to form a coprecipitate. Shi, dry 94 tit700~
The process of calcination at 1300°C avoids agglomeration of the coprecipitate and produces modified zirconia that can also be used in the production of PLZT, PZT, etc.

(2) (1)の工程で得られた仮焼物と、目的とする
PBZT組成の残りの構成成分の化合物を混合して50
0〜1300℃で仮焼する工程。この工程では、残(3
) (2)の工程で得られた仮焼粉末を成型して100
0〜1300℃で焼結する工程。
(2) Mix the calcined product obtained in step (1) with the remaining constituent compounds of the desired PBZT composition and
A process of calcination at 0-1300℃. In this process, the remaining (3
) The calcined powder obtained in step (2) is molded into 100
A process of sintering at 0 to 1300°C.

ジルコニウム溶液を作成するための化合物としては、オ
キシ塩化ジルコニウム、オキシ硝酸ジルコニウム、塩化
ジルコニウム、硝酸ジルコニウム、及び、金属ジルコニ
ウム等が挙げられる。ジルコニウム溶液の溶媒としては
上記化合物を溶解させる水またはアルコールを用いる。
Examples of compounds for creating a zirconium solution include zirconium oxychloride, zirconium oxynitrate, zirconium chloride, zirconium nitrate, and metal zirconium. As a solvent for the zirconium solution, water or alcohol that dissolves the above compound is used.

上記化合物はすべて水に可溶であり、オキシ塩化ジルコ
ニウム、塩化ジルコニウムおよび四塩化チタンはエタノ
ールに可溶である。さらに、ジルコニウム溶液を作製す
るために、金属ジルコニウムを王水、HFで溶解して用
いることもできる。ジルコニウム以外の少なくとも一成
分の溶液を作製するための化合物としては、Pb(NO
s)z 、 Ti(NOs)4. T:CI< 。
All of the above compounds are soluble in water; zirconium oxychloride, zirconium chloride and titanium tetrachloride are soluble in ethanol. Furthermore, in order to prepare a zirconium solution, metal zirconium can be dissolved in aqua regia or HF. As a compound for preparing a solution containing at least one component other than zirconium, Pb(NO
s)z, Ti(NOs)4. T: CI<.

Ti(So、)z 、 13iz(SO−)sが挙げら
れる。この溶液の溶媒としては水またはアルコールを用
いる。ジルコニウム溶液とジルコニウム以外の溶液は別
々に調製してもよく、また同一の溶媒に各化合物を溶解
させて調整してもよい。
Examples include Ti(So,)z and 13iz(SO-)s. Water or alcohol is used as the solvent for this solution. The zirconium solution and the solution other than zirconium may be prepared separately, or may be prepared by dissolving each compound in the same solvent.

沈殿形成液作成のための試薬としては、例えばアンモニ
ヤ、炭酸アンモニウム、苛性アルカリ、しゅう酸、しゅ
う酸アンモニウムやアミン、オキシン等の有機試薬が挙
げられる。沈殿形成反応は常温で行なうことができる。
Examples of reagents for preparing the precipitate-forming solution include organic reagents such as ammonia, ammonium carbonate, caustic alkali, oxalic acid, ammonium oxalate, amines, and oxine. The precipitate formation reaction can be carried out at room temperature.

共沈体の状態はゾル状ないしスラリー状である。共沈体
はろ過および洗浄により回収する。
The coprecipitate is in a sol or slurry state. The coprecipitate is recovered by filtration and washing.

