JPS63288912A - Production of inorganic oxide superconductor - Google Patents

Production of inorganic oxide superconductor

Info

Publication number
JPS63288912A
JPS63288912A JP62123850A JP12385087A JPS63288912A JP S63288912 A JPS63288912 A JP S63288912A JP 62123850 A JP62123850 A JP 62123850A JP 12385087 A JP12385087 A JP 12385087A JP S63288912 A JPS63288912 A JP S63288912A
Authority
JP
Japan
Prior art keywords
solid
oxide superconductor
stage
temperature
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62123850A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawagoe
川越 博
Yuichi Kamo
友一 加茂
Teruo Kumagai
熊谷 輝夫
Hisao Yamashita
寿生 山下
Shinpei Matsuda
松田 臣平
Takao Hishinuma
孝夫 菱沼
Katsuzo Aihara
勝蔵 相原
Kazuhisa Higashiyama
和寿 東山
Hideo Okada
秀夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62123850A priority Critical patent/JPS63288912A/en
Publication of JPS63288912A publication Critical patent/JPS63288912A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Abstract

PURPOSE:To produce a superconductor which functions at above the b.p. of liquid H2 and has a high critical current density by drying coprecipitate obtained from aq. soln. of water-soluble salts of a raw material compsn. then calcining in two stages. CONSTITUTION:Aq. soln. of precipitant having >=9pH is added to aq. soln. of water-soluble salts contg. La, Cu, and >=one kind of alkaline earth element selected from Ba, Sr, and Ca. After precipitating hydroxides, hydrous oxides, oxalates, carbonates or a mixture thereof in the form of coprecipitate of said salts, a solid matter is obtd. by separating the solid from liquid. Then, the solid matter is dried and calcined at 700-950 deg.C, and molded, then calcined further at 800-1,200 deg.C in oxidizing atmosphere contg. O2. By this method, a high temp. superconductor expressed by the formula: (LaxAy)2CuO2 (wherein A is at least one kind selected from Ba, Sr, and Ca; x is 0.50-0.98; y is 0.5-0.02; z is an atomic ratio <=4) is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導材料の調製方法に係り、特に超電
動回転機、磁気浮上列車、MHD発電機。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for preparing oxide superconducting materials, particularly for superelectric rotating machines, magnetic levitation trains, and MHD generators.

磁気遮へい装置、磁気共鳴イメージング装置などの超電
導応用装置や、ジョセフソン素子などのエレクトロニク
スデバイスに好適な超電導材料の調製方法に関する。
The present invention relates to a method for preparing superconducting materials suitable for superconducting application devices such as magnetic shielding devices and magnetic resonance imaging devices, and electronic devices such as Josephson elements.

〔従来の技術〕[Conventional technology]

超電導現象を応用した技術は、超電導マグネツトの実現
以来、実用化開発が進められ、発電機。
Since the realization of superconducting magnets, technology that applies the superconducting phenomenon has been developed for practical use, and has been used in power generators.

回転機、核融合炉用磁性材料、磁気浮上列車、電力貯蔵
装置及びそれ等に付随する磁気遮へい材などのエネルギ
ー関連分野で進展を見せている。またジョセフソン素子
、デバイスの磁気シールド等のエレクトロニクス分野へ
の応用が期待されている。特にエネルギー関連装置に用
いる超電導体については、その使用条件や機能から特に
高い臨界温度、臨界磁場、臨界電流密度を有する超電導
体の出現が望まれている。従来は、金属型2合金型。
Progress is being made in energy-related fields such as rotating machines, magnetic materials for fusion reactors, magnetic levitation trains, power storage devices, and associated magnetic shielding materials. It is also expected to find applications in the electronics field, such as Josephson elements and magnetic shielding of devices. In particular, superconductors used in energy-related devices are desired to have particularly high critical temperatures, critical magnetic fields, and critical current densities due to their usage conditions and functions. Conventionally, there were two metal types and two alloy types.

