JPS6325224A - Production of ferrite powder - Google Patents

Production of ferrite powder

Info

Publication number
JPS6325224A
JPS6325224A JP61169619A JP16961986A JPS6325224A JP S6325224 A JPS6325224 A JP S6325224A JP 61169619 A JP61169619 A JP 61169619A JP 16961986 A JP16961986 A JP 16961986A JP S6325224 A JPS6325224 A JP S6325224A
Authority
JP
Japan
Prior art keywords
ferrite
phase
metal
powder
ferrite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61169619A
Other languages
Japanese (ja)
Inventor
Choji Miyagawa
宮川 長二
Koichi Haneda
羽田 紘一
Kimiyoshi Goto
後藤 公美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61169619A priority Critical patent/JPS6325224A/en
Publication of JPS6325224A publication Critical patent/JPS6325224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce ferrite powder having excellent magnetic properties, by mixing two or more kinds of metal acetylacetones, hydrolyzing the mixture and calcining the produced precipitate. CONSTITUTION:The objective ferrite powder can be produced by mixing two or more kinds of metal acetylacetones, hydrolyzing the mixture and calcining the hydrolyzate. The process is suitable especially for the production of a hexagonal so-called M-phase ferrite (MFe12O19) or hexagonal so-called W-phase ferrite (MFe16O27) wherein M is 1-5-valent metal such as Sr, Ba, Pb, Zn, Ca, Cu, Ni, Co, etc.

Description

【発明の詳細な説明】 ■ 発明の背景 技術分野 本発明は、金属アセチルアセトンの2種以上を混合し、
加水分解して均一な微粉末からなるフェライト粉末を得
る製造方法に関する。
[Detailed Description of the Invention] ■ Background Technical Field of the Invention The present invention involves mixing two or more types of metal acetylacetones,
The present invention relates to a manufacturing method for obtaining ferrite powder made of uniform fine powder by hydrolysis.

先行技術とその問題点 従来、フェライト微粒子を作製する方法には、固相反応
法、湿式共沈法、カラスセラミック法か一般に知られて
いる。
Prior Art and its Problems Conventionally, methods for producing fine ferrite particles include a solid phase reaction method, a wet coprecipitation method, and a glass ceramic method.

さらに、これらの方法のほかに、有機金属化合物の加水
分解法が非晶質体合成法として、多くのすぐれた特徴を
イrしていることか知られている。
Furthermore, in addition to these methods, the hydrolysis method of organometallic compounds is known to have many excellent features as a method for synthesizing amorphous materials.

この方法は中でも液体状態でミクロレベルでの均質化反
応ができ、非晶質状態の形成、微粒子の作製が容易なた
めに微粒子結晶の合成に特にイ丁用であるとされてしす
る。 そして、このような現状のもとに有機金属化合物
の加水分解法によるフェライト微粒子の製造方法につい
て種々の提案がされている。
This method is said to be especially useful for the synthesis of microparticle crystals because it allows a homogenization reaction at the micro level in a liquid state and facilitates the formation of an amorphous state and the production of microparticles. Under these current circumstances, various proposals have been made regarding methods for producing ferrite fine particles by hydrolysis of organometallic compounds.

すなわち2種以上の金属アルコオキシドを用い、加水分
解によってフェライト微粒子を作製するいわゆる金属ア
ルコオキシド法によるもの(特開昭55−140721
号、同55−140722号、同56−26726号、
同58−45118号、同58−45119号、同58
−199724号公報、金属アルコオキシドからのバリ
ウムフェライトの作製「粉体および粉未冶金」第29巻
第5号1982年7月等)や、金属アルコオキシドと金
属アセチルアセトナートを混合し、加水分解によってフ
ェライト微粒子を作製するもの(特開昭56−2672
7号、同58−45120号、同58−45121号公
報等)などが提案されている。
That is, the method is based on the so-called metal alkoxide method in which ferrite fine particles are produced by hydrolysis using two or more metal alkoxides (Japanese Patent Application Laid-open No. 140721-1989).
No. 55-140722, No. 56-26726,
No. 58-45118, No. 58-45119, No. 58
-199724 publication, production of barium ferrite from metal alkoxide, "Powder and powder metallurgy", Vol. 29, No. 5, July 1982), mixing metal alkoxide and metal acetylacetonate, and hydrolyzing (Japanese Patent Application Laid-Open No. 56-2672)
No. 7, No. 58-45120, No. 58-45121, etc.) have been proposed.