ジルコニウム溶液に溶解されるPBZTの構成成分の種
類とその量は、構成成分の添加によって最終的に得られ
るジルコニヤ粉末の凝集を有効に抑制し得られるものが
好ましい、得られな共沈体の仮焼温度は、700〜13
00℃である。仮焼温度が700℃より低いと凝集が顕
著に起り、1300℃を超えると粒子が粗大化する傾向
がある。この様にして得られたものに、ジルコニウム以
外の構成成分の不足分を加えて混合する。勿論、ジルコ
ニヤに添加した成分の不足分も補充する必要がある。こ
の場合、いずれの化合物粉末(主として酸化物)の粒度
もサブミクロン級のものを使用する。ただし、酸化鉛粉
末は粗大粒径のものを使用しても、得られるPBZT粉
末の特性に殆んど影響を与えない。
The type and amount of the PBZT component dissolved in the zirconium solution is preferably one that can effectively suppress the agglomeration of the zirconia powder that is finally obtained by adding the component. Baking temperature is 700-13
It is 00℃. When the calcination temperature is lower than 700°C, agglomeration occurs significantly, and when it exceeds 1300°C, the particles tend to become coarse. To the thus obtained mixture, the remaining components other than zirconium are added and mixed. Of course, it is also necessary to replenish the missing components added to zirconia. In this case, the particle size of any compound powder (mainly oxide) used is submicron class. However, even if lead oxide powder with a coarse particle size is used, it will hardly affect the properties of the obtained PBZT powder.

これら混合物の仮焼温度は、Tiを含む場き、Biを含
む場合、TiとBiを含む場合とで、500〜1300
℃の範囲で大幅に変化する。要は、固相反応がほぼまた
は完全に完了する最低温度以上で、顕著な粒子成長が生
じない最高温度範囲内であることが必要であり、500
〜1300℃の範囲がよい。
The calcination temperature of these mixtures is 500 to 1300 when containing Ti, when containing Bi, and when containing Ti and Bi.
Varies significantly over the °C range. In short, it is necessary that the temperature be at least the minimum temperature at which the solid phase reaction is almost or completely completed, and within the maximum temperature range at which no significant particle growth occurs;
The temperature range is preferably from 1300°C to 1300°C.

この様にして得られた粉末を成型する。焼結温度は前記
の混合物の仮焼温度と同様にその構成成分の種類によっ
て異なるが、一般に1000〜1300℃の範囲である
。1000℃より低いと焼結が不十分で高密度が得られ
ず、1300℃を超えると粒子が粗大化したり、あるい
はpbの揮発が促進される。
The powder thus obtained is molded. The sintering temperature, like the calcination temperature of the mixture described above, varies depending on the types of constituent components, but is generally in the range of 1000 to 1300°C. If it is lower than 1000°C, sintering is insufficient and high density cannot be obtained, and if it exceeds 1300°C, the particles become coarse or the volatilization of PB is promoted.

・実施例1 四塩化チタン水溶液(0,80mol//濃度)40.
0ccとオキシ硝酸ジルコニウム水溶液(0,80mo
l/j!濃度)160、Occを混合しな。この、混合
水溶液を撹拌している6規定アンモニヤ水ll中に徐々
に添加して、Ti4+とZr4+の水酸化物共沈体を得
た。これを洗浄、乾燥した後1100℃で仮焼して(Z
ro、5Tio、2)02粉末を作成した。
- Example 1 Titanium tetrachloride aqueous solution (0.80 mol//concentration) 40.
0cc and zirconium oxynitrate aqueous solution (0.80mo
l/j! Concentration) 160, do not mix Occ. This mixed aqueous solution was gradually added to 1 liter of stirring 6N ammonia water to obtain a hydroxide coprecipitate of Ti4+ and Zr4+. After washing and drying this, it was calcined at 1100℃ (Z
ro, 5Tio, 2)02 powders were created.

この粉末の平均粒径は0.32μ鏑であった。The average particle size of this powder was 0.32μ.

