JPH0688793B2 - Manufacturing method of perovskite raw material powder - Google Patents

Manufacturing method of perovskite raw material powder

Info

Publication number
JPH0688793B2
JPH0688793B2 JP61239043A JP23904386A JPH0688793B2 JP H0688793 B2 JPH0688793 B2 JP H0688793B2 JP 61239043 A JP61239043 A JP 61239043A JP 23904386 A JP23904386 A JP 23904386A JP H0688793 B2 JPH0688793 B2 JP H0688793B2
Authority
JP
Japan
Prior art keywords
perovskite
raw material
precipitate
material powder
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61239043A
Other languages
Japanese (ja)
Other versions
JPS6395119A (en
Inventor
恭二 大段
康夫 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP61239043A priority Critical patent/JPH0688793B2/en
Publication of JPS6395119A publication Critical patent/JPS6395119A/en
Publication of JPH0688793B2 publication Critical patent/JPH0688793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ペロブスカイト型構造化合物およびその固溶
体(以下ペロブスカイトという)の原料粉末の製法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for producing a raw material powder of a perovskite structure compound and a solid solution thereof (hereinafter referred to as perovskite).

ペロブスカイトは、圧電体、誘電体、誘電体フィルター
等の機能性セラミックスとして広範囲に利用されてい
る。最近はこの機能性セラミックスの性能を向上させる
ために易焼結性で粒度の揃ったペロブスカイトの原料粉
末を効率的に製造できる技術の開発が要望されている。
Perovskites are widely used as functional ceramics such as piezoelectric materials, dielectric materials, and dielectric filters. Recently, in order to improve the performance of the functional ceramics, there has been a demand for development of a technique capable of efficiently producing a raw material powder of perovskite which is easily sintered and has a uniform particle size.

従来、ペロブスカイトの原料粉末の製造方法としては、
乾式法と共沈法が知られている。
Conventionally, as a method for producing a raw material powder of perovskite,
The dry method and coprecipitation method are known.

乾式法は構成原料成分の化合物を乾式で混合し、これを
仮焼する方法である。しかし、この方法では、均一組成
の原料粉末が得難いため、優れた機能性を持つペロブス
カイトを得難いし、また焼結性も十分ではない。
The dry method is a method in which the compounds of the constituent raw material components are dry mixed and calcined. However, according to this method, since it is difficult to obtain a raw material powder having a uniform composition, it is difficult to obtain a perovskite having excellent functionality, and the sinterability is not sufficient.

共沈法はその構成成分のすべてを一緒にした混合溶液を
作り、これにアリカリ等の沈澱形成液を添加して共沈さ
せ、この共沈物を乾燥、仮焼させる方法である。
The coprecipitation method is a method in which a mixed solution in which all of its constituents are put together is added, a precipitation-forming solution such as Alikari is added to cause coprecipitation, and the coprecipitate is dried and calcined.

この共沈法によると、均一性の優れた粉末が得難いが、
沈澱生成時、乾燥時または仮焼時に粒子が凝結して二次
粒子を形成し、焼結しにくい欠点があった。
According to this coprecipitation method, it is difficult to obtain a powder with excellent uniformity,
There is a drawback that particles are condensed during the formation of a precipitate, during drying or during calcination to form secondary particles, which makes it difficult to sinter.

また、共沈法では各成分の該沈澱形成液に対する沈澱形
成能が同じでない場合は、例えば或成分は実質的に100
%沈澱を生成するが、他の成分は実質的に全部沈澱を背
性し得ないことが起り、所望組成となし難いことがあ
る。
Further, in the coprecipitation method, when each component does not have the same precipitation-forming ability with respect to the precipitation-forming liquid, for example, a certain component is substantially 100%.
% Precipitates are formed, but it may be difficult to achieve a desired composition because the other components cannot substantially entirely precipitate.

一方、特開昭51−59400号公報や特公昭54−31600号公報
には、共沈法による沈澱物を含む懸濁液を150〜300℃で
水熱反応させる方法が記載されている。
On the other hand, JP-A-51-59400 and JP-B-54-31600 describe a method in which a suspension containing a precipitate by a coprecipitation method is hydrothermally reacted at 150 to 300 ° C.

