JPH01176206A - Production of precursor of compound oxide - Google Patents

Production of precursor of compound oxide

Info

Publication number
JPH01176206A
JPH01176206A JP62335613A JP33561387A JPH01176206A JP H01176206 A JPH01176206 A JP H01176206A JP 62335613 A JP62335613 A JP 62335613A JP 33561387 A JP33561387 A JP 33561387A JP H01176206 A JPH01176206 A JP H01176206A
Authority
JP
Japan
Prior art keywords
alkoxides
composite oxide
amides
amines
oxide precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62335613A
Other languages
Japanese (ja)
Other versions
JPH0580404B2 (en
Inventor
Takeshi Fujiyama
毅 藤山
Makoto Hori
誠 堀
Yoshitaka Nomiya
野宮 好堯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOROIDO RES KK
Original Assignee
KOROIDO RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOROIDO RES KK filed Critical KOROIDO RES KK
Priority to JP62335613A priority Critical patent/JPH01176206A/en
Publication of JPH01176206A publication Critical patent/JPH01176206A/en
Publication of JPH0580404B2 publication Critical patent/JPH0580404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain the title fine and uniform precursor useful as a superconducting material, functional material, etc., by hydrolyzing under a specific condition. CONSTITUTION:One or more alkoxides of rare earth elements (e.g. Y or Sm), one or more alkoxides of alkaline earth metals (e.g. Cu, Ti, Zr, Cr, Mo or Fe) and one or more alkoxides of transition metals except lanthanides are dissolved in an organic solvent (e.g. ethanol), blended and hydrolyzed with 0.5-2mol. based on the sum of alkoxy groups of the metal alkoxides of one or more amines such as (di)(tri)ethanolamine and/or one or more amides formamide, dimethylamide, (dimethyl)acetamide, crotonamide or N,N- diethylpropanamide and water and the solvent is removed by evaporation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多成分系セラミックス前駆体の製造方法に関
するものである。詳しく述べると、酸化物系セラミック
ス、例えば超電導材料を得るのに好適な原料となる複合
酸化物前駆体の製造方法に関するものである。本発明に
よって得られる複合酸化物前駆体より導かれる複合酸化
物は、前述の超電導材料をはじめとするエレクトロニク
ス分野における機能性材料としてその利用が期待されて
いる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a multicomponent ceramic precursor. More specifically, the present invention relates to a method for producing a composite oxide precursor that is a suitable raw material for producing oxide ceramics, such as superconducting materials. The composite oxide derived from the composite oxide precursor obtained by the present invention is expected to be used as a functional material in the electronics field including the above-mentioned superconducting material.

(従来の技術) 多成分系セラミックスは、通常各成分の酸化物又はその
前駆体の粉末を混合し、成形後焼成することにより製造
されている。各成分毎の酸化物は、純粋なものが得られ
、また所定粒度のものが容易に得られ、かつ所定組成の
原料が容易に得られるために各成分の酸化物を混合する
ことが行われている。そして、各成分の酸化物粉末の混
合物は焼成により面相反応を生じ所定組成の多成分系セ
ラミックスを生成する。例えば、超電導材料YBa2C
u3O7−x焼結体は、酸化イツトリウム、炭酸バリウ
ム、酸化銅の粉体を乳鉢により粉砕、混合し、高温焼成
してそれらの面相反応により作製されている(例えば、
超電導物質化学シンポジウム要旨集1987年10月1
2頁等)。
(Prior Art) Multi-component ceramics are usually manufactured by mixing powders of oxides of each component or their precursors, molding, and then firing. The oxides of each component are mixed in order to obtain pure oxides, to easily obtain oxides with a predetermined particle size, and to easily obtain raw materials with a predetermined composition. ing. Then, the mixture of oxide powders of each component undergoes a phase reaction by firing to produce a multi-component ceramic having a predetermined composition. For example, superconducting material YBa2C
The u3O7-x sintered body is produced by pulverizing and mixing powders of yttrium oxide, barium carbonate, and copper oxide in a mortar and firing them at a high temperature to cause a phase reaction between them (for example,
Superconducting Materials Chemistry Symposium Abstracts October 1987
2 pages, etc.)