金属間化合物、酸化物型など各種の超電導体が知られて
おり、例えば、バナジウムの臨界温度は5.3K 、ニ
オブは9.3K 、ニオブ・チタン合金は10K、ニオ
ブ3スズは19K、ビスマス酸鉛は12にであることが
知られている。酸化物型超電導材については、特開昭6
0−173885号に示されている。
Various types of superconductors such as intermetallic compounds and oxide types are known. For example, the critical temperature of vanadium is 5.3K, niobium is 9.3K, niobium-titanium alloy is 10K, niobium tritin is 19K, and bismuth acid. Lead is known to be 12%. Regarding oxide type superconducting materials, please refer to Japanese Unexamined Patent Publication No. 6
No. 0-173885.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の超電導材はいずれも臨界温度は低い。そのために
超電導状態を実現するためには、液体へリウムを冷媒と
して冷却する必要があり、この温度域に於いては材料の
比熱が小さいために、高価なヘリウムを大量に必要とし
、さらには大容量の冷凍機などを必要とする。この結果
、超電導を応用したシステムは複雑になり、実用上国是
な問題が多く、これまでは限定された用途でのみ開発さ
れて来た。
All conventional superconducting materials have low critical temperatures. Therefore, in order to achieve a superconducting state, it is necessary to cool the material with liquid helium as a refrigerant.In this temperature range, the specific heat of the material is small, so a large amount of expensive helium is required, and furthermore, Requires a large-capacity refrigerator, etc. As a result, systems that apply superconductivity have become complex and have many practical problems that are a national policy, and so far they have only been developed for limited applications.

本発明は上記した従来技術の問題点を解決し、液体水素
の沸点以上の温度で作動し、かつ臨界電流密度の高い超
電導体を提供することを目的とした。
An object of the present invention is to solve the problems of the prior art described above, and to provide a superconductor that operates at a temperature equal to or higher than the boiling point of liquid hydrogen and has a high critical current density.

〔問題点を解決するための手段〕[Means for solving problems]

上記した本発明の目的を達成すべ〈発明者らは、鋭意研
究を重ねた結果、以下の発明に至った。即ち、ランタン
と銅を含み、バリウム、ストロンチウム、カルシウムか
ら選ばれた1種以上のアルカリ土類元素を含む固形物を
800〜1200℃の温度で焼成する事により、得られ
た酸化物は絶対温度37にで超電導を示すことを見出し
た。さら詳述すると、この酸化物超電導体は、上記した
組成物成分の水溶性塩類の水溶液から、水酸化物。
To achieve the above-mentioned object of the present invention, the inventors have conducted extensive research and have arrived at the following invention. That is, by firing a solid material containing lanthanum and copper and one or more alkaline earth elements selected from barium, strontium, and calcium at a temperature of 800 to 1200°C, the obtained oxide has an absolute temperature It was discovered that 37 showed superconductivity. More specifically, this oxide superconductor is produced from a hydroxide from an aqueous solution of water-soluble salts of the above composition components.

含水酸化物、蓚酸塩、炭酸塩あるいはこれ等の混合形態
から成る共沈物を生成し、この沈澱を固液分離した後に
、固形物を乾燥および/あるいは700〜950℃の温
度で第1段の焼成を行い。
A coprecipitate consisting of hydrous oxide, oxalate, carbonate, or a mixture thereof is produced, and after solid-liquid separation of this precipitate, the solid is dried and/or subjected to a first stage at a temperature of 700 to 950°C. Perform firing.

この後に粉砕し、所定の形状に成形するか、もしくは粉
体のまま800〜1200℃の温度で第2段の焼成を行
うことにより、高温で超電導を示す物質を合成する事が
できる。出発原料は、上記した組成成分の水溶性塩類で
あれば、いかなる形態の化合物であってもよく例えば、
硝酸塩、硫酸塩。
Thereafter, it is possible to synthesize a substance that exhibits superconductivity at high temperatures by pulverizing the powder and molding it into a predetermined shape, or by performing a second firing at a temperature of 800 to 1200° C. as a powder. The starting materials may be compounds in any form as long as they are water-soluble salts of the above-mentioned composition components, for example,
Nitrates, sulfates.