[発明の目的] 本発明は従来の方法における欠点をなくし、易焼結性で
均一性のよい微細なペロブスカイト原料粉末を効率よく
製造することができる方法を提供するにある。
[Object of the Invention] The present invention is to eliminate the drawbacks of the conventional method and to provide a method capable of efficiently producing a fine perovskite raw material powder which is easily sintered and has good uniformity.

[発明の構成] 本発明者らは前記目的を達成すべく鋭意研究の結果、本
発明に至った。
[Structure of the Invention] The present inventors have accomplished the present invention as a result of earnest research to achieve the above object.

本発明は、一般式X[A(BaWb)O3]−y[A(BcNbd)
O3](ただし、AはPb、Ba、SrおよびCaから選ばれる少
なくとも1種の元素を、BはMg、Zn、Ni、Co、Cu、Feお
よびMnから選ばれる少なくとも1種の元素を示し、a、
b、c、dは前記各元素の原子価で決まる値であり、
x、yはモル%を示し、x+y=100である。)で表わ
されるペロブスカイト型製造化合物およびその固溶体
(以下ペロブスカイトという)の原料粉末の製造に際
し、前記の構成成分元素を含有する化合物の各溶液およ
び/または各懸濁液を沈澱形成液と接触させて各成分の
沈澱を遂次段階的に生成され、次いで該沈澱物含有スラ
リーのpHを8.0以上にして、130〜300℃で水熱処理する
ことを特徴とするペロブスカイト原料粉末の製法に関す
るものである。
The present invention has the general formula X [A (B a W b ) O 3 ] -y [A (B c Nb d ).
O 3 ] (wherein A represents at least one element selected from Pb, Ba, Sr and Ca, and B represents at least one element selected from Mg, Zn, Ni, Co, Cu, Fe and Mn) , A,
b, c and d are values determined by the valence of each of the above elements,
x and y represent mol% and x + y = 100. In the production of the raw material powder of the perovskite-type production compound represented by the formula (4) and its solid solution (hereinafter referred to as perovskite), each solution and / or suspension of the compound containing the above-mentioned constituent elements is brought into contact with a precipitation forming liquid. The present invention relates to a method for producing a perovskite raw material powder, which is characterized in that precipitation of each component is successively produced, and then the pH of the precipitate-containing slurry is adjusted to 8.0 or higher and hydrothermal treatment is carried out at 130 to 300 ° C.

本発明の方法で得られたペロブスカイト原料粉末は、易
焼結性で均一性のよい微細な粉末であり、しかも従来法
に比し低い焼成温度で焼結体を得ることができるという
特徴も有する。
The perovskite raw material powder obtained by the method of the present invention is a fine powder that is easily sinterable and has good uniformity, and is also characterized in that a sintered body can be obtained at a firing temperature lower than that of the conventional method. .

前記一般式中のa、b、c、dの値は、BとWの合計の
原子価、およびBとNbの合計の原子価が4価となるよう
に選択され、例えばW、Nbの原子価がそれぞれ6価、5
価の場合、(1)B元素の原子価が2の時、a=1/2、
b=1/2、c=1/3、d=2/3であり、(2)B元素の原
子価が3の時、a=2/3、b=1/3、c=1/2、d=1/2で
ある。
The values of a, b, c, and d in the above general formula are selected so that the total valence of B and W and the total valence of B and Nb become tetravalent, for example, the atoms of W and Nb. Price is 6 and 5 respectively
In the case of valence, (1) when the valence of B element is 2, a = 1/2,
b = 1/2, c = 1/3, d = 2/3, and (2) when the valence of B element is 3, a = 2/3, b = 1/3, c = 1/2 , D = 1/2.

また前記一般式中のxおよびyの値は、用途に応じ種々
の値をとりうるが、通常、xは5〜95モル%、yは5〜
95モル%の範囲から選択するのが好適である。
Further, the values of x and y in the above general formula can take various values depending on the use, but usually x is 5 to 95 mol% and y is 5 to 5 mol%.
It is preferable to select from the range of 95 mol%.