該粉末30.33grと市販のTiO□微粉末5.57
gr、 PbO粉末(平均粒径15μ輸)67.70g
r、BizO−微粉末6.99grとを、ボールミルで
一昼夜混合した後、850℃で2時間仮焼して (PbQ、llB10.09)(Zr0.65TiO,
35)a、!77503粉末を得た。その平均粒径は0
.32μ端であった。該粉末を1 ton/ ctm2
で成型したタブレットを、鉛蒸気、酸素ガス共存雰囲気
下、1200℃で10時rrR焼結した。
The powder 30.33g and commercially available TiO□ fine powder 5.57g
gr, PbO powder (average particle size 15μ) 67.70g
r, 6.99g of BizO-fine powder were mixed in a ball mill for a day and night, and then calcined at 850°C for 2 hours to produce (PbQ, 11B10.09) (Zr0.65TiO,
35) a,! 77503 powder was obtained. Its average particle size is 0
.. It was at the 32μ end. 1 ton/ctm2 of the powder
The molded tablet was subjected to rrR sintering at 1200° C. for 10 hours in an atmosphere coexisting with lead vapor and oxygen gas.

得られたものの密度は7.84に達し、透光率は波長6
00 nmを用いサンプル厚み2.511Mの場合的4
5%であった。
The density of the obtained product reaches 7.84, and the transmittance is at wavelength 6
Case 4: 00 nm and sample thickness 2.511M
It was 5%.

・実施例2 四塩化チタン水溶液(0,80鋤o1/1濃度)86.
15cc、硝酸ビスマス水溶液(O,SO輸o!/1濃
度) 22.66ccとオキシ硝酸ジルコニウム水溶液
<0.80mol/ 1濃度)180ccを混合した。
- Example 2 Titanium tetrachloride aqueous solution (0.80 o1/1 concentration) 86.
15 cc, 22.66 cc of bismuth nitrate aqueous solution (O,SO 0!/1 concentration), and 180 cc of zirconium oxynitrate aqueous solution (<0.80 mol/1 concentration) were mixed.

この混合水溶液を撹拌している6規定アンモニヤ水11
中に徐々に添加して、[1i’+とTi4+とZr’+
の水酸化物共沈体を得な。これを洗浄、乾燥した?&1
100℃で仮焼してDio’、os(Zro、5sTi
o、:+s ) o、5ttsOz、os粉末を作成し
た。
6N ammonia water 11 stirring this mixed aqueous solution
[1i'+, Ti4+ and Zr'+
Obtain a hydroxide coprecipitate of Did you wash and dry this? &1
Calcinate at 100℃ to obtain Dio', os(Zro, 5sTi)
o, :+s) o, 5ttsOz, os powder was created.

この粉末の平均粒径は0.32μ−であった。The average particle size of this powder was 0.32μ.

該粉末12.66 grと市販のPbO粉末(平均粒径
15μm1 ) 20.31grとをボールミルで一昼
夜混合した後、850℃で2時間仮焼して(Pbo、*
1[1+6.。、)(Zro、5sTio、5s)o、
5t7sO+粉末を得た。その平均粒径は0.35μ嬶
であった。該粉末を1ton/am2で成型したタブレ
ットを、鉛蒸気、酸素ガス共存雰囲気下、1200℃で
10時間焼結した。得られたものの密度は7.81に達
し、透光率は波長600 nmを用いサンプル厚み2.
5ms+の場合的40%であった。
After mixing 12.66 gr of this powder and 20.31 gr of commercially available PbO powder (average particle size 15 μm1) in a ball mill for a day and night, they were calcined at 850°C for 2 hours (Pbo, *
1[1+6. . , ) (Zro, 5sTio, 5s)o,
5t7sO+ powder was obtained. The average particle size was 0.35 μm. A tablet formed from the powder at 1 ton/am2 was sintered at 1200° C. for 10 hours in an atmosphere coexisting with lead vapor and oxygen gas. The density of the obtained product reached 7.81, and the light transmittance was determined using a wavelength of 600 nm and a sample thickness of 2.
5ms+ was 40% of the time.