これらの提案によれば、得られる微粒子は、活性に富ん
だ焼結性のよいものとなるため、このものを用いて作製
した焼結体の焼結密度は、通常の粉末法で得られた微粒
子を用いたそれよりも大きくなるとされている。
According to these proposals, the obtained fine particles will be highly active and have good sinterability, so the sintered body produced using these particles will have a sintered density that is lower than that obtained by the ordinary powder method. It is said to be larger than that using fine particles.

しかしながら、これらのものについての磁気特性、特に
保磁力や残留磁化等の値については、未だ十分とはいえ
ず、さらにこれらの点の改善が求められている。
However, the magnetic properties of these materials, particularly values such as coercive force and residual magnetization, are still not sufficient, and further improvements in these points are required.

1           ■ 発明の目的本発明の目的
は、有機金属化合物の加水分解法によるフェライト粉末
の製造方法において、得られるフェライト粉末の磁気特
性を向上することにある。
1. Purpose of the Invention An object of the present invention is to improve the magnetic properties of ferrite powder obtained in a method for producing ferrite powder by hydrolyzing an organometallic compound.

■ 発明の開示 このような目的は、下記の本発明によって達成される。■Disclosure of invention Such objects are achieved by the invention described below.

すなわち本発明は、金属アセチルアセトンの2種以上を
混合し、加水分解し、次いで焼成することを特徴とする
フェライト粉末の製造方法である。
That is, the present invention is a method for producing ferrite powder, which is characterized by mixing two or more kinds of metal acetylacetones, hydrolyzing the mixture, and then calcining the mixture.

■ 発明の具体的構成 以下、本発明の具体的構成について詳細に説明する。■Specific structure of the invention Hereinafter, a specific configuration of the present invention will be explained in detail.

本発明は、2種以上の金属アセチルアセトンを混合し、
加水分解によって所定のフェライト粉末を得る製造方法
である。 そして、フェライトの中でも、特に六方晶系
のいわゆるM相フェライトと呼ばれるもの(M F e
 12019 )や六方晶系のいわゆるW相フェライト
と呼ばれるもの(MFe1a027)の製法を対象にし
ている。
The present invention mixes two or more metal acetylacetones,
This is a manufacturing method in which a specified ferrite powder is obtained by hydrolysis. Among ferrites, especially those called hexagonal M-phase ferrites (M Fe
12019) and hexagonal W-phase ferrite (MFe1a027).

ここでMは1〜5僅の金属であり、具体的には、下記M
′として列挙される金属のなかからFeを除いたものを
挙げることができる。
Here, M is 1 to 5 metals, specifically, the following M
Among the metals listed as ', those excluding Fe can be mentioned.

以下、本発明の製法について詳述する。The manufacturing method of the present invention will be described in detail below.

本発明の出発原料として用いられる金属アセチルアセト
ンは通常M’  (C5H702)。で示される。 こ
こに、nは1〜5である。 この場合、金属アセチルア
セトンは、通常、配位水的なH2Oを持たないものを用
いるが、配位水を持つもの例えば、S r (C3H7
02) 2・2H20等を用いてもよい。
The metal acetylacetone used as a starting material in the present invention is usually M' (C5H702). It is indicated by. Here, n is 1-5. In this case, the metal acetylacetone that does not have coordinated water-like H2O is usually used, but the metal acetylacetone that does not have coordinated water, such as S r (C3H7
02) 2.2H20 etc. may be used.

M′は1〜5僅の金属であり、具体的には、Fe、Sr
、Ba、All、Li、Be、B。
M' is 1 to 5 metals, specifically Fe, Sr
, Ba, All, Li, Be, B.

Na、Mg、Si、に、Ca、Sc、Ti、V、Cr、
Mn、Co、Ni、Cu、Zn。
Na, Mg, Si, Ca, Sc, Ti, V, Cr,
Mn, Co, Ni, Cu, Zn.