ペロブスカイトの構成成分元素を含有する化合物の各溶
液および/または各懸濁液を調整するための成分化合物
としては、特に限定されないがそのらの水酸化物、酸化
物、炭酸塩、オキシ塩、硝酸塩、塩化物等の無機塩、酢
酸塩、しゅう酸塩等の有機酸塩など、熱処理により構成
成分以外の部分が容易に除去できるものが望ましい。こ
れらの中でも水酸化物、酸化物、硝酸塩が好ましい。こ
れらは一般に水またはエタノール溶液として使用される
が、水酸化物、酸化物を懸濁させた液も使用される。水
に可溶でない場合にはアルカリまたは酸を添加して可溶
させてもよい。
The component compound for preparing each solution and / or each suspension of the compound containing the constituent element of perovskite is not particularly limited, but hydroxides, oxides, carbonates, oxy salts, nitrates thereof Inorganic salts such as chlorides, organic salts such as acetates and oxalates, which can be easily removed by heat treatment, are desirable. Among these, hydroxides, oxides and nitrates are preferable. These are generally used as a water or ethanol solution, but hydroxides and liquids in which oxides are suspended are also used. When it is not soluble in water, alkali or acid may be added to make it soluble.

沈澱形成液としては、構成成分からの除去が容易なアン
モニア、炭酸アンモニウム、しゅう酸塩、アミン類、等
が挙げられる。
Examples of the precipitate-forming liquid include ammonia, ammonium carbonate, oxalates, amines, etc., which can be easily removed from the constituents.

各成分の沈澱を遂次段階的に生成させるには沈澱形成液
を攪拌しながら、沈澱形成液に、前記各構成成分の溶液
または懸濁液を添加してもよく、その反対に添加しても
よい。添加に際しては液を十分に攪拌しながら行うこと
が好ましい。
In order to successively generate the precipitation of each component, the solution or suspension of each of the above-mentioned components may be added to the precipitation forming liquid while stirring the precipitation forming liquid, or vice versa. Good. It is preferable to add the solution while sufficiently stirring it.

また沈澱の生成に際し、例えば一つの成分の沈澱を生成
した後、陰イオンを除去するために水洗した後、沈澱物
を新しい水に分散して、さらに他成分の水溶液と沈澱形
成液を添加して沈澱を生成してもよい。
When forming a precipitate, for example, after forming a precipitate of one component, washing with water to remove anions, dispersing the precipitate in fresh water, and further adding an aqueous solution of another component and a precipitate forming solution. May form a precipitate.

更にまたNb、W、A成分および/またはB成分の沈澱を
生成した後、沈澱形成液の種類と濃度を適当に選ぶこと
によって、前記以外の金属元素を含んだ化合物の沈澱を
生成してもよい。
Furthermore, after the precipitation of Nb, W, A component and / or B component is formed, the precipitation of a compound containing a metal element other than the above is also formed by appropriately selecting the type and concentration of the precipitation forming liquid. Good.

前記方法により得られた沈澱物含有スラリーのpHを8.0
以上、好ましくは8.5以上に調整し、次いで130〜300℃
で水処理する。pHの調整は、アンモニア水、炭酸アンモ
ニウム等の塩基性物質で行うことができる。
The pH of the precipitate-containing slurry obtained by the above method was adjusted to 8.0.
Or more, preferably adjusted to 8.5 or more, then 130 ~ 300 ℃
Treat with water. The pH can be adjusted with a basic substance such as aqueous ammonia or ammonium carbonate.

水熱処理する方法としては、オートクレーブを使用する
のが一般的である。
An autoclave is generally used as the method for hydrothermal treatment.

