JPH01252509A - Production of compound having perovskite type structure - Google Patents

Production of compound having perovskite type structure

Info

Publication number
JPH01252509A
JPH01252509A JP8076988A JP8076988A JPH01252509A JP H01252509 A JPH01252509 A JP H01252509A JP 8076988 A JP8076988 A JP 8076988A JP 8076988 A JP8076988 A JP 8076988A JP H01252509 A JPH01252509 A JP H01252509A
Authority
JP
Japan
Prior art keywords
solution
compound
type structure
hours
saturated aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8076988A
Other languages
Japanese (ja)
Inventor
Soji Tsuchiya
土屋 宗次
Takeshi Takeda
竹田 武司
Satoshi Sekido
聰 関戸
Junichiro Mizusaki
純一郎 水崎
Hiroaki Tagawa
博章 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8076988A priority Critical patent/JPH01252509A/en
Publication of JPH01252509A publication Critical patent/JPH01252509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain a high-density and readily sintering compound having perovskite type structure at low cost, by producing the compound having perovskite type structure by a specific process. CONSTITUTION:Oxides or carbonates of A and B are used as starting substances, both the compounds are separately and gradually poured to aqueous solutions of nitric acid to give saturated aqueous solutions. These saturated aqueous solutions are blended so as to make the aimed composition of ABO3. A precipitating solution is prepared from ethanol, water and oxalic acid and the previously made mixed solution is gradually dripped into the precipitating solution. The resultant solution is maintained at 50-80 deg.C for >=10hours after the dripping and the precipitated particles are aged. After the filtration, the particles are dried at 50-120 deg.C. The powder is calcined under conditions including at least the following three stages of (I) at 160-250 deg.C for 0.5-2hours, (II) at 450-550 deg.C for 0.5-3hours and (III) 750-850 deg.C for >=10hours.

Description

【発明の詳細な説明】 ニクス材料、センサ材料としてエレクトロニクス分野等
で機能性セラミックスとして広範囲に利用される一般式
ABO3(ただし、Aは酸素12配位金属元素の1種ま
たは2種以上を、Bは酸素6配位金属元素の1種または
2種以上を表わす)で示貴れるペロブスカイト型構造を
有する化合物の製造方法に関するものである。
Detailed Description of the Invention The general formula ABO3 is widely used as functional ceramics in the electronics field, etc. as electronics materials and sensor materials (where A represents one or more oxygen-12-coordinated metal elements, and B The present invention relates to a method for producing a compound having a perovskite structure represented by one or more oxygen hexacoordinated metal elements.

従来の技術 原料粉末の調整方法としては、(1)乾式法、(2)ゾ
ルゲル法、(3)湿式共沈法がある。
Conventional methods for preparing raw material powder include (1) dry method, (2) sol-gel method, and (3) wet coprecipitation method.

(1)乾式法は構成成分の原料化合物(酸化物、炭酸塩
)を乾式あるいは湿式(水、アルコールなどを使用)的
に乳鉢などで混合して仮焼する方法である。
(1) The dry method is a method in which the constituent raw materials (oxides, carbonates) are mixed dry or wet (using water, alcohol, etc.) in a mortar, etc., and then calcined.

(2)  ゾルダン法とは混合溶液まだはゾルをゲルに
変えて、微粉体をつくる方法であるが、広義には有機金
属化合物の加水分解・重合法、コロイダル・ゾル法(微
粒子の沈澱・安定化)などの方法も含まれる。
(2) The Zoldan method is a method of converting a mixed solution sol into a gel to create a fine powder, but in a broader sense it is a method of hydrolysis and polymerization of organometallic compounds, and a colloidal sol method (precipitation and stabilization of fine particles). It also includes methods such as

(3)湿式共沈法は出発物質に水に可溶性の塩を用い、
水溶液として混合使用する。沈澱剤を加えて共沈させて
原料粉末をつくる。沈澱には、水酸化物、しゅう酸塩な
どの形態が用いられる。
(3) Wet coprecipitation method uses a water-soluble salt as a starting material,
Mix and use as an aqueous solution. A precipitant is added and coprecipitated to create a raw material powder. Forms such as hydroxide and oxalate are used for precipitation.