ハロゲン化物、あるいはアンミン錯体や酢酸塩などの有
機酸塩類などをあげることができるが、特にこれ等に限
定されない。しかしながら、酸化物超電導体を化学量論
的に可能な限り純砕な形で得ようとする場合に、硝酸塩
やアンミン錯体、酢酸塩等を用いることは好ましい、こ
れ等の原料を固形物として沈澱させるためには、炭酸、
炭酸アンモン、蓚酸あるいは蓚酸アンモンの水溶液を用
いると良い。ここで沈殿を析出させるに当り、ランタン
は比較的高水素イオン濃度で沈殿するが、バリウム、ス
トロンチウム、カルシウム等はアルカリ性でないと沈殿
しない、この場合にアルカリ性溶液とするためにアルカ
リ金属水酸化物水溶液を用いると、アルカリ金属を不純
物として含有するので好ましい方法ではない。またアン
モニアでアルカリ度を調整しようとすると銅が定量的に
沈殿しないので、アルカリ度の調整には、第3級アミン
を用いると良い、特にトリエチルアミンは4分解温度も
低く、調整に好ましい。沈殿反応を行うには、原料塩類
水溶液に沈殿剤水溶液を添加しても、あるいはその逆で
あってもかまわないが、得ら塾る固形物の均質性の点か
らは、アルカリ度を所定の値に調整した沈殿剤水溶液に
、原料塩類水溶液を攪拌しながら添加する方法は特に好
ましい。
Examples include halides and organic acid salts such as ammine complexes and acetates, but are not particularly limited to these. However, when trying to obtain an oxide superconductor in the purest possible stoichiometric form, it is preferable to use nitrates, ammine complexes, acetates, etc., and these raw materials can be precipitated as solids. In order to make carbonic acid,
It is preferable to use ammonium carbonate, oxalic acid, or an aqueous solution of ammonium oxalate. When precipitating here, lanthanum precipitates at a relatively high hydrogen ion concentration, but barium, strontium, calcium, etc. do not precipitate unless it is alkaline.In this case, an aqueous alkali metal hydroxide solution is used to make an alkaline solution. is not a preferred method because it contains alkali metals as impurities. Further, if the alkalinity is adjusted with ammonia, copper will not precipitate quantitatively, so it is better to use a tertiary amine to adjust the alkalinity. In particular, triethylamine has a low 4-decomposition temperature and is preferred for adjustment. To carry out the precipitation reaction, an aqueous precipitant solution may be added to the aqueous raw material salt solution, or vice versa, but from the viewpoint of homogeneity of the resulting solid, the alkalinity must be maintained at a specified level. Particularly preferred is a method in which the raw material salt aqueous solution is added to the precipitant aqueous solution adjusted to a certain value while stirring.

沈殿剤溶液のアルカリ度は、この時pH9以上に調整さ
れていれば充分である。得られた固形分スラリの固液分
離はろ適法、沈降分煎法などとの様な方法を用いてもよ
いが、得られた固形分を水洗する事は、アルカリ土類の
溶出を招くので好ましくない。得られたケーキ状固形物
は乾燥後焼成して反応させるが、その温度は800〜1
200℃の温度領域で行う。800℃以下では超電導性
を、示す物質が生成せず、また1200℃以上では、超
電導性を示す物質が分解したり、相変化を起すので好ま
しくない。またこの焼成反応に先立って、700〜95
0℃で共沈物を予め熱処理をしておくことは均一な超電
導体を得るには好ましい方法であり、また800〜12
oO℃の焼成反応も何段かに分けて、易成と焼成品の粉
砕を行う事は好ましい。焼成時には超電導体を生成する
反応が進行するが、この反応に先立っであるいは併発的
にアルカリ土類金属化合物が溶融塩状態となるので。
It is sufficient that the alkalinity of the precipitant solution is adjusted to pH 9 or higher at this time. The solid-liquid separation of the obtained solid content slurry may be carried out by methods such as filtration method or sedimentation separation method, but it is preferable to wash the obtained solid content with water as this will lead to the elution of alkaline earth elements. do not have. The resulting cake-like solid is dried and then fired to react, at a temperature of 800 to 1
It is carried out in a temperature range of 200°C. If the temperature is below 800°C, no substance exhibiting superconductivity will be produced, and if the temperature is above 1200°C, the substance exhibiting superconductivity will decompose or undergo a phase change, which is not preferable. Also, prior to this firing reaction, 700 to 95
Preheating the coprecipitate at 0°C is a preferred method to obtain a uniform superconductor;
It is preferable to divide the firing reaction at oO°C into several stages to carry out easy formation and pulverization of the fired product. During firing, a reaction that produces a superconductor progresses, but the alkaline earth metal compound becomes a molten salt prior to or concurrently with this reaction.

焼成反応容器あるいは基板はこれ等の溶融塩と反応しな
いもの1例えば、磁性アルミナ、白金、金などのルツボ
や板、あるいは本発明になる超電導体板や粉末上に乗せ
る方法をとることが好ましい。
The firing reaction vessel or substrate is preferably placed on a material that does not react with these molten salts, such as a crucible or plate made of magnetic alumina, platinum, or gold, or a superconductor plate or powder according to the present invention.