この処理により沈殿物は、所望の金属原子比のペロブス
カイト前駆体粒子となり、均一な結晶粒子が得られる。
加熱(水熱)処理温度が、低すぎると十分に結晶化が進
行せず、粒子が揃い焼結に適したペロブスカイト前駆体
を得ることが困難であり、また高すぎると経済的でな
く、しかも粒子径の大きい粒子になる。従って水熱処理
温度は130〜300℃で行う必要があり、この熱処理によっ
て焼結に適した0.025〜0.30μmの均一な結晶粒子のペ
ロブスカイト前駆体が得られる。水熱処理時間は1〜10
時間が好適である。
By this treatment, the precipitate becomes perovskite precursor particles having a desired metal atom ratio, and uniform crystal particles are obtained.
If the heating (hydrothermal) treatment temperature is too low, crystallization does not proceed sufficiently, making it difficult to obtain a perovskite precursor suitable for sintering, and if too high, it is not economical and The particles have a large particle size. Therefore, it is necessary to carry out the hydrothermal treatment at a temperature of 130 to 300 ° C., and by this heat treatment, a perovskite precursor having uniform crystal particles of 0.025 to 0.30 μm suitable for sintering can be obtained. Hydrothermal treatment time is 1-10
Time is good.

水熱処理した後、Mg、Zn、Ni、Coのような金属元素を含
有する場合には、沈澱物含有スラリー中に若干前記金属
元素を含む化合物が溶解しているため、そのまま乾燥す
るのが好ましい。
After hydrothermal treatment, when containing a metal element such as Mg, Zn, Ni, or Co, it is preferable to dry as it is because the compound containing the metal element is slightly dissolved in the precipitate-containing slurry. .

このようにして得られた結晶沈澱粒子を乾燥すると、粒
度の揃った組成的に均一かつ易焼結性のペロブスカイト
の原料粉末が再現性よく製造される。このようにして得
られた粉末は、従来の焼結温度850〜900℃に比較して80
0〜830℃付近で十分に焼結できる。また多成分元素のペ
ロブスカイトにおいて所望の金属元素組成のものを製造
することができる。
By drying the crystal-precipitated particles thus obtained, a compositionally uniform and easily sinterable raw material powder of perovskite having a uniform particle size is produced with good reproducibility. The powder thus obtained has a temperature of 80% compared to the conventional sintering temperature of 850-900 ° C.
Sintering can be performed sufficiently at around 0 to 830 ° C. Further, it is possible to manufacture a perovskite of a multi-component element having a desired metal element composition.

[実施例] 以下に実施例および比較例を示し、さらに詳しく本発明
について説明する。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 19[Pb(Zn1/3Nb2/3O3]−29[Pb(Fe2/3W1/3)O3]−52
[Pb(Fe1/2Nb1/2O3] 水酸化ニオブ[Nb(OH5)8.460gと酸化タングステン[WO
3]粉末2.756gを水100ml中に分散し、これに6N−アンモ
ニア水100mlを加えて十分に攪拌した。更にこの懸濁液
に硝酸鉛[pb(NO3)2]40.738gを200mlの水に溶解した溶
液と硝酸鉄[Fe(No3)3・9H2O]22.527gを200mlの水に
溶解した溶液および硝酸亜鉛[Zn(NO3)2・6H2O]2.317
gを水100mlに溶解した溶液を徐々に加えて沈澱を生成さ
せた。この沈殿物含有スラリーのpHは11であった。
Example 1 19 [Pb (Zn 1/3 Nb 2/3 O 3 ] -29 [Pb (Fe 2/3 W 1/3 ) O 3 ] -52
[Pb (Fe 1/2 Nb 1/2 O 3 ] 8.460 g of niobium hydroxide [Nb (OH 5 )] and tungsten oxide [WO
3 ] 2.756 g of powder was dispersed in 100 ml of water, and 100 ml of 6N-ammonia water was added thereto, followed by sufficient stirring. Further dissolve the suspension lead nitrate [pb (NO 3) 2] solution and iron nitrate which was dissolved in water 200ml 40.738g [Fe (No 3) 3 · 9H 2 O] 22.527g of water 200ml solution and zinc nitrate [Zn (NO 3) 2 · 6H 2 O] 2.317
A solution of g in 100 ml of water was gradually added to form a precipitate. The pH of the precipitate-containing slurry was 11.