Ga、Ge、As、Se、Rb、Y、Zr、Nb、Mo
、Cd、In、Sn、Sb、Te。
Ga, Ge, As, Se, Rb, Y, Zr, Nb, Mo
, Cd, In, Sn, Sb, Te.

Cs、La、Pb、Bi等が挙げられる。Examples include Cs, La, Pb, Bi, and the like.

°  本発明においては、Mのそれぞ、れ異なる2神以
−トの金属アセチルアセトンを用いる。 出発原料の好
ましい組み合せとしては、例えば、Fe ((、,11
7(h) 3 とSr (Cr、It、O□)2、Fe
 ((:511702) 3とBa(C,l、It、0
2)2、Fe ((:511702)3 とPb (C
611702) 2、などを用い、下記のような最終生
成物になるようにして、出発原料とする。
In the present invention, two different metal acetylacetones are used for each of M. A preferable combination of starting materials includes, for example, Fe ((,,11
7(h) 3 and Sr (Cr, It, O□)2, Fe
((:511702) 3 and Ba(C, l, It, 0
2) 2, Fe ((:511702)3 and Pb (C
611702) 2, etc., to obtain the final product as shown below, and use it as a starting material.

(a)M相フェライト i ) MA−F e 2oO,n+。(a) M-phase ferrite i) MA-F e 2oO, n+.

n:4.0〜6.0 MA:Ba、Sr、PbおよびCaの1種以上、 出発原料B a (C5H702)2、S r (C2
H502)2など ii)置換体フェライト (1)MA”tl−x)  −M8”、・F e 2n
O,n、。
n: 4.0 to 6.0 MA: one or more of Ba, Sr, Pb and Ca, starting materials B a (C5H702)2, S r (C2
H502)2 etc. ii) Substituted ferrite (1) MA"tl-x) -M8", ・F e 2n
O,n,.

X:0〜0.25 M、:Fe、Zn、Cu、Ni、Co等2価となりつる
金属の1種以上 (2)M A   ’  F  e  (2n−yl 
 ’  M c”fy/21・””(y/21・of3
n+11 MA −F e  (2n−yl  HM、”、・ O
(:ln+IIM A  ”  F e  f2n−y
l ”  M C’Z2y/31・Mr”tyy3+・
of3n+11などy : 0〜20/3 Mc 、 Mo 、 ME 、 MP  :前述した金
属のうちそれぞれのイオン価をとりつるものの1種以上 (3)(1)と(2)のうち2組以上を同時に組合せる
ことを目的物とした置換体 (b)w相フェライト i)MA” °M B”2F e ”、602゜ii)
置換体フェライト MA”+・(MB”11−0M C”□)2・Fe3+
+6027 MA”  : B a ”、Sr”、Pb2◆およびC
a2+の1柿以上 MB” 、M(”: Fe”、Zn”、Cu ”、Ni
”、Co”等2価となりつる金属の1種以上 Z:0〜1 出発原料 Ba (Cs Ht 02)2、F  e 
  (CB、   Ht   02)3   、Z n
  (Cs  Ht  02)2  、Cu (Cs 
Ht 02)2等 これらの出発原料の混合比は、上記のM相フェライトや
W相フェライト等の目的とする最終化学量論組成となる
ように調合される。
X: 0 to 0.25 M,: One or more divalent and vine metals such as Fe, Zn, Cu, Ni, Co, etc. (2) M A' Fe (2n-yl
'Mc"fy/21・""(y/21・of3
n+11 MA −F e (2n-yl HM,”,・O
(:ln+IIM A ” F e f2n-y
l ” M C'Z2y/31・Mr”tyy3+・
of3n+11, etc. y: 0 to 20/3 Mc, Mo, ME, MP: One or more of the above-mentioned metals with respective ionic valences (3) Two or more of (1) and (2) at the same time Substituted substance intended to be combined (b) W-phase ferrite i) MA" °M B"2F e ", 602゜ii)
Substituted ferrite MA”+・(MB”11-0M C”□)2・Fe3+
+6027 MA": B a ", Sr", Pb2◆ and C
A2+ 1 persimmon or more MB", M(": Fe", Zn", Cu", Ni
One or more divalent metals such as ", Co" Z: 0 to 1 Starting material Ba (Cs Ht 02) 2, Fe
(CB, Ht 02)3, Z n
(Cs Ht 02)2 , Cu (Cs
The mixing ratio of these starting materials, such as Ht 02) 2, is adjusted so as to provide the desired final stoichiometric composition of the above-mentioned M-phase ferrite, W-phase ferrite, etc.