前記の各成分の酸化物又はその前駆体の粉末から出発す
る方法では、焼成にさいして焼結が起こり、面相反応が
生じても反応が緩慢で組成が均一にならない欠点がある
ので、出発原料としてより均一な組成のものを用いよう
とすることが行なわれ、共沈法により得た塩から酸化物
をつくり、それを原料とする方法も提案されている。例
えば、組成の均一性、微粒子化を目的として、イツトリ
ウムとバリウムと銅塩を溶解した溶液のpHを調整する
ことによってシュウ酸塩として同時に沈澱を形成せしめ
る湿式共沈法により生じた塩を原料とすることも知られ
ている(日米高温超電導シンポジウム要旨集1987年
10月17−5頁等)(発明が解決しようとする問題点
) しかしながら、従来の各成分の粉末から出発する面相反
応による方法は、出発原料粉末の超微細化が困難である
ため、組成の均一性、組織の緻密化、微細化に問題を有
し、かつ組成制御が難しく、また超電導材料の場合不純
物を含む粒界により超電導特性が劣化する傾向にある。
The method of starting from powders of oxides of each of the above components or their precursors has the drawback that sintering occurs during firing, and even if a phase reaction occurs, the reaction is slow and the composition is not uniform. Efforts have been made to use oxides with a more uniform composition, and methods have also been proposed in which oxides are made from salts obtained by coprecipitation and used as raw materials. For example, for the purpose of compositional uniformity and fine particle formation, a salt produced by a wet co-precipitation method in which oxalate is simultaneously formed as a precipitate by adjusting the pH of a solution in which yttrium, barium, and copper salts are dissolved is used as a raw material. (Problem to be solved by the invention, etc.) (Problem to be solved by the invention) However, the conventional method using a phase reaction starting from powder of each component Because it is difficult to ultra-fine the starting raw material powder, there are problems with composition uniformity, structure densification, and refinement, and composition control is difficult, and in the case of superconducting materials, grain boundaries containing impurities cause Superconducting properties tend to deteriorate.

また、上記のシュウ酸による湿式共沈法においても、イ
ツトリウム、バリウム、銅の各成分が沈澱を形成するさ
いのpH値の差異により、収率の低下、組成のずれなど
の間1を生じ、上記の面相法と比較すると均一かつ微細
化された組織の原料粉末が得られるものの、超電導特性
、特に限界電流密度Jcに与える効果は少なく、いまだ
多くの問題を残している。その限界電流密度が実用レベ
ルに比べまだ1〜2桁小さい原因としてはグレインバウ
ンダリーの影響、セラミックスの低密度性などが挙げら
れている。
In addition, in the wet co-precipitation method using oxalic acid described above, differences in pH values when the components of yttrium, barium, and copper form precipitates cause a decrease in yield, deviation in composition, etc. Although raw material powder with a uniform and finer structure can be obtained compared to the above-mentioned surface phase method, it has little effect on superconducting properties, particularly on critical current density Jc, and many problems still remain. The reasons why the critical current density is still one to two orders of magnitude lower than the practical level include the influence of grain boundaries and the low density of ceramics.

本発明の目的は、この様な従来技術の問題点を解決する
複合酸化物前駆体の製造方法を提供することにあり、例
えば超電導材料の特性向上に好適なY−Ba−Cu−0
系前駆体の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a composite oxide precursor that solves the problems of the prior art.
An object of the present invention is to provide a method for producing a system precursor.

(問題点を解決するための手段) 本発明は、前記従来法の問題点を解決するために研究を
行ない、各々少なくとも1種の希土類元素のアルコキシ
ド、アルカリ土類金属のアルコキシド、及びランタニド
を除(遷移金属のアルコキシドをアミン類及び/又はア
ミド類及び水の存在下、有機溶媒中で混合、反応せしめ
ることにより、微細かつ均一組成を有する複合酸化物前
駆体が得られることを見出し、本発明を完成した。
(Means for Solving the Problems) The present invention has been made by conducting research to solve the problems of the conventional method, and by eliminating at least one kind of rare earth element alkoxide, alkaline earth metal alkoxide, and lanthanide. (The present invention was based on the discovery that a composite oxide precursor having a fine and uniform composition can be obtained by mixing and reacting transition metal alkoxides in an organic solvent in the presence of amines and/or amides and water. completed.

すなわち、本発明は、金属アルコキシドの加水分解によ
り生成する極微細な粒子中に各成分を化学量論組成で均
一に分散せしめることを目的に種々検討を行なった結果
、希土類元素、アルカリ土類金属、及びランタニドを除
く遷移金属のアルコキシドの易加水分解性と各々単独で
の沈澱粒子生成を改良するためにはアミン類及び/又は
アミド類の添加が有効であることを見出した。
That is, the present invention was developed as a result of various studies aimed at uniformly dispersing each component with a stoichiometric composition in ultrafine particles produced by hydrolysis of metal alkoxides. We have found that the addition of amines and/or amides is effective in improving the easy hydrolysis of transition metal alkoxides other than lanthanides and lanthanides, and the formation of precipitate particles by each alone.