上澄液を除去した後、沈殿物スラリーをオートクレーブ
にて150℃で4hr水熱処理した後200℃で蒸発乾固した。
得られた粉末の組成の組成分析を行ったところ、仕込み
元素組成と同一であった。
After removing the supernatant, the precipitate slurry was hydrothermally treated at 150 ° C. for 4 hours in an autoclave and then evaporated to dryness at 200 ° C.
When the composition of the obtained powder was analyzed, it was the same as the charged elemental composition.

またX線回析を測定したところ、第1図のようにペロブ
スカイト構造をとっていた。
When X-ray diffraction was measured, it had a perovskite structure as shown in FIG.

一方、透過型電子顕微鏡写真の観察によると、粒子径は
0.2μm以下で均一であった。この粉末にポリビールア
ルコールを0.2%添加して加圧成形したが、容易に成形
できた。これを800℃で2時間焼成したところ、密度は
8.51g/cm3と理論密度に近く、乾式法で製造する場合よ
り50℃低い焼成温度で焼成できた。
On the other hand, according to the observation of the transmission electron micrograph, the particle size is
It was uniform at 0.2 μm or less. Although 0.2% of poly beer alcohol was added to this powder and pressure molding was performed, it could be easily molded. When this was baked at 800 ° C for 2 hours, the density was
It was close to the theoretical density of 8.51 g / cm 3, and could be fired at a firing temperature lower by 50 ° C than in the case of the dry method.

比較例1 実施例1と同じ組成になるように酸化ニオブ(Nb2O5)1
5.469g、酸化タングステン(WO3)5.562g、酸化亜鉛(Z
nO)1.248g、酸化鉛(PbO)54.882g、および酸化鉄(Fe
2O3)8,937gと少量の水を添加して十分に擂潰混合した
後、乾燥した。このものを700℃で2時間仮焼した。そ
の時の粒子は透過型電子顕微鏡写真での観察は不均一で
1μm〜2μm程度であった。
Comparative Example 1 Niobium oxide (Nb 2 O 5 ) 1 having the same composition as in Example 1 was used.
5.469g, tungsten oxide (WO 3 ) 5.562g, zinc oxide (Z
nO) 1.248 g, lead oxide (PbO) 54.882 g, and iron oxide (Fe
2 O 3 ) 8,937 g and a small amount of water were added, and the mixture was thoroughly crushed and mixed, and then dried. This was calcined at 700 ° C. for 2 hours. The particles at that time were non-uniform when observed on a transmission electron micrograph and were about 1 to 2 μm.

このものにポリビニルアルコールを0.2%添加して加圧
成型した後、850℃で2時間焼成したところ、密度は8.3
0g/ccであった。
After 0.2% polyvinyl alcohol was added to this product and pressure-molded, it was baked at 850 ° C for 2 hours, and the density was 8.3.
It was 0 g / cc.

実施例2 20[Pb(Zn1/3Nb2/3O3]−25[Pb(Fe2/3W1/3)O3]−55
[Pb(Mg1/3W2/3)O3]水酸化ニオブ[Nb(OH)5粉末2.917
gと酸化タングステン[WO3]粉末12.830gを水100ml中に
分散し、これに6N−アンモニア水100mlを加えて十分攪
拌した。
Example 2 20 [Pb (Zn 1/3 Nb 2/3 O 3] -25 [Pb (Fe 2/3 W 1/3) O 3] -55
[Pb (Mg 1/3 W 2/3 ) O 3 ] Niobium hydroxide [Nb (OH) 5 powder 2.917
g and 12.830 g of tungsten oxide [WO 3 ] powder were dispersed in 100 ml of water, and 100 ml of 6N-ammonia water was added thereto, followed by sufficient stirring.