焼成雰囲気は酸素ガスを含む酸化性雰囲気が好ましいが
、特に成形体を焼成する際は高圧の酸素雰囲気は特に好
ましい。
The firing atmosphere is preferably an oxidizing atmosphere containing oxygen gas, and a high-pressure oxygen atmosphere is particularly preferred when firing a compact.

超電導体を成形する方法は通常一般に用いられる成形法
を用いて所定の任意の形に成形することが出来る。例え
ば、プレス成形、静水圧成形、ホットプレスの方法や、
スラリー成形として鋳型成形やドクターブレード法によ
るグリーンシート成形あるいは、粉体をペースト状にし
て塗布成形する方法、スクリーン印刷する方法、または
スラリーをスプレー塗布する方法などをあげることが出
来る。また線状の材料を成形するにあたり、金属パイプ
に粉体を充填してパイプを塑性変形させて細線にする方
法なども適応できる。これ等の成形に先立って、特に限
定的ではないが、超電導粉体の焼成反応を完結させてお
くことは好ましい方法である。
A superconductor can be molded into any predetermined shape using a commonly used molding method. For example, press molding, isostatic pressing, hot pressing methods,
Examples of slurry molding include mold molding or green sheet molding using a doctor blade method, a method of coating and molding powder into a paste, a method of screen printing, and a method of spray coating a slurry. In addition, when forming wire-shaped materials, methods such as filling a metal pipe with powder and plastically deforming the pipe to form a thin wire can be applied. Although not particularly limited, it is a preferable method to complete the firing reaction of the superconducting powder prior to these moldings.

〔作用〕[Effect]

本発明で開示したランタン、銅と、バリウム。 Lanthanum, copper, and barium disclosed in the present invention.

ストロンチウム、カルシウムから選ばれた一種以上のア
ルカリ土類元素を含む、800〜1200℃で焼成され
た酸化物は1層状ペロブスカイト型の結晶構造を有し、
この物質は、50°に以下で、完全反磁性を示し、電気
抵抗が零となるいわゆる超電導性を示す。特にこの酸化
物を合成するに当り、共沈法などの先に述べた湿式調製
法を採用する事により、原料成分が超微粒子状に均一に
混合されているために、比較的容易に焼成反応によって
超電導化合物を合成することが出−来、高い臨界温度を
示す超電導体を合成することが出来、また成形法では、
プレス成形、ホットプレス成形やその他の高密度化に有
効な成形法を採用することにより臨界電流密度の大きい
超電導体が得られる。
The oxide containing one or more alkaline earth elements selected from strontium and calcium and calcined at 800 to 1200°C has a single-layer perovskite crystal structure,
This material exhibits complete diamagnetic properties at an angle of 50 degrees or less, and exhibits so-called superconductivity in which the electrical resistance becomes zero. In particular, when synthesizing this oxide, by adopting the above-mentioned wet preparation method such as coprecipitation method, the raw ingredients are uniformly mixed in the form of ultrafine particles, so the calcination reaction is relatively easy. It is possible to synthesize superconducting compounds by using the method, and it is possible to synthesize superconductors that exhibit a high critical temperature.
A superconductor with a high critical current density can be obtained by using press molding, hot press molding, or other molding methods effective for increasing density.

本発明の超電導体の真密度は不明であるが、成形体の見
掛は密度を5.0g/aI?以上にすることにより臨界
電流密度を大きくすることが出来る。
Although the true density of the superconductor of the present invention is unknown, the apparent density of the molded body is 5.0 g/aI? By doing so, the critical current density can be increased.

〔実施例〕〔Example〕

以下に本発明の実施例をもって、さらに詳しく説明する
が、本発明は以下の実施例にのみ限定されるものではな
い。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited only to the following Examples.