発明が解決しようとする課題 しかしながら上記(1)〜(3)の方法もそれぞれ課題
を有している。
Problems to be Solved by the Invention However, the methods (1) to (3) above each have their own problems.

即ち(1)乾式法は最も簡便な方法で、実験室的によく
用いられているが、均一組成の原料粉末が得にくい、仮
焼温度を高くとらねば化学反応を完全に行えない、また
原料粉末の形状、大きさの分布も大きく、平均粒径も大
きいので十分な焼結性が得られないなどの欠点がある。
(1) The dry method is the simplest method and is often used in the laboratory, but it is difficult to obtain raw material powder with a uniform composition, the chemical reaction cannot be completed completely unless the calcination temperature is high, and the raw material The shape and size distribution of the powder is large, and the average particle size is also large, so there are drawbacks such as insufficient sinterability.

また(2)ゾル・ゲル法でつくられた原料粉末は一般に
均一性がよく、易焼結性もすぐれているが、典型的な例
としてアルコキシド法にみられるように、原料粉末のコ
ストが高いのが欠点である。更に(3)湿式共沈法につ
いては、一般的に欠点としてあげられる。均一性にすぐ
れた粉末を得やすいが、乾燥時及び仮焼時に粒子が凝集
して二次粒子化して、易焼結性がわるくなることがある
。また、沈澱剤を加えて、共沈させる場合、成分によっ
てその溶液における沈澱形成能が異なるため、全部の成
分を完全に沈澱させることができない場合があり、目的
とする組成にずれが生じるという欠点もある。
In addition, (2) raw material powders made by the sol-gel method generally have good uniformity and excellent sinterability, but the cost of raw material powders is high, as seen in the alkoxide method as a typical example. This is a drawback. Furthermore, (3) the wet coprecipitation method is generally cited as a drawback. Although it is easy to obtain a powder with excellent uniformity, the particles may aggregate during drying and calcination to form secondary particles, resulting in poor sinterability. Furthermore, when a precipitant is added and coprecipitated, the precipitate forming ability of the solution differs depending on the component, so it may not be possible to completely precipitate all the components, resulting in a disadvantage that the desired composition may differ. There is also.

本発明は上記従来の欠点を解消し、低コストで原料粉末
が調整できて、易焼結性で高崇密度のセラミックスが得
られる製造法を提供することを目的とするものである。
The object of the present invention is to eliminate the above-mentioned conventional drawbacks, and to provide a manufacturing method that allows raw material powder to be prepared at low cost, and that produces easily sinterable and high-density ceramics.

課題を解決するための手段 本発明は上記目的を達成するもので、その技術的な手段
は、一般式ABO3(ただし、Aは酸素12配位金属原
素の1種または2種以上を、Bは酸素6配位金属の1種
または2種以上を表わす)で示されるペロブスカイト型
構造を有する化合物を以下のような一連の工程でつくる
ことにある。
Means for Solving the Problems The present invention achieves the above object, and its technical means is based on the general formula ABO3 (where A represents one or more oxygen-12-coordinated metal atoms, and B The purpose of the present invention is to produce a compound having a perovskite structure represented by (representing one or more oxygen hexacoordination metals) through the following series of steps.

(1)濃硝酸を水でうすめだ硝酸溶液に出発物質のA、
あるいはBの酸化物または炭酸塩を徐々に加えて、それ
ぞれA、  Bの硝酸水溶液をつくる。飽和してA、 
 Bが溶解しなくなったら、濃硝酸を加えていき、飽和
状態に近く保つ。
(1) Dilute concentrated nitric acid with water. Add the starting material A to the nitric acid solution.
Alternatively, the oxide or carbonate of B is gradually added to prepare aqueous nitric acid solutions of A and B, respectively. Saturation A,
When B is no longer dissolved, add concentrated nitric acid to maintain near saturation.

(2)  このようにしてつくった溶液の濃度を溶液を
蒸発させ、燃焼させて、A、  Bの酸化物をつくるこ
とにより調べる。
(2) Check the concentration of the solution thus prepared by evaporating the solution and burning it to produce oxides of A and B.

これらの硝酸水溶液を目的とするABO,の組成になる
ように調合する。
These nitric acid aqueous solutions are mixed to have the desired composition of ABO.