更にこの懸濁液に硝酸鉛[Pb(No3)2]40.738gを200mlの
水に溶解した溶液と硝酸鉄[Fe(No3)3・9H2O]8.281g
を200mlの水に溶解した溶液と硝酸マグネシウム[Mg(No
3)2・6H2O]5.781gを200mlの水に溶解した溶液および
硝酸亜鉛[Zn(No3)2・6H2O]2.440gを水100mlに溶解い
た溶液を徐々に加えて沈澱を生成させた。この沈澱物ス
ラリーのpHは11であった。上澄液を除去した後、沈澱ス
ラリーをオートクレーブにて150℃で水熱合成した後、2
00℃で蒸発乾固した。得られた粉末の組成分析を行った
ところ、仕込みの元素組成と同一であった。一方、透過
型電子顕微鏡写真の観察によると、粒子径は0.2μm以
下で均一であった。この粉末にポリビニールアルコール
を0.4%添加して成型した後、820℃で2時間焼成したと
ころ、密度は8.55g/cm3と理論密度に近く、乾式法で製
造した場合より70℃低い焼成温度で焼成できた。
Further lead nitrate to the suspension [Pb (No 3) 2] solution and iron nitrate which was dissolved in water 200ml 40.738g [Fe (No 3) 3 · 9H 2 O] 8.281g
Dissolved in 200 ml of water and magnesium nitrate [Mg (No
3) 2 · 6H 2 O] solution and zinc nitrate were dissolved in 200ml of water and 5.781g [Zn (No 3) the 2 · 6H 2 O] 2.440g added slowly a solution was dissolved in water 100ml a precipitate Let The pH of this precipitate slurry was 11. After removing the supernatant liquid, the precipitate slurry was hydrothermally synthesized at 150 ° C in an autoclave and then 2
Evaporated to dryness at 00 ° C. When the composition analysis of the obtained powder was performed, it was the same as the charged elemental composition. On the other hand, according to the observation of the transmission electron micrograph, the particle diameter was 0.2 μm or less and uniform. When 0.4% of polyvinyl alcohol was added to this powder and molded, it was fired at 820 ° C for 2 hours. The density was 8.55 g / cm 3, which was close to the theoretical density, and the firing temperature was 70 ° C lower than that of the dry method. I was able to bake.

実施例3 実施例1において6N−アンモニア水100mlの代りに6N−N
aOH水溶液100mlにし、また150℃の水熱合成を250℃での
水熱合成を行ったほかに、実施例1と同様に操作した。
Example 3 Instead of 100 ml of 6N-ammonia water in Example 1, 6N-N was used.
The same operation as in Example 1 was performed except that 100 ml of an aOH aqueous solution was used, and hydrothermal synthesis at 150 ° C. was performed at 250 ° C.

得られた粒子径は0.2μm以下で、非常に均一であっ
た。
The obtained particle size was 0.2 μm or less, which was very uniform.

この粉末にポリビニールアルコールを0.4%添加して形
成した後、800℃で2時間焼成したところ、理論密度に
近い焼結体が得られた。
When 0.4% of polyvinyl alcohol was added to the powder to form the powder, the powder was fired at 800 ° C. for 2 hours to obtain a sintered body close to the theoretical density.

実施例4 実施例1において硝酸鉛[Pb(No3)2]40.738gの代りに
硝酸鉛[Pb(No3)236.433gと硝酸ストロンチウム[Sr(No
3)2]2.751gにし、また水熱温度を150℃から200℃にし
たほかは実施例1と同様な操作で製造した。
Example 4 Instead of 40.738 g of lead nitrate [Pb (No 3 ) 2 ] in Example 1, 36.433 g of lead nitrate [Pb (No 3 ) 2 and strontium nitrate [Sr (No
3 ) 2 ] 2.751 g and the hydrothermal temperature was changed from 150 ° C. to 200 ° C., and the same operation as in Example 1 was carried out.

得られた粒子径は0.2μm以下でよく揃ったものであっ
た。この粉末を成形し、800℃で2時間焼成したところ
理論密度に近い焼結体が得られた。
The obtained particle size was 0.2 μm or less, which was well uniform. When this powder was molded and fired at 800 ° C. for 2 hours, a sintered body close to the theoretical density was obtained.