〈実施例1〉 硝酸ランタン(高純度化学製)sogと硝酸ストロンチ
ウム(高純度化学製)4.2g  を2Qの水溶液とし
、これをA液とする0次に炭酸アンモニウム(和光純薬
11j)150gをIQの水溶液とし、これをB液とす
る。A液にB液をマイクロチューブポンプでiff/h
の速度で注入し、A液を攪拌しながら、ランタンとスト
ロンチウムの共沈物を生成する。得られたスラリーを4
Gガラスフイルタで、ろ過分離し、ケーキ状固形物を分
離回収する。この固形物を拙かい器にとり、硝酸銅(和
光純薬製)24.2g  を50mflの水溶液とし、
これを上記で得られた固形物に添加し、加熱摺かいして
、濃縮したあと、この固形物を120℃で5時間乾燥す
る。乾燥した固形物を微細に粉砕し、800℃で3時間
焼成した後に、これを冷却して粉砕する。この粉末を磁
性アルミナルツボにとって900℃で4時間焼成して、
これを粉砕する。この工程を2回くり返した後に、この
粉砕を950℃で20時間焼成する。得られた焼成物を
解砕する。この粉末5gをとり40m径の金型でプレス
して円板状試料を作成し、950℃で5時間焼成する。
<Example 1> A 2Q aqueous solution of lanthanum nitrate (manufactured by Kojundo Kagaku) sog and 4.2 g of strontium nitrate (manufactured by Kojundo Kagaku), and 150 g of zero-order ammonium carbonate (Wako Pure Chemical Industries, Ltd. 11j) using this as solution A. This is an aqueous solution of IQ, and this is called a B solution. Add liquid B to liquid A using a microtube pump if/h
While stirring the solution A, a coprecipitate of lanthanum and strontium is produced. The obtained slurry is
Filter and separate using a G glass filter to separate and collect cake-like solids. This solid substance was placed in a clumsy container, and 24.2 g of copper nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) was made into an aqueous solution of 50 mfl.
This is added to the solid obtained above, heated and rubbed, concentrated, and then the solid is dried at 120° C. for 5 hours. The dried solid is finely ground and calcined at 800° C. for 3 hours, then cooled and ground. This powder was placed in a magnetic alumina crucible and fired at 900°C for 4 hours.
Crush this. After repeating this process twice, the pulverized product is calcined at 950° C. for 20 hours. The obtained fired product is crushed. 5 g of this powder is taken and pressed with a 40 m diameter mold to create a disk-shaped sample, which is then fired at 950° C. for 5 hours.

得られた焼成体をIXIX15nnの柱状試験片を切り
出す。この試料を液体ヘリウム中に投入してインダクタ
ンスを連続的に測定して、温度−インダクタンス曲線を
得る。その結果。
A columnar test piece of IXIX 15 nn was cut out from the obtained fired body. This sample is placed in liquid helium and the inductance is continuously measured to obtain a temperature-inductance curve. the result.

インダクタンスは、40にで急激に変化を始め、35に
で完全反磁性を示した。さらにこの試料を用いて、上記
と同様の方法で試料の温度を低下させながら、四端子法
で抵抗を測定した。測定は0.1A/aJの条件で実施
した。得られた温度・抵抗曲線から転移開始温度は40
.5にで、38にで抵抗零になり超電導状態に入ること
が確認された。
The inductance began to change rapidly at 40 and showed complete diamagnetism at 35. Furthermore, using this sample, the resistance was measured by the four-terminal method while lowering the temperature of the sample in the same manner as above. The measurement was carried out under the condition of 0.1 A/aJ. From the obtained temperature/resistance curve, the transition starting temperature is 40
.. It was confirmed that the resistance became zero at 5 and 38, and the superconducting state entered.