・実施例3 硝酸ビスマス水溶液(0、80a+o I / l濃度
)18.41 ccとオキシ硝酸ジルコニウム水溶液(
0,80mol/ 1濃度)160ccを混きした。こ
の混合水溶液を撹拌している6規定アンモニヤ水11中
に徐々に添加して、Bi12とZr’+の水酸化物共沈
体を得た。これを洗浄、乾燥したf&1100℃で仮焼
してBio 、osZro 、a5sO+ 、405粉
末を得た。
・Example 3 Bismuth nitrate aqueous solution (0,80a+o I/L concentration) 18.41 cc and zirconium oxynitrate aqueous solution (
0.80 mol/1 concentration) 160 cc was mixed. This mixed aqueous solution was gradually added to stirring 6N ammonia water 11 to obtain a hydroxide coprecipitate of Bi12 and Zr'+. This was washed, dried, and calcined at f&1100°C to obtain Bio, osZro, a5sO+, and 405 powders.

この粉末の平均粒径は0.32μ講であった。The average particle size of this powder was 0.32 μm.

該粉末9.921grと市販のTi0z微粉末2.73
3grとPbO粉末(平均粒径15 it n+)20
.311grとをボールミルで一昼夜混合した後、85
0℃で2時間仮焼して(Pb0.el[1i0.。*)
(Zr。、55Tio、os)。−177503粉末を
得た。その平均粒径は0.41μ紬であった。該粉末を
1 ton/ cm2で成型したタブレットを、鉛蒸気
、酸素ガス共存雰囲気下、1200℃で10時間焼結し
た3得られたものの密度は7.80に達し、透光率は波
長600nmを用いサンプル厚み2.5111mの場合
的36%であった。
9.921 gr of the powder and 2.73 gr of commercially available Ti0z fine powder
3gr and PbO powder (average particle size 15 it n+) 20
.. After mixing with 311gr in a ball mill for a day and night, 85gr.
Calcined at 0℃ for 2 hours (Pb0.el[1i0..*)
(Zr., 55Tio, os). -177503 powder was obtained. The average particle size was 0.41 μm. A tablet made of 1 ton/cm2 of the powder was sintered at 1200°C for 10 hours in an atmosphere coexisting with lead vapor and oxygen gas.3 The density of the obtained product reached 7.80, and the transmittance at a wavelength of 600 nm. In the case of the used sample thickness of 2.5111 m, it was 36%.

・比較例 市販PbO、Tie、 、 ZrO2、Bi、0.粉末
を(PbO,llB10−09)(Zr01ST101
5)O−117750ffの組成になるように配合し、
ボールミルで1昼夜混合したf&900℃で2時間仮焼
した。この粉末をit/cm2で成型し、実施例1,2
.3と同じ条件下で焼結した。
・Comparative example Commercially available PbO, Tie, ZrO2, Bi, 0. Powder (PbO, llB10-09) (Zr01ST101
5) Blend to have a composition of O-117750ff,
The mixture was mixed in a ball mill for one day and then calcined at f&900°C for 2 hours. This powder was molded at it/cm2, and Examples 1 and 2
.. It was sintered under the same conditions as 3.

得られたPBZTの密度は7.6程度であったが、透明
な焼結体にならなかった。なお仮焼時の粉末の平均粒径
は2.8μ鍋であった。
Although the density of the obtained PBZT was about 7.6, it did not become a transparent sintered body. The average particle size of the powder during calcination was 2.8 μm.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、第1工程によりPBZTの構成
成分の一種以上を含むジルコニヤ粉末(変成ジルコニヤ
粉末)は、二次粒子の極めて少ないサブミクロン粒子と
なし得、これを使用することによって、以後通常の圧粉
工程と焼結工程よりなる単なる乾式法によって、容易に
サブミクロン級のPBZT原料粉末が得られ、更にこれ
を原料として透光性が良く高密度のpozTが得られる
、という優れた効果を奏し得られる。そのほか次のよう
な効果も奏し得られる。
According to the method of the present invention, the zirconia powder (modified zirconia powder) containing one or more of the constituent components of PBZT in the first step can be made into submicron particles with extremely few secondary particles. Submicron grade PBZT raw material powder can be easily obtained by a simple dry method consisting of a normal powder compaction process and a sintering process, and furthermore, it is possible to obtain pozT with good translucency and high density using this as a raw material. It can be effective. In addition, the following effects can also be achieved.