このように所定量の原料を混合した後、溶媒としてアル
コール、特にエタノールを上記の金属アセチルアセトン
総量が0.01〜0.04mol/ffi程度となるよ
うに加える。 その後、エタノール沸統点で加熱還流を
約1時開栓度行う。 その後自然冷却し、1晩程度放置
し、アンモニア水と上記金属アセチルアセトン1mol
に対し約1.5Ilとなるように室温で添加する。
After mixing a predetermined amount of raw materials in this manner, alcohol, particularly ethanol, is added as a solvent so that the total amount of metal acetylacetone is about 0.01 to 0.04 mol/ffi. Thereafter, heating and refluxing is performed at the boiling point of ethanol for about 1 hour. After that, it was naturally cooled and left to stand for about one night, and aqueous ammonia and 1 mol of the above metal acetylacetone were added.
Add at room temperature so that the amount is about 1.5 Il.

そして、約2日間すなわち40〜48時間程度熟成させ
た後80〜100℃、約3時間加熱反応を行って加水分
解を終了させる。
Then, after aging for about 2 days, that is, about 40 to 48 hours, a heating reaction is carried out at 80 to 100° C. for about 3 hours to complete the hydrolysis.

その後、加水分解によって溶媒中に沈降した沈澱物を吸
引、濾過によって濾別し、乾燥する。 乾燥中に固まっ
たものを粉末状にほぐし、焼成試料とする。 通常、加
水分解生成物は、非晶質であり、熱処理(焼成)等によ
り結晶化させる必要がある。
Thereafter, the precipitate precipitated in the solvent by hydrolysis is separated by suction, filtration, and dried. The material that hardens during drying is loosened into powder and used as a fired sample. Usually, the hydrolysis product is amorphous and needs to be crystallized by heat treatment (calcination) or the like.

焼成は、通常大気中あるいはN2 +02混合ガスの酸
素分圧を調整した雰囲気中で行う。
Firing is usually carried out in the atmosphere or in an atmosphere in which the oxygen partial pressure of N2+02 mixed gas is adjusted.

酸素分圧を調整する場合、その分圧はP02/(P o
2+ P N2)で10−5から大気中における値程度
とすることが好ましい。
When adjusting the oxygen partial pressure, the partial pressure is P02/(P o
2+P N2) is preferably about 10-5 to the value in the atmosphere.

このような焼成雰囲気は、得ようとする所望のフェライ
ト組成に応じて適宜選定すべきであるか、例えばM相S
rフェライトの場合は大気中で行うのが好適であり、ま
たW相Srフェライトの場合は通常、雰囲気調整゛を要
しN2 +02混合ガスの酸素分圧を調整した雰囲気、
特にPO2/ (PO2+PN2 )=10−’〜大気
中の範囲で焼成することが好ましい。 しかしなから、
このものの2価の鉄をCu−Zn、M n −Z n等
で置換したものは大気中でも安定にW相ができる。 こ
のことは、例えばBaやpbのW相フェライトにおいて
も同様である。
Such a firing atmosphere should be appropriately selected depending on the desired ferrite composition to be obtained.
In the case of R-ferrite, it is preferable to carry out the process in the atmosphere, and in the case of W-phase Sr ferrite, it is usually necessary to carry out the process in an atmosphere in which the oxygen partial pressure of the N2+02 mixed gas is adjusted.
In particular, it is preferable to perform firing in the range of PO2/(PO2+PN2)=10-' to atmospheric air. However, because
When divalent iron is replaced with Cu-Zn, Mn-Zn, etc., a W phase can be formed stably even in the atmosphere. This also applies to W-phase ferrites such as Ba and Pb, for example.

