JPS63252925A - Production of superconductive material - Google Patents

Production of superconductive material

Info

Publication number
JPS63252925A
JPS63252925A JP62088461A JP8846187A JPS63252925A JP S63252925 A JPS63252925 A JP S63252925A JP 62088461 A JP62088461 A JP 62088461A JP 8846187 A JP8846187 A JP 8846187A JP S63252925 A JPS63252925 A JP S63252925A
Authority
JP
Japan
Prior art keywords
aqueous solution
copper
added
superconducting material
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62088461A
Other languages
Japanese (ja)
Inventor
Kazuo Fueki
笛木 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP62088461A priority Critical patent/JPS63252925A/en
Publication of JPS63252925A publication Critical patent/JPS63252925A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive material of compound metallic oxide having excellent stability in good reproducibility, by adding one or more amines not to form a complex with copper to an aqueous solution comprising copper and a specific metallic salt, changing the pH to a basic side and adding a weak acid. CONSTITUTION:One or more amines (e.g. triethylamine) not to form a complex with copper are added to an aqueous solution which is obtained by dissolving nitrates or carbonates of Cu, Ba and one or more rare earth elements selected from Y, Sc, La, Lu, Yb, Tm, Er, Ho, Dy, Cd and Sm and pH of the aqueous solution is changed to a basic side (preferably pH >=8). Then the aqueous solution is mixed with a weak acid such as oxalic acid or carbonic acid to give a starting raw material sufficiently blended in the order of atom. Then the raw material is previously calcined, pressed into pellets, sintered and optionally annealed in O2 to give the titled material having crystal structure of oxygen deficient perovskite type shown by the formula (M is one or more of the above- mentioned rare earth element; x=1-3; y=0.5-1.5; z=0-3).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超伝導性材料の製造方法に関する。更に詳しく
は、本発明は成分元素として銅を含有する複合金属酸化
物超伝導性材料を製造するための共沈法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing superconducting materials. More particularly, the present invention relates to a coprecipitation method for producing composite metal oxide superconducting materials containing copper as a constituent element.

(従来技術) 最近、臨界温度の極めて高い各種の複合金属酸化物超伝
導性物質が数多く報告されている。
(Prior Art) Recently, many types of composite metal oxide superconducting materials with extremely high critical temperatures have been reported.

例えば、米国ヒユーストン大学のC,W、 Chu等は
バリウム−イツトリウム−銅−酸素系の酸化物において
94にで電気抵抗が消滅し、超伝導状態になった事を報
告している(Phys、 Rev、 Lett、+vo
1.5B、 p、90B−907(1987))−又、
バリウム−M−銅一酸素系の複合金属酸化物(MはSm
5Eu、Gd、Dy、Ho、E r %T m s Y
 b s L u等)において、これらが90に前後の
臨界温度をもつ複合金属酸化物超伝導性物質となること
が報告されている(例えば、に。
For example, C.W., Chu, et al. of Hyuston University in the United States reported that the electrical resistance disappeared in 1994 in a barium-yttrium-copper-oxygen oxide, and it became a superconducting state (Phys, Rev. , Lett, +vo
1.5B, p, 90B-907 (1987)) - also,
Barium-M-copper-oxygen complex metal oxide (M is Sm
5Eu, Gd, Dy, Ho, E r %T m s Y
It has been reported that these become complex metal oxide superconducting materials with critical temperatures around 90°C (for example, in 2013).

1[1tazawa at at、 Jap、 Jou
rnal of Appl、 Phys、。
1[1tazawa at at, Jap, Jou
rnal of Appl, Phys.

vol、 26. (1987))。vol, 26. (1987)).

これら各種の高い臨界温度を持つ超伝導性物質は、各金
属成分元素の酸化物、炭酸塩等を必要量秤量した後、め
のう乳鉢等を用いて粉砕、混合した後、電気炉中にて焼
成して作製される。しかしながら、この方法では各成分
の混合が十分とは言えず、作製した超伝導性物質の特性
もあまり良いものではないという欠点があった。
These various superconducting substances with high critical temperatures are produced by weighing the required amount of oxides, carbonates, etc. of each metal component, pulverizing and mixing them using an agate mortar, etc., and then firing them in an electric furnace. It is made by However, this method has the disadvantage that the components cannot be mixed sufficiently and the properties of the produced superconducting material are not very good.

これに対し、各成分元素の混合を原子オーダー迄良好に
することのできる出発原料の開整法として、共沈法を採
用することが提案された(例えば、J、 G、 Bed
norz andに、 A、 Muller、 Z、 
Phys、 B、。
In response, it has been proposed to adopt a coprecipitation method as a starting material preparation method that can improve the mixing of each component element down to the atomic order (for example, J, G, Bed
norz and, A, Muller, Z.
Phys, B.

vol、 64. p、189−193 (198B)
)。
vol, 64. p, 189-193 (198B)
).