希土類元素のアルコキシドとしては、例えばイツトリウ
ムやサマリウムのアルコキシドが用いられ、アルカリ土
類金属のアルコキシドとしては、例えばバリウム、スト
ロンチウム、カルシウムのアルコキシドが用いられ、ラ
ンタニドを除く遷移金属のアルコキシドとしては、例え
ば銅、チタン、ジルコニウム、クロム、モリブデン、マ
ンガン、鉄、コバルト、ニッケル、亜鉛、カドミウム等
のアルコキシドが用いられる。
Examples of rare earth element alkoxides include yttrium and samarium alkoxides, alkaline earth metal alkoxides include barium, strontium, and calcium alkoxides, and transition metal alkoxides other than lanthanides include, for example, copper. , titanium, zirconium, chromium, molybdenum, manganese, iron, cobalt, nickel, zinc, cadmium, and other alkoxides.

本発明で使用するアミン類は、例えばメチルアミン、ジ
メチルアミン、トリメチルアミン、エチルアミン、ジエ
チルアミン、トリエチルアミン、プロピルアミン、ブチ
ルアミン、tert−ブチルアミン、シクロヘキシルア
ミン、ベンジルアミン、アニリン、ジフェニルアミン、
トリフェニルアミン、エタノールアミン、ジェタノール
アミン、トリエタノールアミン、N、N−ジメチルシク
ロヘキシルアミン、ピペリジン、N−エチルアニリンが
挙げられ、好ましくはエタノールアミン、ジエタノール
アミン、トリエタノールアミンである。
The amines used in the present invention include, for example, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, butylamine, tert-butylamine, cyclohexylamine, benzylamine, aniline, diphenylamine,
Examples include triphenylamine, ethanolamine, jetanolamine, triethanolamine, N,N-dimethylcyclohexylamine, piperidine, and N-ethylaniline, with preference given to ethanolamine, diethanolamine, and triethanolamine.

また、アミド類は、例えばホルムアミド、アセトアミド
、ジメチルアミド、ジメチルアセトアミド、クロトンア
ミド、N、N−ジエチルプロパンアミドが挙げられる。
Examples of amides include formamide, acetamide, dimethylamide, dimethylacetamide, crotonamide, and N,N-diethylpropanamide.

前記アミン類の添加量は、各金属アルコキシド化合物の
アルコキシ基の総数の0.5〜2倍のモル数とするのが
好ましい。
The amount of the amine added is preferably 0.5 to 2 times the number of moles of the total number of alkoxy groups in each metal alkoxide compound.

前記の各種アルコキシドとアミン類及び/又はアミド類
とを混合、反応するにさいして、水を存在させることに
より金属アルコキシドが加水分解されて複合酸化物前駆
体が形成される。水を存在させるための、水の添加法と
しては、有機溶媒中に希釈した水を徐々に加えたり、水
蒸気もしくは水蒸気を含むガスを溶液中に吹き込んだり
、空気中の水分を利用することが挙げられる。水の添加
は、アミン類及び/又はアミド類が前記各種アルコキシ
ドと混合しである練炭反応した後に行うようにするのが
好ましい。
When mixing and reacting the various alkoxides with amines and/or amides, the presence of water causes the metal alkoxide to be hydrolyzed and a composite oxide precursor to be formed. Methods of adding water to make it exist include gradually adding diluted water to an organic solvent, blowing water vapor or a gas containing water vapor into the solution, and using moisture in the air. It will be done. The addition of water is preferably carried out after the briquette reaction in which the amines and/or amides are mixed with the various alkoxides described above.

前記のアミン類及び/又はアミド類を混合、反応させる
さいには有機溶媒の中で行うが、その有機溶媒としては
前記各種アルコキシド並びにアミン類及び/又はアミド
類を溶解するのがよく、例えばメタノール、エタノーノ
ペプロバノール等が用いられる。
The mixing and reaction of the above amines and/or amides is carried out in an organic solvent, and it is preferable that the various alkoxides and the amines and/or amides be dissolved in the organic solvent, such as methanol. , ethanolopeprobanol, etc. are used.