焼成温度および時間も所望のフェライト組成に応じて適
宜選定され、例えばM相Srフェライトの場合は800
〜1300℃、好ましくは900〜1050℃、1〜2
時間程度、W相Srフェライトの場合は1200〜14
00℃、好ましくは1200〜1300℃、3〜5時間
である。 そして、この焼成温度の適否は磁気特性特に
、飽和磁化、残留磁化、保磁力等に影習を及ぼす。 な
お、W相の場合は大気中で800〜1200℃、1〜2
時間の仮焼を焼成面に行うことか好ましい。
The firing temperature and time are also appropriately selected depending on the desired ferrite composition. For example, in the case of M phase Sr ferrite, 800
-1300°C, preferably 900-1050°C, 1-2
approximately 1200 to 14 hours for W-phase Sr ferrite
00°C, preferably 1200-1300°C, for 3-5 hours. The suitability of this firing temperature affects magnetic properties, particularly saturation magnetization, residual magnetization, coercive force, and the like. In addition, in the case of W phase, 800 to 1200℃ in the atmosphere, 1 to 2
It is preferable to perform calcination for a period of time on the firing surface.

得られる粉末の粒径は500人〜数F−−程度であり、
例えば、M相Srフェライトの場合は500人〜100
0人程度である。
The particle size of the obtained powder is about 500 to several F.
For example, in the case of M-phase Sr ferrite, 500 to 100
Approximately 0 people.

以上、詳述してきた本発明の製造方法によって得られる
フェライト粉末は、従来の製造方法によるとそわと比へ
て磁気特性に優れる。
The ferrite powder obtained by the manufacturing method of the present invention, which has been described in detail above, has excellent magnetic properties compared to that obtained by conventional manufacturing methods.

この場合、M相では、MO(F C203) 9(Mは
前記のものと同義であり、9は4〜6)、W相ではMO
(F C203) p  (Mは前記のものと同義であ
り、Pは9)の組成を有することかX線回折から確認さ
れるものである。
In this case, in the M phase, MO(FC203) 9 (M has the same meaning as above, 9 is 4 to 6), and in the W phase, MO
(F C203) p (M has the same meaning as above, P is 9) as confirmed by X-ray diffraction.

なお、本発明においては、フェライトの金属Mの一部を
Fe、Sr、Ba、Al1、Li、Be、B、Na、M
g、Si、に、Ca、Sc、Ti、■、C「、Mn% 
Co、Ni。
In addition, in the present invention, a part of the metal M of the ferrite is Fe, Sr, Ba, Al1, Li, Be, B, Na, M
g, Si, Ca, Sc, Ti, ■, C", Mn%
Co, Ni.

Cu、Zn、Ga、Ge、As、Se、Rb。Cu, Zn, Ga, Ge, As, Se, Rb.

Y、Zr、Nb、Mo、Cd、In、Sn、Sb、Te
、Cs、La、Pb、Bi等で前記したように置換させ
たり、過剰量の添加物として添加してもよい。
Y, Zr, Nb, Mo, Cd, In, Sn, Sb, Te
, Cs, La, Pb, Bi, etc. as described above, or may be added as an excess amount of additives.

置換体の作成は、前記したように、出発原料としてこれ
らの元素を含有する金属アセチルアセトン化合物で所定
喰混合すればよい。 あるいは焼成時にこれらの元素を
含有する酸化物、炭酸化合物、ハロゲン化合物等を所定
量添加混合してもよい。
As described above, the substituted product may be prepared by mixing a metal acetylacetone compound containing these elements in a predetermined amount as a starting material. Alternatively, a predetermined amount of an oxide, carbonate compound, halogen compound, etc. containing these elements may be added and mixed during firing.

■ 発明の具体的作用効果 本発明によれば、出発原料として2種以トの金属アセチ
ルアセトンを用い、加水分解によってフェライト粉末の
製造を行うものである。
(2) Specific effects of the invention According to the invention, ferrite powder is produced by hydrolysis using two or more metal acetylacetones as starting materials.

このようにして得られたフェライト粉末は磁気特性にき
わめて優わた効果を有する。
The ferrite powder thus obtained has extremely superior magnetic properties.