(3)  沈澱液をエタノールと水としゅう酸からつく
る。
(3) Make a precipitation solution from ethanol, water, and oxalic acid.

(4)  A、  Bをしゅう酸塩の形でエタノールと
水の溶液中に共沈させる(2)でつくった原液をピペッ
トなどを用いてゆっくり滴下する。
(4) Co-precipitate A and B in the form of oxalate in a solution of ethanol and water. Slowly drop the stock solution prepared in (2) using a pipette or the like.

この場合、撹拌はゆるやかに行う。はげしく撹拌すると
沈澱しにくい。
In this case, stir gently. Vigorous stirring prevents precipitation.

(5)滴下後、ウォータバスなどを用いて50〜80℃
で10時間以上保持して沈澱粒子の熟成を行う。(粒子
が大きくてろ過が可能となる) (6)ろ過後は特に洗浄せずに、50〜120℃の加熱
で残留溶媒浴の乾燥を行う。この時、温度を高くすると
2次凝集化して悪影響を及ぼす。
(5) After dropping, heat at 50-80℃ using a water bath etc.
The precipitated particles are aged by holding for 10 hours or more. (Filtration is possible because the particles are large) (6) After filtration, the residual solvent bath is dried by heating at 50 to 120° C. without any particular washing. At this time, if the temperature is raised, secondary agglomeration occurs, which has an adverse effect.

(7)  この粉末の仮焼を次の条件で行う。(7) This powder is calcined under the following conditions.

(i)  160〜250℃で05〜2時間(ii) 
 450〜550℃で05〜3時間(iii)  75
0〜850℃で10時間以上fiiilO後で、まだ未
反応物がX線分析等で確認される場合はこの粉末をさら
にエタノール等で湿式混合して1ii)の熱処理を行う
(i) 05-2 hours at 160-250°C (ii)
05-3 hours at 450-550°C (iii) 75
If unreacted substances are still found by X-ray analysis etc. after 10 hours or more at 0 to 850° C., the powder is further wet-mixed with ethanol or the like and subjected to the heat treatment of 1ii).

このようにして得られた粉末を必要によってはさらに微
粉末化処理を行った後、成型化をして本焼成を行う。
The powder thus obtained is further pulverized if necessary, then molded and main fired.

作用 本発明は、ペロブスカイト型構造を有する化合物を上記
(1)〜(7)の工程で製造することにより、低コスト
で、易焼結性で高崇密度のものが得られるようになった
Effects According to the present invention, by producing a compound having a perovskite structure through the steps (1) to (7) above, it is possible to obtain a compound having a low cost, easy sinterability, and high density.

実施例 以下に本発明の実施例を詳細に示す。Example Examples of the present invention will be shown in detail below.

つくりたいセラミックスの一例としてLao、5Sro
、5Coo・を取り上げる。出発物質としては、Lat
O・、5rCOs、(Coco−)z 3 Co(OH
)t ・xH2Oを用いた。
Lao and 5Sro are examples of the ceramics we want to make.
, 5Coo・ will be taken up. As a starting material, Lat
O., 5rCOs, (Coco-)z3Co(OH
)t·xH2O was used.

硝酸溶液を水と濃硝酸を1:1に混合してつくった。こ
の液に原物質を加えていき、飽和状態に近いものをつく
った。不溶物をろ過後、溶液の濃度を調べた。溶液の1
部を白金るつぼに取り、乾燥熱呑解後その前後の差を 
量することより濃度をきめた。
A nitric acid solution was prepared by mixing water and concentrated nitric acid in a 1:1 ratio. The raw material was added to this liquid until it was nearly saturated. After filtering out insoluble matter, the concentration of the solution was examined. solution 1
Place the sample in a platinum crucible, and after drying and melting, calculate the difference between before and after.
The concentration was determined by measuring.

缶液の濃度はLa溶液で0.106988mot/10
0g SSr溶液で0.0644mot/100g 、
 Co溶液で0.11742m04/100gであった
The concentration of the can liquid is 0.106988 mot/10 in La solution.
0.0644mot/100g with 0g SSr solution,
The Co solution was 0.11742m04/100g.

Lao、6 Sr O,5Coo lの組成で5gとれ
るように缶液を混合した。
The liquid from the can was mixed so that 5 g of the solution was obtained with the following composition: Lao, 6 Sr O, 5 Cool.