(作用) 反応に用いるアミン類、アミド類は、希土類元素、アル
カリ土類金属、及びランタニドを除く遷移金属の各アル
コキシドのアルコキシ基に作用し、これと一部置換もし
くは配位することによりアルコキシドを安定化させ、加
水分解速度を抑制せしめるものと推測される。その結果
、希土類元素のアルコキシド、アルカリ土類金属のアル
コキシドと遷移金属のアルコキシドの加水分解段階が重
なり、均一組成粒子の形成に至る。
(Action) The amines and amides used in the reaction act on the alkoxy group of each alkoxide of rare earth elements, alkaline earth metals, and transition metals other than lanthanides, and by partially substituting or coordinating with these alkoxides, the alkoxides can be modified. It is presumed that it stabilizes and suppresses the rate of hydrolysis. As a result, the hydrolysis steps of rare earth element alkoxide, alkaline earth metal alkoxide, and transition metal alkoxide overlap, leading to the formation of uniform composition particles.

(実施例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

本発明は、この実施例のみに限定されるものではない。The invention is not limited to this example only.

実施例1 イツトリウムエキシト0.5g、バリウムエトキシド0
.95g、銅エトキシド0.96 gをエタノール40
0rrdlに溶解し、この溶液にジェタノールアミン1
.54 gを、添加して室温以下にてN2気流中で十分
撹拌する。これに水0.49−を添加し、加水分解反応
を行わせ、均一なコロイド状のゾルを得た。このゾルの
溶媒を蒸発させて得た固形物(ゲル)を110℃にて2
4時間乾燥した後、空気中500℃で4時間焼成し、そ
の後500kg/cdの圧力でペレット状に成形して酸
素気流中700℃で24時間焼成した。500℃焼成後
の粉末の粒径は約5000Aと微細であった。また得ら
れた焼結体は理論密度の80%と比較的緻密なものであ
った。焼成後の黒色焼結体はペロブスカイト組成のYB
a、Cu、0.−x斜方晶の焼結体であることをX線回
折の測定により確認した。
Example 1 0.5 g of yttrium ethoxide, 0 barium ethoxide
.. 95g, copper ethoxide 0.96g ethanol 40g
0rrdl, and add 1 ml of jetanolamine to this solution.
.. 54 g was added and thoroughly stirred at room temperature or below in a N2 stream. To this was added 0.49 g of water to carry out a hydrolysis reaction to obtain a uniform colloidal sol. The solid substance (gel) obtained by evaporating the solvent of this sol was heated to 110℃ for 2 hours.
After drying for 4 hours, it was calcined in air at 500°C for 4 hours, then molded into pellets at a pressure of 500 kg/cd, and calcined in an oxygen stream at 700°C for 24 hours. The particle size of the powder after firing at 500°C was as fine as about 5000A. Furthermore, the obtained sintered body was relatively dense with 80% of the theoretical density. The black sintered body after firing is YB with perovskite composition.
a, Cu, 0. It was confirmed by X-ray diffraction measurement that it was a -x orthorhombic sintered body.

比較例1 酸化イツトリウム、炭酸バリウム、酸化銅を原料とし、
Y:Ba:Cuが1:2:3となるように秤量、混合し
、950℃酸素中で24時間仮焼後、自動乳鉢で2時間
粉砕し、平均粒径が約2μmの粉とした後、1t/cr
lで圧縮成形後、7t/cafで冷間で等方圧線成形し
、950℃で24時間焼結した。焼結体は、[u2Y2
0sやBaCuO2などの組成物を若干含むYBa2C
u3O7−x斜方晶の焼結体であることをX線回折の測
定により確認した。また、同様に焼成温度700℃で焼
結を行ったが、そのときはYBa2Cu30t−x斜方
晶の生成が見られず、焼結体の密度も理論値の約70%
と低かった。
Comparative Example 1 Using yttrium oxide, barium carbonate, and copper oxide as raw materials,
The mixture was weighed and mixed so that Y:Ba:Cu was 1:2:3, calcined in oxygen at 950°C for 24 hours, and then ground in an automatic mortar for 2 hours to form a powder with an average particle size of about 2 μm. , 1t/cr
After compression molding at 1 t/caf, cold isostatic wire forming at 7 t/caf, and sintering at 950° C. for 24 hours. The sintered body is [u2Y2
YBa2C containing some compositions such as 0s and BaCuO2
It was confirmed by X-ray diffraction measurement that it was a u3O7-x orthorhombic sintered body. Similarly, sintering was carried out at a firing temperature of 700°C, but no formation of YBa2Cu30t-x orthorhombic crystals was observed, and the density of the sintered body was approximately 70% of the theoretical value.
It was low.