■ 発明の具体的実施例 以下、本発明の具体的実施例を示し、本発明をさらに詳
細に説明する。
(2) Specific Examples of the Invention Hereinafter, specific examples of the present invention will be shown and the present invention will be explained in more detail.

[実施例1] S r (Cs H702)2およびFe(C5H70
2) :llを最終組成がM相S「フェライトであるS
 ro (F C203) C4になるように配合し、
こわにエタノールを700cc加え、エタノール沸挫点
で加熱還流を行った。  1時間加熱還流した後、その
まま冷却し、約24時間後にアンモニア水200 cc
を室温で添加した。
[Example 1] S r (Cs H702)2 and Fe(C5H70
2) :ll is the final composition of M phase S "S which is ferrite"
ro (F C203) Blend to become C4,
700 cc of ethanol was added to the mixture, and the mixture was heated to reflux at the boiling point of ethanol. After heating under reflux for 1 hour, it was cooled as it was, and after about 24 hours, 200 cc of ammonia water was added.
was added at room temperature.

2日間熟成し80℃で3時間加熱反応を行って加水分解
を終了させた。 その後、加水分解によって溶媒に沈降
した沈澱物を吸引濾過によって濾別し、乾燥させた。
After aging for 2 days, a heating reaction was carried out at 80° C. for 3 hours to complete the hydrolysis. Thereafter, the precipitate precipitated in the solvent by hydrolysis was filtered off by suction filtration and dried.

そして、乾燥中に固まったものを粉末状にほぐして、焼
成試料とし大気中で焼成した。 焼成温度は900℃で
行った。 焼成時間は1時間とした。
Then, what solidified during drying was loosened into powder and fired in the air to make a fired sample. The firing temperature was 900°C. The firing time was 1 hour.

なおフェライト粉末の結晶化はX線回折によって確認を
行った。 X線回折の結果を第1図に示す。 第1図の
結果からM相の単一相であることかわかる。 このよう
にして得られた本発明サンプルの磁気特性は、as=6
2.7emu/g、or=35.1  emu/g、1
Hc==67000eてあった。
The crystallization of the ferrite powder was confirmed by X-ray diffraction. The results of X-ray diffraction are shown in FIG. From the results shown in FIG. 1, it can be seen that it is a single M phase. The magnetic properties of the sample of the present invention thus obtained are as=6
2.7 emu/g, or=35.1 emu/g, 1
Hc==67000e.

ざらに磁気特性の比較のために、下記比較サンプル1〜
3を作製した。
For a rough comparison of magnetic properties, the following comparison samples 1~
3 was produced.

(比較サンプル1の作製) S r (OC2H5)2とFe(C5−HyO2)3
を最終組成かS r F e 1201gになるように
配合し、こわにエタノールを加え、窒素気流中で約70
℃、1時間還流後、つぎにアンモニア水を加えて1時間
熟成して沈澱を生成し、微粉末を得た後、これを900
℃で加熱処理して比較サンプル1を作製した。  この
ものについて、上記の磁気特性をff111定したとこ
ろσ5=62.2 emu/g、 or=33〜34e
mu/g、1Hc=5500 0eであった。
(Preparation of comparative sample 1) S r (OC2H5)2 and Fe(C5-HyO2)3
were blended to give a final composition of 1201 g of S r Fe, ethanol was added to the mixture, and the mixture was heated to about 70 g in a nitrogen stream.
After refluxing at ℃ for 1 hour, ammonia water was added and aged for 1 hour to form a precipitate. After obtaining a fine powder, this was heated to 900℃.
Comparative sample 1 was prepared by heat treatment at ℃. Regarding this product, when the above magnetic properties were determined by ff111, σ5 = 62.2 emu/g, or = 33~34e
mu/g, 1Hc=5500 Oe.

(比較サンプル2の作製) S r (OC2H5) 2とFe (C3HyO)3
を最終組成かS r F e 12019になるように
配合し、これを上記比較サンプル1の製法に準じて比較
サンプル2を作製した。
(Preparation of comparative sample 2) S r (OC2H5) 2 and Fe (C3HyO)3
were blended to have a final composition of S r Fe 12019, and Comparative Sample 2 was produced according to the manufacturing method of Comparative Sample 1 above.