〈実施例2〉 硝酸ランタン(高純度化学製)sogと硝酸ストロンチ
ウム(和光補薬製)4.2g  と硝酸銅(和光補薬製
)24.2g  を2Qの水溶液とし、これをA液とす
る。一方蓚酸(和光補薬製)126gとトリエチルアミ
ン(和光補薬製)149gをIQと水溶液として、上記
A液を攪拌しながら、これに112/hの速度でマイク
ロチューブポンプで滴下する。得られたスラリーを4G
のガラスフィルターを使用して固液分離して、固形分を
回収する。得られた固形物を120℃で乾燥したあと、
400℃で3時間加熱分解する。得られた固形物を微細
に粉砕して、これを磁性アルミナルツボにとり、800
℃で3時間焼成する。得られた焼成物を微細に粉砕し9
00℃を3時間焼成する工程を3回くり返す。こうして
得られた粉末を再度950℃で20時間焼成した粉末を
得て、この粉末5gを40nn径の金型でプレス成形し
て、円板状試験片として、これを970℃で2時間焼成
する。得られた焼結体から、ダイヤモンドカッターを用
いてlXlX15naの柱状試料を切り出して、実施例
第1の方法で、温度・インダクタンス曲線と温度・抵抗
曲線を求める。インダクタンス法による超電導状態開始
温度は40にであり、36にで完全反磁性となった。ま
た抵抗法ではそれぞれ、40.5K 、38にであった
<Example 2> Make a 2Q aqueous solution of lanthanum nitrate (manufactured by Kojundo Kagaku) sog, 4.2 g of strontium nitrate (manufactured by Wako Saiyaku), and 24.2 g of copper nitrate (manufactured by Wako Saiyaku), and use this as solution A. . On the other hand, an aqueous solution of 126 g of oxalic acid (manufactured by Wako Saiyaku) and 149 g of triethylamine (manufactured by Wako Saiyaku) and IQ are added dropwise to the above-mentioned Solution A at a rate of 112/h using a microtube pump while stirring. 4G of the obtained slurry
A glass filter is used to perform solid-liquid separation and the solid content is recovered. After drying the obtained solid at 120°C,
Heat decomposition at 400°C for 3 hours. The obtained solid was finely ground, placed in a magnetic alumina crucible, and heated to 800
Bake at ℃ for 3 hours. The obtained baked product is finely ground and 9
The process of baking at 00°C for 3 hours was repeated 3 times. The powder obtained in this way is fired again at 950°C for 20 hours to obtain a powder, and 5 g of this powder is press-molded in a mold with a diameter of 40 nn to form a disk-shaped test piece, which is then fired at 970°C for 2 hours. . A columnar sample of 1X1X15na is cut out from the obtained sintered body using a diamond cutter, and a temperature-inductance curve and a temperature-resistance curve are determined using the method of Example 1. The temperature at which the superconducting state begins according to the inductance method was 40, and it became completely diamagnetic at 36. In the resistance method, the results were 40.5K and 38K, respectively.

〈実施例3〉 酸化ランタン(高純度化学製) 29.3g ’e1m
かい器にとり、これに硝酸ストロンチウム(和光補薬製
)4.2gと硝酸銅(和光純薬@)24.2gを50+
nQの水溶液とし、これを上記酸化ランタンに添加して
福かいを0.5時間行う、得られたケーキ状固形物を1
20℃で乾燥後、400℃で3時間焼成して、含有する
硝酸塩の一部を分解する。得られた固形物を微細に粉砕
した後に、磁性アルミナルツボで800℃で4時間加熱
する。
<Example 3> Lanthanum oxide (Kojundo Kagaku) 29.3g 'e1m
Place in a paddle and add 4.2 g of strontium nitrate (Wako Hyakuyaku) and 24.2 g of copper nitrate (Wako Pure Chemical) to 50+
Make an aqueous solution of nQ, add this to the above lanthanum oxide, and carry out a lubrication process for 0.5 hours.
After drying at 20°C, it is calcined at 400°C for 3 hours to partially decompose the nitrates contained. The obtained solid material is finely pulverized and then heated in a magnetic alumina crucible at 800° C. for 4 hours.

得られた固形物を、微細に粉砕して、磁性アルミナルツ
ボで900℃で4時間焼成する工程を3回くり返す。そ
の後に固形物を粉砕して950℃で20時間焼成し、こ
れを冷却後に解砕する。得られた粉体5gをとりこれを
40+m径の金型でプレス成形し、この円板状試料を9
70℃で2時間焼成する。得られた焼結体から、lXl
X15naの柱状試料を切り出して、実施例第1の方法
と同様に、温度−インダクタンス曲線、温度−抵抗曲線
を得た。結果、超電導開始点は、それぞれ40K。
The process of pulverizing the obtained solid material finely and firing it in a magnetic alumina crucible at 900° C. for 4 hours is repeated three times. Thereafter, the solid material is crushed and calcined at 950° C. for 20 hours, and after cooling, it is crushed. Take 5 g of the obtained powder and press-form it in a mold with a diameter of 40+ m, and make this disc-shaped sample into 9 pieces.
Bake at 70°C for 2 hours. From the obtained sintered body, lXl
A columnar sample of X15na was cut out, and a temperature-inductance curve and a temperature-resistance curve were obtained in the same manner as in the first method of Example. As a result, the starting point of superconductivity is 40K.

40.5にであり、36,38.5にで超電導状態に入
った。
It entered the superconducting state at 40.5 and 36 and 38.5.

〈実施例4〉 実施例2と同様の方法で、ストロンチウム原料をそれぞ
れ、バリウム、カルシウムに替えた組成が、 (Lao
、eBao、t)zcuox*(Lao、eCao+t
)zCuOxで示される試料を作成した。ここでXは確
認されていない数字である。この試料について、実施例
第2の方法で超電導性を評価した。結果を第1表に実施
例2の結果を合せて示す。
<Example 4> In the same manner as in Example 2, the composition was obtained by replacing the strontium raw materials with barium and calcium, respectively.
, eBao, t)zcuox*(Lao, eCao+t
) A sample indicated by zCuOx was prepared. Here, X is an unconfirmed number. The superconductivity of this sample was evaluated by the method of Example 2. The results are shown in Table 1 together with the results of Example 2.