実施例5 2[Pb1/2Ca1/2(Zn1/3Nb2/3]−3[Pb(Cu1/2W1/2)
O3]−95[Pb1/2Nb1/2)O3実施例1において、硝酸鉛[P
b(No3)2]40.738gの代りに、硝酸鉛[Pb(No3)2]40.33g
および硝酸カルシウム[Ca(No3)2・4H2O]0.290gに
し、硝酸亜鉛[Zn(No3)2・6H2O]0.244g、水酸化ニオ
ブ[Nb(OH)5]10.686g、硝酸銅[Cu(No3)2・3H2O]0.4
46g、酸化タングステン[WO3]0.428gおよび硝酸鉄[Fe
(No3)3・9H2O]23.595gを添加したほかは、実施例1と
同様に操作した。
Example 5 2 [Pb 1/2 Ca 1/2 (Zn 1/3 Nb 2/3 ] -3 [Pb (Cu 1/2 W 1/2 ))
O 3 ] −95 [Pb 1/2 Nb 1/2 ) O 3 In Example 1, lead nitrate [Pb 1/2
b (No 3 ) 2 ] 40.738g instead of lead nitrate [Pb (No 3 ) 2 ] 40.33g
And the calcium nitrate [Ca (No 3) 2 · 4H 2 O] 0.290g, zinc nitrate [Zn (No 3) 2 · 6H 2 O] 0.244g, niobium hydroxide [Nb (OH) 5] 10.686g , nitrate copper [Cu (No 3) 2 · 3H 2 O] 0.4
46 g, tungsten oxide [WO 3 ] 0.428 g and iron nitrate [Fe
(No 3) 3 · 9H 2 O] except that the addition of 23.595g was operated in the same manner as in Example 1.

得られ粒子径は0.2μmで比較的均一な粒度であった。The obtained particle size was 0.2 μm and the particle size was relatively uniform.

この粉末に、ポリビニールアルコールを0.6%添加して
形成した後810℃で2時間焼成したところ、密度は8.45g
/cm3と理論密度に近く、乾式法で製造した場合より60℃
低い焼成温度で焼成できた。
When 0.6% of polyvinyl alcohol was added to this powder and formed, it was baked at 810 ° C for 2 hours, and the density was 8.45 g.
/ cm 3 and close to the theoretical density, 60 ° C. than when produced by a dry process
It could be fired at a low firing temperature.

[発明の効果] 本発明によるとペロブスカイト原料粉末の製造に際し、
ペロブスカイトの構成成分元素を含有する化合物の各溶
液および/または各懸濁液を沈澱形成液と接触させて各
成分の沈澱を遂次段階的に生成させ、次いで水熱処理す
ることにより、微粒子(サブミクロン)で粒度分布が狭
い均な易焼結性ペロブスカイトの原料粉末を再現性よく
製造することができる。また本発明によると従来法に比
し低い焼成温度でしかも分散性のよい焼結体を得ること
ができるという特徴を有する。
[Effect of the Invention] According to the present invention, in the production of the perovskite raw material powder,
By contacting each solution and / or each suspension of the compound containing the constituent element of the perovskite with the precipitation-forming solution, the precipitation of each component is successively produced, and then hydrothermal treatment is performed to obtain fine particles (sub It is possible to reproducibly produce a uniform raw material powder of easily sinterable perovskite having a narrow particle size distribution. Further, according to the present invention, there is a feature that a sintered body having a lower firing temperature and good dispersibility can be obtained as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例1で得られたペロブスカイト原料粉末
のX線回析図である。
FIG. 1 is an X-ray diffraction diagram of the perovskite raw material powder obtained in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式X[A(BaWb)O3]−y[A(BcNbd)O
3](ただし、AはPb、Ba、SrおよびCaから選ばれる少
なくとも1種の元素を、BはMg、Zn、Ni、Co、Cu、Feお
よびMnから選ばれる少なくとも1種の元素を示し、a、
b、c、dは前記各元素の原子価で決まる値であり、
x、yはモル%を示し、x+y=100である。)で表わ
されるペロブスカイト型構造化合物およびその固溶体
(以下ペロブスカイトという)の原料粉末の製造に際
し、前記の構成成分元素を含有する化合物の各溶液およ
び・または各懸濁液を沈澱形成液と接触させて各成分の
沈澱を逐次段階的に生成され、次いで該沈澱物含有スラ
リーのpHを8.0以上にして、130〜300℃で水熱処理する
ことを特徴とするペロブスカイト原料粉末の製法。
1. A general formula X [A (B a W b ) O 3 ] -y [A (B c Nb d ) O.
3 ] (However, A represents at least one element selected from Pb, Ba, Sr and Ca, B represents at least one element selected from Mg, Zn, Ni, Co, Cu, Fe and Mn, a,
b, c and d are values determined by the valence of each of the above elements,
x and y represent mol% and x + y = 100. In the production of the raw material powder of the perovskite structure compound represented by the formula (4) and its solid solution (hereinafter referred to as perovskite), each solution and / or each suspension of the compound containing the above-mentioned constituent elements is brought into contact with a precipitation forming liquid. A method for producing a perovskite raw material powder, which comprises successively producing a precipitate of each component in a stepwise manner, and then subjecting the slurry containing the precipitate to a pH of 8.0 or more and performing a hydrothermal treatment at 130 to 300 ° C.
JP61239043A 1986-10-09 1986-10-09 Manufacturing method of perovskite raw material powder Expired - Lifetime JPH0688793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239043A JPH0688793B2 (en) 1986-10-09 1986-10-09 Manufacturing method of perovskite raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239043A JPH0688793B2 (en) 1986-10-09 1986-10-09 Manufacturing method of perovskite raw material powder