これは、バリウム−ランタン−銅−酸素系の複合金属酸
化物超伝導物質の作製において、バリウム、ランタン、
銅の各硝酸塩の水溶液を必要量ずつ混合しておき、そこ
ヘシュウ酸の水溶液を加えてバリウム、ランタン、銅を
すべてシュウ酸塩の形で沈澱させ、濾過することにより
焼成用の出発原料を得るというものである。
In the production of a barium-lanthanum-copper-oxygen composite metal oxide superconducting material, barium, lanthanum,
Mix the required amounts of aqueous solutions of each nitrate of copper, add an aqueous solution of hesoxalic acid to precipitate barium, lanthanum, and copper in the form of oxalates, and filter to obtain the starting material for firing. That is what it is.

この方法によれば、成分元素の混合という点では極めて
良質の混合出発原料を得られるが、調整された出発原料
には、バリウムが仕込み量に比べてかなり少量しか含ま
れないという欠点がある。
According to this method, a mixed starting material of extremely high quality can be obtained in terms of mixing of component elements, but the disadvantage is that the prepared starting material contains only a considerably small amount of barium compared to the amount charged.

その理由は、原料元素の硝酸塩溶液もシュウ酸水溶液も
共に酸性であるため、共沈せしめた混合後の溶液も酸性
となるが、バリウムのシュウ酸塩が酸性域でかなりの溶
解性を有するためである。
The reason for this is that both the raw element nitrate solution and the oxalic acid aqueous solution are acidic, so the solution after coprecipitation and mixing is also acidic, but barium oxalate has considerable solubility in the acidic range. It is.

更に、バリウムのシュウ酸塩の溶解度はpHに大きく依
存しているため、上記の方法によっては特定組成の焼成
用出発原料を安定して得ることは殆ど不可能であるとい
う欠点があった。
Furthermore, since the solubility of barium oxalate is highly dependent on pH, the above method has the disadvantage that it is almost impossible to stably obtain a starting material for calcination with a specific composition.

(発明が解決しようとする問題点) 上記の欠点は、バリウムのシュウ酸塩の溶解度が塩基性
では相当に小さくなるので、共沈液を塩基性に制御する
ことによって回避される。しかしながら、共沈液を塩基
性とするためのpH11整剤として水酸化カリウム、水
酸化ナトリウム等の金属水酸化物を用いると、出発原料
中にに、Na等の金属不純物を含むことになり好ましく
ない、これら金属不純物は多量の水で沈澱を洗浄すれば
除くことができるが、シュウ酸バリウムは冷水中にても
少量ながら溶解性を有するため(およそ1g/冷水1(
1)、多量の水での洗浄ではやはりバリウムが減少する
恐れがある。
(Problems to be Solved by the Invention) The above drawbacks can be avoided by controlling the co-precipitation solution to be basic, since the solubility of barium oxalate is considerably low in basicity. However, if a metal hydroxide such as potassium hydroxide or sodium hydroxide is used as a pH 11 adjuster to make the coprecipitate basic, the starting material will contain metal impurities such as Na, which is not preferable. These metal impurities can be removed by washing the precipitate with a large amount of water, but barium oxalate is soluble even in cold water (approximately 1 g/1 cold water).
1) Washing with a large amount of water may reduce barium.

又、塩基性とするためのpHm整剤としてアンモニア水
を使用した場合には、成分元素として含まれる銅が綱−
アンモニア錯体(Cu (NH3)42+)を生成して
溶解してしまうためアンモニア水を用いることができな
い。
In addition, when ammonia water is used as a pH adjuster to make it basic, the copper contained as a component element is
Ammonia water cannot be used because it generates and dissolves an ammonia complex (Cu (NH3)42+).

本発明者等は、従来の上記欠点を解決すべく鋭意検討し
た結果、共沈液のpH1M整剤としてアミン類を使用し
た場合には、再現性良く、特定組成の焼成用出発原料を
得ることができることを見出し本発明に到達した。
As a result of intensive studies to solve the above-mentioned conventional drawbacks, the present inventors have found that when amines are used as a pH 1M adjuster for the coprecipitate, a starting material for firing with a specific composition can be obtained with good reproducibility. The present invention was achieved by discovering that this can be done.

従って本発明の第1の目的は、銅を成分として含有する
複合金属酸化物超伝導性材料の特性を安定して得ること
のできる超伝導性材料の製造方法を提供することにある
Therefore, a first object of the present invention is to provide a method for producing a superconducting material that can stably obtain the characteristics of a composite metal oxide superconducting material containing copper as a component.

本発明の第2の目的は、安定した銅を成分元素として含
有する複合金属酸化物超伝導性材料を得るに通した、原
子オーダーで十分に混合された焼成前の出発原料を提供
することにある。
A second object of the present invention is to provide a starting material that is sufficiently mixed on the atomic order before firing to obtain a stable composite metal oxide superconducting material containing copper as a component element. be.

本発明の第3の目的は、銅を成分元素として含有する複
合金属酸化物超伝導性材料の焼成前の出発原料を共沈法
によって調整する場合に、特に優れたpH2節方法を提
供することにある。
A third object of the present invention is to provide a particularly excellent pH 2 moderation method when preparing a starting material before firing of a composite metal oxide superconducting material containing copper as a component element by a coprecipitation method. It is in.