第  1  表 〈実施例5〉 酸化ランタン(高純度化学製)29.3g  と炭酸ス
トロンチウム(和光補薬製)3.0g  と酸化第二銅
(和光補薬製)8.0g  と摺かい機にとり、1時間
拙かい混合する。得られた混合粉を800℃で4時間焼
成した後に、これを粉砕し、磁性アルミナルツボで90
0℃で4時間焼成する工程を3回くり返す。得られた焼
成物を、さらに微小に粉砕して、950℃で20時間焼
成する。これを冷却後解砕して、粉体5gをとりこれを
40ffI!l径の金型でプレス成形し、円板状試料と
し、これを970’Cで2時間焼成する。得られた焼結
体を、ダイヤモンドカッターでlXlX15mmの柱状
試験片として、第2の実施例と同様の方法で測定した。
Table 1 <Example 5> 29.3 g of lanthanum oxide (manufactured by Kojundo Kagaku), 3.0 g of strontium carbonate (manufactured by Wako Saiyaku), and 8.0 g of cupric oxide (manufactured by Wako Saiyaku) were placed in a sanding machine. , mix roughly for 1 hour. After firing the obtained mixed powder at 800°C for 4 hours, it was crushed and heated to 90°C in a magnetic aluminium crucible.
The process of baking at 0°C for 4 hours was repeated three times. The obtained baked product is further finely ground and baked at 950° C. for 20 hours. After cooling it, crush it, take 5g of powder, and add 40ffI! The sample was press-molded using a mold with a diameter of 1 to obtain a disk-shaped sample, which was then fired at 970'C for 2 hours. The obtained sintered body was measured using a diamond cutter as a columnar test piece of 1×1×15 mm in the same manner as in the second example.

結果、インダクタンス法では、インダクタンス変化開始
温度37にで、25にで完全反磁性となった。一方抵抗
法では抵抗の急激な低下開始点38にで、30にで抵抗
零となった。
As a result, in the inductance method, the inductance change start temperature reached 37 and became completely diamagnetic at 25. On the other hand, in the resistance method, the resistance suddenly started to decrease at 38, and the resistance reached zero at 30.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ランタン、銅と、バリウA 。 According to the invention, lanthanum, copper and Baliu A.

ストロンチウム、カルシウムから選ばれた一種以上のア
ルカリ土類元素を含む組成体を焼成することにより、高
い温度で臨界点を有する酸化物超電導体を得ることがで
きる。特に、酸化物超電導体を合成するに当り、上記組
成の成分の水溶性塩溶液から、溶解度の小さい水酸化物
、含水酸化物。
By firing a composition containing one or more alkaline earth elements selected from strontium and calcium, an oxide superconductor having a critical point at a high temperature can be obtained. In particular, when synthesizing oxide superconductors, hydroxides and hydrated oxides with low solubility are used from water-soluble salt solutions of the components having the above composition.

Claims (1)