比較例2 供試試薬としてCu粉、Ba (NO3) 2、Y2O
3をいずれも3Nの硝酸溶液とし、モル比がY:Ba:
Cu=1:2:3となるように調整し、混合した。この
溶液にシュウ酸のエタノール溶液を用いてpH4,6で
供沈塩を生成させ、濾過し、110℃で24時間乾燥し
た後、500℃で4時間空気中で焼成し、その後500
 kg/cIIlの圧力でペレット状に成形し、酸素気
流中で800℃で24時間焼成した。
Comparative Example 2 Cu powder, Ba (NO3) 2, Y2O as test reagents
3 are all 3N nitric acid solutions, and the molar ratio is Y:Ba:
The ratio of Cu was adjusted to 1:2:3 and mixed. A precipitated salt was produced in this solution at pH 4.6 using an ethanol solution of oxalic acid, filtered, dried at 110°C for 24 hours, calcined in air at 500°C for 4 hours, and then heated to 500°C.
It was molded into a pellet at a pressure of kg/cIIl and calcined at 800° C. for 24 hours in an oxygen stream.

焼成後の焼結体をX線回折を用いて測定したが、YBa
、Cu、0.−x斜方晶のパターンは確認できなかった
The sintered body after firing was measured using X-ray diffraction, and YBa
, Cu, 0. -x Orthorhombic pattern could not be confirmed.

(発明の効果) 本発明の複合酸化物前駆体から単位粒子が非常に微細で
ある酸化物粉末が得られ、この酸化物粉末は結晶化が早
く、かつ焼結し易い。例えば、超電導材料YBa2Cu
−0系において、700℃という低温焼成でもYBa、
Cu30.−x斜方晶の組成が得られ、かつ比較的緻密
な焼結体が得られた。また、従来の面相法、共沈法のよ
うな組成のずれ、収率の低下がない。この粉末を用いる
ことにより、従来のYBa2Cu、0.−x超電導焼結
体の欠点であった臨界電流密度(Jc)の大幅な向上が
予想され、超伝導線材等への実用化が達成されるものと
期待される。
(Effects of the Invention) An oxide powder having very fine unit particles can be obtained from the composite oxide precursor of the present invention, and this oxide powder crystallizes quickly and is easily sintered. For example, superconducting material YBa2Cu
-0 series, even when fired at a low temperature of 700°C, YBa,
Cu30. A -x orthorhombic composition was obtained, and a relatively dense sintered body was obtained. In addition, there is no deviation in composition or decrease in yield as in the conventional phase method and coprecipitation method. By using this powder, conventional YBa2Cu, 0. It is expected that the critical current density (Jc), which has been a drawback of -x superconducting sintered bodies, will be significantly improved, and it is expected that practical application to superconducting wires and the like will be achieved.

また、途中段階で得られる、微細なコロイド粒子が懸濁
したゾルそのものを用いて基板へのコーティング、スク
リーン印刷等を施し、これに熱処理(比較的低温)を加
えることにより優れた超伝導特性を有するYBa2Cu
30.−x膜、厚膜を得ることが可能である。
In addition, the sol itself, in which fine colloidal particles are suspended, obtained in the intermediate stage is used to coat the substrate, screen print, etc., and by adding heat treatment (relatively low temperature) to this, excellent superconducting properties are achieved. YBa2Cu
30. -x film, it is possible to obtain a thick film.

さらに、本発明によれば超電導材料以外の他の機能性セ
ラミックスの原料となる複合酸化物前駆体を得ることが
できる。
Furthermore, according to the present invention, it is possible to obtain a composite oxide precursor that is a raw material for functional ceramics other than superconducting materials.