このものの磁気時PLはa s = 57emu 7g
、or=30emu 7g、1Hc=5000 0eで
あった。
The magnetic PL of this item is a s = 57emu 7g
, or=30emu 7g, 1Hc=50000e.

(比較サンプル3の製作) S r (OC2H5)とFe (OC2Hs )3を
用い、上記比較サンプル1の製法に準じて比較サンプル
2を作製した。
(Production of Comparative Sample 3) Comparative Sample 2 was produced according to the method for producing Comparative Sample 1 above using S r (OC2H5) and Fe (OC2Hs )3.

このものの磁気特性はσs = 63 、 Oemu/
k、or=31emu 7g、1Hc=48000eで
あった。
The magnetic properties of this material are σs = 63, Oemu/
k, or=31emu 7g, 1Hc=48000e.

[実施例2コ 実施例1において、焼成温度を900〜1250℃にか
えて実験を行った。
[Example 2] In Example 1, an experiment was conducted by changing the firing temperature to 900 to 1250°C.

X線回折により、S r F e 1201g相(M相
)およびαFe2O3相の比率を測定した。 結果を第
2図に示した。
The ratio of the S r Fe 1201g phase (M phase) and the αFe2O3 phase was measured by X-ray diffraction. The results are shown in Figure 2.

また、iHc、O5、σrと焼成温度Tとの関係を第3
図に示した。
In addition, the relationship between iHc, O5, σr and firing temperature T is
Shown in the figure.

この結果から、900〜1−050℃にて、磁気特性の
良好なM相か生成されていることがわかる。
From this result, it can be seen that an M phase with good magnetic properties is generated at a temperature of 900 to 1-050°C.

[実施例3コ 実hK例1において、焼成温度および配合比nをかえX
線回折によりM相の生成を調べた。
[Example 3] In Example 1, the firing temperature and compounding ratio n were changed.
The formation of M phase was investigated by line diffraction.

結果を第4図に示した。The results are shown in Figure 4.

この結果より、850〜1200℃にてM相か生成され
ることかわかる。
From this result, it can be seen that the M phase is generated at 850 to 1200°C.

[実h’ti例4コ ざらにM相バリウムフェライトB a F e 120
19について上記、実施例1と同様な方法て本発明のも
のと、比較サンプルを作製し、比較実験したところ、上
記M相ストロンチウムフェライトの場合と同様に保磁力
が向上することか確認された。
[Actual example 4 M-phase barium ferrite B a Fe 120
Regarding No. 19, a comparative sample was prepared with that of the present invention using the same method as in Example 1, and a comparative experiment was conducted, and it was confirmed that the coercive force was improved in the same way as in the case of the M-phase strontium ferrite.

[実施例5コ 実施例1において、焼成温度を1300℃、5時間雰囲
気圧力PO2/(PO2+PN2 )= 10−3の条
件で焼成し、サンプルを作製した。
[Example 5] In Example 1, a sample was prepared by firing at a firing temperature of 1300° C. for 5 hours at an atmospheric pressure of PO2/(PO2+PN2)=10-3.

このものについて、第5図に示すようにX線回折を行っ
たところW相単一相の生成が確認された。 このサンプ
ルの磁気特性はσS=70emu/g、  i Hc 
= 2000 eであった。
When this material was subjected to X-ray diffraction as shown in FIG. 5, the formation of a single W phase was confirmed. The magnetic properties of this sample are σS=70emu/g, i Hc
= 2000 e.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第5図は、それぞれ本発明サンプルのx、
vI!回折チャートグラフである。 第2図はS r F e 17019相とαFe2O3
相の比率と温度との関係を示すグラフである。 第3図はiHc、σS、σrと焼成温度Tとの関係を示
すグラフである。 第4図はM相の焼成温度および配合比との関係を示すグ
ラフである。 出願人  ディーディーケイ株式会社 代理人  弁理上 石 井 陽 − FIG、l 5rQ5.4FezO3 900°Cx1HIN AIR 2e(’) 5r05.4FezO3 7’(C) FIG、4 M5aSrOn FerO3
FIG. 1 and FIG. 5 respectively show x and x of the present invention sample.
vI! This is a diffraction chart graph. Figure 2 shows the S r Fe 17019 phase and αFe2O3
It is a graph showing the relationship between phase ratio and temperature. FIG. 3 is a graph showing the relationship between iHc, σS, σr and firing temperature T. FIG. 4 is a graph showing the relationship between the firing temperature and the blending ratio of the M phase. Applicant DK Co., Ltd. Agent Attorney: Yo Ishii - FIG, l 5rQ5.4FezO3 900°Cx1HIN AIR 2e(') 5r05.4FezO3 7'(C) FIG, 4 M5aSrOn FerO3