【特許請求の範囲】 1、ランタンと銅を含み、バリウム、ストロンチウム、
カルシウムから選ばれた1種以上のアルカリ土類元素を
含む酸化物超電導体の調製方法において、該組成物を該
成分の水溶性塩類の水溶液から、水酸化物、含水酸化物
、蓚酸塩、炭酸塩、あるいはこれ等の混合形態で上記塩
類の共沈体として沈澱させ、これを固液分離した後に固
形物を乾燥および、あるいは700〜950℃で第1段
の焼成した後に成形し、さらに800〜1200℃の温
度で第2段の焼成したことを特徴とする酸化物超電導体
の調製方法。 2、特許請求の範囲第1項において、 (La_xA_y)_2CuO_zの一般式において、
Aはバリウム、ストロンチウム、カルシウムの中から選
ばれた1種以上から成り、xが0.50〜0.98、y
が0.5〜0.02であり、zが4以下の原子比で構成
されることを特徴とする酸化物超電導体の調製方法。 3、特許請求の範囲第1項において、第1段および/あ
るいは第2段の焼成が、酸素ガス圧力が0.2〜30気
圧条件下でなされる事を特徴とする酸化物超電導体の調
製方法。 4、特許請求の範囲第1項において、成形し第2段の焼
成を終えた成形体の見掛け密度が5.0g/cm^3以
上であることを特徴とする酸化物超電導体の調製方法。
[Claims] 1. Contains lanthanum and copper, barium, strontium,
In a method for preparing an oxide superconductor containing one or more alkaline earth elements selected from calcium, the composition is prepared from an aqueous solution of water-soluble salts of the component, including hydroxide, hydrated oxide, oxalate, carbonate, etc. A salt or a mixed form of these salts is precipitated as a coprecipitate of the above salts, and after solid-liquid separation, the solid is dried and/or after a first stage of calcination at 700 to 950°C, it is shaped, and further A method for preparing an oxide superconductor, characterized in that a second stage of firing is performed at a temperature of ~1200°C. 2. In claim 1, in the general formula of (La_xA_y)_2CuO_z,
A consists of one or more selected from barium, strontium, and calcium, x is 0.50 to 0.98, and y
is 0.5 to 0.02, and z has an atomic ratio of 4 or less. 3. Preparation of an oxide superconductor according to claim 1, characterized in that the first stage and/or second stage calcination is performed at an oxygen gas pressure of 0.2 to 30 atm. Method. 4. The method for preparing an oxide superconductor according to claim 1, characterized in that the shaped body after the second stage of firing has an apparent density of 5.0 g/cm^3 or more.
JP62123850A 1987-05-22 1987-05-22 Production of inorganic oxide superconductor Pending JPS63288912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123850A JPS63288912A (en) 1987-05-22 1987-05-22 Production of inorganic oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123850A JPS63288912A (en) 1987-05-22 1987-05-22 Production of inorganic oxide superconductor

Publications (1)

Publication Number Publication Date
JPS63288912A true JPS63288912A (en) 1988-11-25

Family

ID=14870943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123850A Pending JPS63288912A (en) 1987-05-22 1987-05-22 Production of inorganic oxide superconductor

Country Status (1)

Country Link
JP (1) JPS63288912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061683A (en) * 1987-06-09 1991-10-29 E. I. Du Pont De Nemours And Company Process for making superconductors using barium hydroxide
WO1992005126A1 (en) * 1990-09-21 1992-04-02 International Superconductivity Technology Center Oxide superconductor and method of manufacturing said superconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061683A (en) * 1987-06-09 1991-10-29 E. I. Du Pont De Nemours And Company Process for making superconductors using barium hydroxide
WO1992005126A1 (en) * 1990-09-21 1992-04-02 International Superconductivity Technology Center Oxide superconductor and method of manufacturing said superconductor
US5318745A (en) * 1990-09-21 1994-06-07 International Superconductivity Technology Center Oxide superconductor and manufacturing method thereof via HIP and controlling the oxygen partial pressure

Similar Documents

Publication Publication Date Title
JPH01141820A (en) Method for precipitation of alkaline oxalate for the purpose of making superconductor of metal oxide
JPH01160829A (en) Method for manufacture of high temperature superconductor
CN113744991A (en) Co2Z-type ferrite material and preparation method and application thereof
De Guire et al. Coprecipitation synthesis of doped lanthanum chromite
US5147848A (en) Precipitation process for forming Bi-Pb-Sr-Ca-Cu-O superconductors by dissolving nitrate salts in acid and adding a solution of triethylamine and oxalic acid
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JPS63288912A (en) Production of inorganic oxide superconductor
US5077265A (en) Co-precipitation synthesis of precursors to bismuth-containing superconductors
JPS63288911A (en) Production of high temperature superconductor
JPS62191423A (en) Production of easily sintering lead-containing oxide powder
JPH0855706A (en) Manufacture of fine powder of oxide semiconductor
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH06654B2 (en) M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder
JPS63307156A (en) Method for synthesizing superconducting ceramics
JPS6325223A (en) Production of ceramic raw material powder
JPS63277515A (en) Production of superconductive material
JPS63252925A (en) Production of superconductive material
JPH0476322B2 (en)
Yoshizawa et al. Preparation of Precursor Powders
JPH01103919A (en) Production of superconductive ceramic
JPH0446015A (en) Oxide superconducting material and its production
JPH01294561A (en) Production of compound oxide ceramics
JPH0255259A (en) Production of compound oxide ceramics
JPS62182114A (en) Production or readily sinterable lead-containing oxide powder
JPS62187114A (en) Production of fine oxide powder containing lead