Publications (2)

Publication Number Publication Date
JPS6395119A JPS6395119A (en) 1988-04-26
JPH0688793B2 true JPH0688793B2 (en) 1994-11-09

Family

ID=17039024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239043A Expired - Lifetime JPH0688793B2 (en) 1986-10-09 1986-10-09 Manufacturing method of perovskite raw material powder

Country Status (1)

Country Link
JP (1) JPH0688793B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229101A (en) * 1991-01-09 1993-07-20 Munetoshi Watanabe Process for producing a powder of perovskite-type double oxide
JPH06144837A (en) * 1992-11-10 1994-05-24 Mizusawa Ind Chem Ltd Synthesis of columbite-type niobic acid salt and synthesis of perovskite-type compound using the salt
WO1997015526A1 (en) * 1995-10-27 1997-05-01 E.I. Du Pont De Nemours And Company Hydrothermal process for making ultrafine metal oxide powders

Also Published As

Publication number Publication date
JPS6395119A (en) 1988-04-26

Similar Documents

Publication Publication Date Title
JPS60155532A (en) Production of barium strontium titanate fine particle
Takahashi et al. Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO—Ln2O3—TiO2 (Ln= La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single‐Phase Powder of Ternary Compound in the BaO—La2O3—TiO2 System
JPS6214489B2 (en)
JPS6052092B2 (en) Manufacturing method of perovskite-type lead-containing composite oxide
JPH0688793B2 (en) Manufacturing method of perovskite raw material powder
Das et al. Low temperature chemical synthesis of nanosized ceramic powders
JPS6214488B2 (en)
JPH0159967B2 (en)
JPH0321487B2 (en)
JP2557344B2 (en) Method for treating inorganic hydroxide precipitate
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS6016373B2 (en) Method for manufacturing perovskite-type lead-containing composite oxide
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JPS61163118A (en) Process for preparing raw material powder of easily sinterable perovskite by wet powder dispersion process
JPH0556287B2 (en)
JPH06321630A (en) Composition for ceramic dielectric
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPS6227371A (en) Composition for ceramic dielectric and manufacture of ceramic dielectric
JPS63144115A (en) Production of oxide
JPS63307109A (en) Method for synthesizing piezoelectric and dielectric ceramics powder
KR20060102928A (en) Manufacturing method of barium titanate powder
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JP3451678B2 (en) Method for producing zinc oxide powder and method for producing magnetic oxide powder
JPS61127624A (en) Production of perovskite type oxide solid
JPS62230623A (en) Production of perovskite-type compound containing tungsten