1)仮焼によって得られる変成ジルコニヤ粉末が十分分
散されたものが得られるため、仮焼物の粉砕工程を特に
必要としないで、原料粉末として供給し得られる。
1) Since the modified zirconia powder obtained by calcining is sufficiently dispersed, it can be supplied as a raw material powder without the need for a particular pulverization step of the calcined product.

2) 該仮焼変成ジルコニヤ粉末から乾式法で得られる
PI3ZT粉末も単分散状態で得られ、従って粉砕工程
を除いても十分易焼結性且つ高密度の特性を有する。
2) PI3ZT powder obtained from the calcined modified zirconia powder by a dry process is also obtained in a monodisperse state, and therefore has characteristics of sufficiently easy sinterability and high density even without the pulverization step.

3〉 極めて高密度且つ光学的高均一性を要求されるオ
プトエレクトロニクス用PIIZTをホットプレスやH
IP(熱間ガス圧焼結)なとの操作を省略して単なる固
相焼結によって、理論密度に極めて近い高密度で得るこ
とができる。
3) PIIZT for optoelectronics, which requires extremely high density and high optical uniformity, is processed by hot pressing or H
A high density extremely close to the theoretical density can be obtained by simply solid-phase sintering, omitting an operation such as IP (hot gas pressure sintering).

4) 優れた粉末特性を有する変成ジルコニヤ粉末を大
量生産することによって、ft意の組成のP[3ZTを
極めて安価に供給し得る。
4) By mass producing modified zirconia powder with excellent powder properties, P[3ZT having the desired composition can be supplied at an extremely low cost.

Claims (3)

【特許請求の範囲】[Claims] (1)PBZTを構成するジルコニウム以外の少なくと
も一金属成分の適量と、ジルコニウムとを含有する溶液
及び沈殿形成液を反応させて共沈体を形成し、共沈体を
乾燥後700〜1300℃で仮焼する工程、
(1) A coprecipitate is formed by reacting an appropriate amount of at least one metal component other than zirconium constituting PBZT with a solution containing zirconium and a precipitate forming solution, and the coprecipitate is dried at 700 to 1300°C. the process of calcining;
(2)この仮焼物と、目的とするPBZT組成の残りの
構成成分の化合物を混合して500〜1300℃で仮焼
する工程、
(2) a step of mixing this calcined product with compounds of the remaining components of the desired PBZT composition and calcining at 500 to 1300°C;
(3)得られた仮焼粉末を成型して1000〜1300
℃で焼結する工程からなることを特徴とするPBZTの
製造方法。
(3) The obtained calcined powder is molded to a size of 1000 to 1300
A method for producing PBZT, comprising a step of sintering at °C.
JP62122571A 1987-05-21 1987-05-21 Production of (pb, bi) (zr, ti)o3 Pending JPS63288960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122571A JPS63288960A (en) 1987-05-21 1987-05-21 Production of (pb, bi) (zr, ti)o3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122571A JPS63288960A (en) 1987-05-21 1987-05-21 Production of (pb, bi) (zr, ti)o3

Publications (1)

Publication Number Publication Date
JPS63288960A true JPS63288960A (en) 1988-11-25

Family

ID=14839198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122571A Pending JPS63288960A (en) 1987-05-21 1987-05-21 Production of (pb, bi) (zr, ti)o3

Country Status (1)