沈澱液はエタノール30−l、水100 ml、しゅう
酸10gとした。
The precipitation solution was 30 l of ethanol, 100 ml of water, and 10 g of oxalic acid.

原液をピペットを用いて10分はどかけて、ゆっくりと
沈澱液に滴下する。沈澱液はスターテによりゆっくりと
かくはんする。沈澱後、ビーカーを70℃に保持したウ
ォータバス内に入れて1日放置した。ころをろ過後10
0℃に設定したホットプレート上で乾燥する。これは2
20℃でIH1500℃で3H1800℃でIOHの熱
処理を行って、X線分析を行ったところ、ペロブスカイ
ト型の構造が形成されていた。この粉末を13nmaの
ペレットにプレス機で成型して、1100℃で2時間処
理を行ったところ、理密密度と同等の密度になっており
、かつ電導度も5X10n7’anであった。これは、
乾式混合の粉末を1300℃、2時間処理するものと同
等であった。
Slowly drop the stock solution into the precipitate using a pipette for 10 minutes. The precipitate is slowly stirred using a starter. After precipitation, the beaker was placed in a water bath maintained at 70°C and left for one day. After filtering the rollers 10
Dry on a hot plate set at 0°C. This is 2
IOH heat treatment was performed at 20°C, IH at 1500°C, and 3H at 1800°C, and X-ray analysis revealed that a perovskite structure was formed. When this powder was molded into a 13 nm pellet using a press and treated at 1100° C. for 2 hours, it had a density equivalent to that of a physical density, and the electrical conductivity was also 5×10n7'an. this is,
It was equivalent to dry-mixed powder treated at 1300°C for 2 hours.

本発明の一般式A B O,ノAはLa、 Sr、 C
a、 Pb、Baなどの希土類元素、BはCo、 Fe
、 Ni、 Mn、 Cr。
The general formula of the present invention is La, Sr, C
Rare earth elements such as a, Pb, Ba, B is Co, Fe
, Ni, Mn, Cr.

Ti、 Zr、 At、 Sn、 Bi、などがあげら
れる。
Examples include Ti, Zr, At, Sn, Bi, etc.

発明の効果 以上のように本発明は、前述のような原料粉末の調整と
その焼成方法により、低温で崇密度の高い一般式A B
 Qs ’(ただし、Aは酸素12配位金属元素の1種
または2種以上を、Bは酸素6配位金属の1種または2
種以上を表わす)で示されるペロブスカイト型構造を有
するセラミックが得られるようになった。
Effects of the Invention As described above, the present invention uses the above-mentioned preparation of raw material powder and firing method to produce general formulas A B with high density at low temperatures.
Qs' (where A is one or more oxygen-12-coordinated metal elements, and B is one or two oxygen-6-coordinated metals).
It has now become possible to obtain ceramics having a perovskite-type structure represented by (representing species or more).

Claims (1)