Claims (3)

【特許請求の範囲】[Claims] (1)各々少なくとも1種の希土類元素のアルコキシド
、アルカリ土類金属のアルコキシド、及びランタニドを
除く遷移金属のアルコキシドをアミン類及び/又はアミ
ド類及び水の存在下、有機溶媒中で混合、反応せしめる
ことを特徴とする複合酸化物前駆体の製造方法。
(1) Mixing and reacting at least one rare earth element alkoxide, alkaline earth metal alkoxide, and transition metal alkoxide other than lanthanide in an organic solvent in the presence of amines and/or amides and water. A method for producing a composite oxide precursor, characterized in that:
(2)上記アミン類がエタノールアミン、ジエタノール
アミン、トリエタノールアミンのうちの少なくとも1種
の化合物であり、その量は、各金属アルコキシド化合物
のアルコキシ基の総数の0.5〜2倍のモル数である特
許請求の範囲第1項記載の複合酸化物前駆体の製造方法
(2) The above amine is at least one compound selected from ethanolamine, diethanolamine, and triethanolamine, and the amount thereof is 0.5 to 2 times the number of moles of the total number of alkoxy groups in each metal alkoxide compound. A method for producing a composite oxide precursor according to claim 1.
(3)上記アミド類がホルムアミド、ジメチルアミド、
アセトアミド、ジメチルアセトアミド、クロトンアミド
、N,N−ジエチルプロパンアミドのうちの少なくとも
1種の化合物である特許請求の範囲第1項記載の複合酸
化物前駆体の製造方法。
(3) The above amides are formamide, dimethylamide,
The method for producing a composite oxide precursor according to claim 1, wherein the compound is at least one compound selected from acetamide, dimethylacetamide, crotonamide, and N,N-diethylpropanamide.
JP62335613A 1987-12-29 1987-12-29 Production of precursor of compound oxide Granted JPH01176206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335613A JPH01176206A (en) 1987-12-29 1987-12-29 Production of precursor of compound oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335613A JPH01176206A (en) 1987-12-29 1987-12-29 Production of precursor of compound oxide

Publications (2)

Publication Number Publication Date
JPH01176206A true JPH01176206A (en) 1989-07-12
JPH0580404B2 JPH0580404B2 (en) 1993-11-09

Family

ID=18290543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335613A Granted JPH01176206A (en) 1987-12-29 1987-12-29 Production of precursor of compound oxide

Country Status (1)

Country Link
JP (1) JPH01176206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375222A (en) * 1989-08-15 1991-03-29 Koroido Res:Kk Production of copper-containing oxide precursor
JP2008523230A (en) * 2004-12-14 2008-07-03 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Anhydrous metal oxide colloids and metal oxide polymers, their preparation and use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277545A (en) * 1987-05-11 1988-11-15 Denki Kagaku Kogyo Kk Oxide ceramic precursor composition
JPS6452649A (en) * 1987-08-24 1989-02-28 Mitsubishi Electric Corp Production of oxide based superconducting material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277545A (en) * 1987-05-11 1988-11-15 Denki Kagaku Kogyo Kk Oxide ceramic precursor composition
JPS6452649A (en) * 1987-08-24 1989-02-28 Mitsubishi Electric Corp Production of oxide based superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375222A (en) * 1989-08-15 1991-03-29 Koroido Res:Kk Production of copper-containing oxide precursor
JP2008523230A (en) * 2004-12-14 2008-07-03 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Anhydrous metal oxide colloids and metal oxide polymers, their preparation and use

Also Published As

Publication number Publication date
JPH0580404B2 (en) 1993-11-09

Similar Documents

Publication Publication Date Title
JPS61275108A (en) Preparation of powder of dielectric substance
CN112110722A (en) Preparation method of micro-nano dielectric ceramic material
JPH01176206A (en) Production of precursor of compound oxide
JPH01164709A (en) Production of composite oxide precursor
JPH0244272B2 (en)
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPH0855706A (en) Manufacture of fine powder of oxide semiconductor
Zhixiong et al. Sol-Gel derived batio3 ceramics
Pathak et al. A Versatile Coprecipitation Route for the Preparation of Mixed Oxide Powders
JP3149467B2 (en) Method for producing fine powder for semiconductor porcelain
JP3250874B2 (en) Method for producing composite oxide
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPS6325224A (en) Production of ferrite powder
JPS582220A (en) Manufacture of solid solution of metallic oxide
JPH01212216A (en) Production of superconducting ceramic powder
JPH0474715A (en) Production of compound oxide powder
JPH05116943A (en) Production of barium titanate powder
JPS62113723A (en) Production of complex perovskite compound
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPS59131505A (en) Preparation of oxide powder of perovskite structure containing zirconium
JP3012021B2 (en) Phosphoric acid-based sintered body and method for producing the same
JPH01252509A (en) Production of compound having perovskite type structure
JPS61291418A (en) Production of easily sinterable raw material powder of tungsten bronze-type oxide
JPS61191519A (en) Production of low-temperature sinterable raw material powder for producing dielectric porcelain
JPH0321488B2 (en)