Claims (1)

【特許請求の範囲】[Claims] (1)金属アセチルアセトンの2種以上を混合し、加水
分解し、次いで焼成することを特徴とするフェライト粉
末の製造方法。
(1) A method for producing ferrite powder, which comprises mixing two or more metal acetylacetones, hydrolyzing the mixture, and then calcining the mixture.
JP61169619A 1986-07-18 1986-07-18 Production of ferrite powder Pending JPS6325224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61169619A JPS6325224A (en) 1986-07-18 1986-07-18 Production of ferrite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61169619A JPS6325224A (en) 1986-07-18 1986-07-18 Production of ferrite powder

Publications (1)

Publication Number Publication Date
JPS6325224A true JPS6325224A (en) 1988-02-02

Family

ID=15889856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61169619A Pending JPS6325224A (en) 1986-07-18 1986-07-18 Production of ferrite powder

Country Status (1)

Country Link
JP (1) JPS6325224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134722A (en) * 1988-11-16 1990-05-23 Hitachi Maxell Ltd Magnetic recording medium
CN111548618A (en) * 2020-06-29 2020-08-18 江西伟普科技有限公司 Metal-loaded carbon/polymer-based electromagnetic shielding material and preparation method thereof
CN111592744A (en) * 2020-06-29 2020-08-28 江西伟普科技有限公司 Metal-loaded carbon/polymer-based electromagnetic shielding material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134722A (en) * 1988-11-16 1990-05-23 Hitachi Maxell Ltd Magnetic recording medium
CN111548618A (en) * 2020-06-29 2020-08-18 江西伟普科技有限公司 Metal-loaded carbon/polymer-based electromagnetic shielding material and preparation method thereof
CN111592744A (en) * 2020-06-29 2020-08-28 江西伟普科技有限公司 Metal-loaded carbon/polymer-based electromagnetic shielding material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5142354B2 (en) ε-Fe2O3 crystal manufacturing method
JPS61275108A (en) Preparation of powder of dielectric substance
EP0127427B1 (en) Production of microcrystralline ferrimagnetic spinels
CA1207981A (en) Production of fine ferrimagnetic spinels
JPS6325224A (en) Production of ferrite powder
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JP2723176B2 (en) Method for producing LiFeO2 powder and heat-resistant yellow pigment comprising the powder
JPH027906B2 (en)
US5487878A (en) Method for preparing perpendicularly magnetizable material usable on magnetic recording media
US3461072A (en) Ferrimagnetic material for use at frequencies higher than 50 mc./sec. having reduced loss factor and higher quality factor
Pathak et al. A Versatile Coprecipitation Route for the Preparation of Mixed Oxide Powders
US5626788A (en) Production of magnetic oxide powder
JPH10144513A (en) Manufacture of oriented ferrite sintered body
JPH06654B2 (en) M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder
JPH013019A (en) Method for producing perovskite ceramic fine powder
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPS63310730A (en) Hexagonal ferrite magnetic powder and its production
WO2010064686A1 (en) Dielectric compound and manufacturing method thereof
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPH01176206A (en) Production of precursor of compound oxide
JPH02289429A (en) Production of iron-based multiple oxide
JPS63307109A (en) Method for synthesizing piezoelectric and dielectric ceramics powder
JPH01122907A (en) Production of perovskite oxide powder
JPS63282118A (en) Production of superconducting material
JPS63288912A (en) Production of inorganic oxide superconductor