Country Link
JP (1) JPS63288960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP2005159309A (en) * 2003-11-05 2005-06-16 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP2006066795A (en) * 2004-08-30 2006-03-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet type record head, ink-jet printer, surface elastic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator and electronic device
JP2009062207A (en) * 2007-09-05 2009-03-26 Fujifilm Corp Perovskite type oxide, ferroelectric film, process for producing same, ferroelectric device, and liquid discharge apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151910A (en) * 1974-05-31 1975-12-06
JPS6051664A (en) * 1983-08-30 1985-03-23 日本特殊陶業株式会社 Manufacture of lead zirconate titanate ceramic
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution
JPS61247607A (en) * 1985-04-22 1986-11-04 Natl Inst For Res In Inorg Mater Preparation of raw material powder of compound having perovskite structure
JPS62191465A (en) * 1985-09-24 1987-08-21 科学技術庁無機材質研究所長 Manufacture of perovskite ceramics containing zirconium
JPS63156057A (en) * 1986-12-19 1988-06-29 科学技術庁無機材質研究所長 Manufacture of high density perovskite ceramics
JPS63218514A (en) * 1987-03-06 1988-09-12 Seitetsu Kagaku Co Ltd Production of perovskite ceramic powder containing zirconium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151910A (en) * 1974-05-31 1975-12-06
JPS6051664A (en) * 1983-08-30 1985-03-23 日本特殊陶業株式会社 Manufacture of lead zirconate titanate ceramic
JPS6153114A (en) * 1984-08-18 1986-03-17 Natl Inst For Res In Inorg Mater Production of powdery raw material of easily sintering perovskite solid solution
JPS61247607A (en) * 1985-04-22 1986-11-04 Natl Inst For Res In Inorg Mater Preparation of raw material powder of compound having perovskite structure
JPS62191465A (en) * 1985-09-24 1987-08-21 科学技術庁無機材質研究所長 Manufacture of perovskite ceramics containing zirconium
JPS63156057A (en) * 1986-12-19 1988-06-29 科学技術庁無機材質研究所長 Manufacture of high density perovskite ceramics
JPS63218514A (en) * 1987-03-06 1988-09-12 Seitetsu Kagaku Co Ltd Production of perovskite ceramic powder containing zirconium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP2005159309A (en) * 2003-11-05 2005-06-16 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP4600650B2 (en) * 2003-11-05 2010-12-15 セイコーエプソン株式会社 Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic equipment
JP2006066795A (en) * 2004-08-30 2006-03-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet type record head, ink-jet printer, surface elastic wave element, frequency filter, oscillator, electronic circuit, thin-film piezoelectric resonator and electronic device
JP4600647B2 (en) * 2004-08-30 2010-12-15 セイコーエプソン株式会社 Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, frequency filter, oscillator, electronic circuit, thin film piezoelectric resonator, and electronic device
JP2009062207A (en) * 2007-09-05 2009-03-26 Fujifilm Corp Perovskite type oxide, ferroelectric film, process for producing same, ferroelectric device, and liquid discharge apparatus
EP2034040A3 (en) * 2007-09-05 2012-07-25 FUJIFILM Corporation Perovskite type oxide, ferroelectric film, process for producing same, ferroelectric device, and liquid discharge apparatus

Similar Documents

Publication Publication Date Title
JPS63156057A (en) Manufacture of high density perovskite ceramics
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
JPH0159967B2 (en)
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH027906B2 (en)
JP2607519B2 (en) Manufacturing method of optical ceramics
JP2608558B2 (en) Method for producing optical ceramics
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
US4832893A (en) Method for producing a PLZT compound
JP2607520B2 (en) Manufacturing method of optical ceramics
JPS61251516A (en) Production of perovskite type oxide
JP2607518B2 (en) Manufacturing method of optical ceramics
JPH0159205B2 (en)
JPS63151674A (en) Manufacture of plzt
JP2694851B2 (en) PLZT ceramic raw material powder manufacturing method
JP2616772B2 (en) Method for producing proton conductive ceramics
JPH0784345B2 (en) Manufacturing method of perovskite ceramics
JPS63288961A (en) Production of (pb, la) (hf, ti)o3
JPS6363512B2 (en)
JPS63288962A (en) Production of (pb, sr) (zr, ti)o3
JPS61215218A (en) Production of functional oxide powder
JPS63288963A (en) Production of (pb, ba) (zr, ti)o3
JPH01111725A (en) Condensed ternary lead perovskite solid solution powder and production of condensed ternary lead perovskite ceramic
JPH01298064A (en) Production of plzt
JPH0678190B2 (en) Method for producing zirconium titanate-based ceramics