【特許請求の範囲】 一般式ABO_3(ただし、Aは酸素12配位金属元素
の1種または2種以上を、Bは酸素6配位金属の1種ま
たは2種以上を表わす)で示されるペロブスカイト型構
造を有する化合物を以下の工程からつくることを特徴と
するペロブスカイト型構造を有する化合物の製造方法。 (1)出発物質としてA、Bの酸化物あるいは炭酸塩を
用い、それぞれを硝酸水溶液に徐々に加えて略飽和水溶
液をつくる。 (2)前記飽和水溶液を目的とするABO_3の組成に
なるよう混合する。 (3)沈澱液をエタノールと水としゆう酸から構成する
。 (4)前記(2)でつくった混合液を前記(3)でつく
った沈澱液にゆっくりと滴下する。 (5)この液を50〜80℃で10時間以上保持する。 (6)前記(5)の沈澱物をろ過し、50〜120℃の
温度に加熱して沈澱物を乾燥する。 (7)この粉末の仮焼を少なくとも以下の三段階を含む
条件で行う。 (i)160〜250℃で0.5〜2時間 (ii)450〜550℃で0.5〜3時間(iii)
750〜850℃で10時間以上。
[Claims] Perovskite represented by the general formula ABO_3 (where A represents one or more 12-coordination metal elements of oxygen, and B represents one or more 6-coordination metals of oxygen). 1. A method for producing a compound having a perovskite-type structure, the method comprising producing a compound having a perovskite-type structure through the following steps. (1) Using oxides or carbonates of A and B as starting materials, each is gradually added to an aqueous nitric acid solution to create a substantially saturated aqueous solution. (2) Mix the saturated aqueous solution so that it has the desired composition of ABO_3. (3) The precipitation solution is composed of ethanol, water, and cyanic acid. (4) Slowly drop the mixture prepared in (2) above into the precipitate prepared in (3) above. (5) Maintain this liquid at 50 to 80°C for 10 hours or more. (6) The precipitate obtained in (5) above is filtered and heated to a temperature of 50 to 120°C to dry the precipitate. (7) The powder is calcined under conditions including at least the following three steps. (i) 0.5-2 hours at 160-250℃ (ii) 0.5-3 hours at 450-550℃ (iii)
10 hours or more at 750-850°C.
JP8076988A 1988-03-31 1988-03-31 Production of compound having perovskite type structure Pending JPH01252509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8076988A JPH01252509A (en) 1988-03-31 1988-03-31 Production of compound having perovskite type structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8076988A JPH01252509A (en) 1988-03-31 1988-03-31 Production of compound having perovskite type structure

Publications (1)

Publication Number Publication Date
JPH01252509A true JPH01252509A (en) 1989-10-09

Family

ID=13727627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8076988A Pending JPH01252509A (en) 1988-03-31 1988-03-31 Production of compound having perovskite type structure

Country Status (1)

Country Link
JP (1) JPH01252509A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251516A (en) * 1985-04-11 1986-11-08 Mitsubishi Petrochem Co Ltd Production of perovskite type oxide
JPS6278107A (en) * 1985-10-02 1987-04-10 Natl Inst For Res In Inorg Mater Production of powdery raw material of perovskite and solid solution thereof
JPS62260703A (en) * 1986-05-01 1987-11-13 Mitsui Petrochem Ind Ltd Treatment of precipitate of inorganic hydroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251516A (en) * 1985-04-11 1986-11-08 Mitsubishi Petrochem Co Ltd Production of perovskite type oxide
JPS6278107A (en) * 1985-10-02 1987-04-10 Natl Inst For Res In Inorg Mater Production of powdery raw material of perovskite and solid solution thereof
JPS62260703A (en) * 1986-05-01 1987-11-13 Mitsui Petrochem Ind Ltd Treatment of precipitate of inorganic hydroxide

Similar Documents

Publication Publication Date Title
JPS61275108A (en) Preparation of powder of dielectric substance
EP0030170B1 (en) Process for the production of polycrystalline garnet
JPH01252509A (en) Production of compound having perovskite type structure
JPS63248719A (en) Production of powder as starting material for multicomponent ceramic
JPH0855706A (en) Manufacture of fine powder of oxide semiconductor
JPH0621035B2 (en) Method for producing mixed fine particles comprising BaTiO 3) and BaSn (OH) 6)
JPS6284B2 (en)
JPS59131524A (en) Production of spinel type zinc titanate
Pathak et al. A Versatile Coprecipitation Route for the Preparation of Mixed Oxide Powders
JPH01176206A (en) Production of precursor of compound oxide
JPH01164709A (en) Production of composite oxide precursor
JPS60171223A (en) Manufacture of zirconium oxide containing solubilized rare earth element
JPH01212216A (en) Production of superconducting ceramic powder
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPS63291305A (en) Manufacture of dielectric resonator material
JPH0258230B2 (en)
JPH0688793B2 (en) Manufacturing method of perovskite raw material powder
JP3223537B2 (en) Lanthanum calcium chromate compound
JPS63285150A (en) Production of neodymium-containing dielectric material ceramic
JPH0416408B2 (en)
JPS63307109A (en) Method for synthesizing piezoelectric and dielectric ceramics powder
JPS63285151A (en) Production of perovskite ceramic
Heegn et al. Phases and solid structures by calcination of precursors for lead-magnesium-niobates
JPS63282120A (en) Production of superconductive conjugated metal oxide
JPH0629139B2 (en) Method for producing raw material powder for producing dielectric porcelain