(問題を解決するための手段) 本発明の上記の諸口的は、成分元素として銅を含有する
複合金属酸化物超伝導性材料を製造するにあたり、各成
分元素の塩を溶解した水溶液に各成分を共沈せしめる物
質を加える共沈法において、前記各成分元素の塩を溶解
した水溶液に、銅と錯体を形成しないアミンの群から選
択された少なくとも1種のアミンを添加して、前記水溶
液のpHを塩基性側へ移動せしめ、しかる後各成分元素
を共沈せしめることのできる弱酸を加えることを特徴と
する超伝導性材料の製造方法によって達成された。
(Means for Solving the Problems) The above-mentioned aspects of the present invention are such that when producing a composite metal oxide superconducting material containing copper as a component element, each component is added to an aqueous solution in which a salt of each component element is dissolved. In the coprecipitation method, at least one amine selected from the group of amines that do not form a complex with copper is added to an aqueous solution in which the salts of the respective component elements are dissolved, and the aqueous solution is added with a substance that causes the copper to co-precipitate. This was achieved by a method for producing superconducting materials characterized by shifting the pH to the basic side and then adding a weak acid capable of co-precipitating each component element.

本発明において銅を含有する複合金属酸化物超伝導性材
料は、一般式BaXMyCu309  Zで表される酸
素欠mペロブスカイト型結晶構造を有している。ここで
、MはY、、SC% La、Lu5Yb、Tm、Er、
HO,、Dy% Cd及びSmの群から選択される少な
くとも1種又は2種以上の希土類元素であり、Xは1〜
3、yは0.5〜1゜5.2は0〜3である。
In the present invention, the copper-containing composite metal oxide superconducting material has an oxygen-deficient m-perovskite crystal structure represented by the general formula BaXMyCu309Z. Here, M is Y, SC% La, Lu5Yb, Tm, Er,
HO, Dy% At least one or two or more rare earth elements selected from the group of Cd and Sm, and X is 1 to
3. y is 0.5-1°5.2 is 0-3.

又、上記複合金属酸化物の塩としては、水に対する溶解
度の大きな塩の中から適宜選択されるが、特に硝酸塩を
使用することが、溶解度及び純度の高い複合金属酸化物
を得る上で好ましい。本発明においては、これらの溶解
度の高い塩を所定量水に溶解して混合することもできる
が、硝酸等の中に各種成分金属の酸化物や炭酸塩を溶解
せしめることもできる。このようにして開裂した各成分
元素を含有する水溶液は通常酸性である。
The salt of the composite metal oxide is appropriately selected from salts with high solubility in water, and it is particularly preferable to use a nitrate in order to obtain a composite metal oxide with high solubility and purity. In the present invention, a predetermined amount of these highly soluble salts can be dissolved in water and mixed, but oxides and carbonates of various component metals can also be dissolved in nitric acid or the like. The aqueous solution containing each component element cleaved in this way is usually acidic.

通常は、上記の水溶液から溶解度の小さな塩を析出せし
めるが、多くの場合、このような溶解度の小さな塩はシ
ュウ酸塩である。そこで、前記水溶液にシュウ酸を加え
ることが常法となっているが、酸性側におけるBaのシ
ュウ酸塩の溶解度が大きく、特にpH>2では実施は不
可能である。
Generally, a salt with low solubility is precipitated from the aqueous solution, and in many cases, the salt with low solubility is oxalate. Therefore, it is a conventional method to add oxalic acid to the aqueous solution, but the solubility of Ba oxalate on the acidic side is high, and this is impossible, especially at pH>2.

そこで、N a OH’P K OHを加えて水溶液を
アルカリ性にすれば、各成分元素のシュウ酸塩(又は水
酸化物)が共沈するがNaやKの金属で汚染される。こ
れを嫌って洗浄を十分に行おうとすれば、シュウ酸バリ
ウム等が少しずつ溶解し、焼成前の原料組成がずれる。
Therefore, if the aqueous solution is made alkaline by adding Na OH'P K OH, the oxalates (or hydroxides) of each component element will co-precipitate, but it will be contaminated with metals such as Na and K. If you try to avoid this and thoroughly clean the product, barium oxalate and the like will dissolve little by little, and the raw material composition before firing will shift.

一方アンモニアと銅と錯体を作って水に溶解するのでア
ンモニアで水溶液のpHを調整することもできない。
On the other hand, since ammonia forms a complex with copper and dissolves in water, the pH of an aqueous solution cannot be adjusted with ammonia.

(作用) しかしながら、本発明においては、銅と錯体を形成しな
いアミンを使用するので、上記の如き不都合を引き起こ
すことなく、pHを調整することができ、従ってアミン
によって水溶液のpHをアルカリ側に移動せしめシュウ
酸や炭酸等の水不溶性の塩を形成する弱酸を加え、再現
性良(、特定組成の焼成用出発原料を得ることができる
(Function) However, in the present invention, since an amine that does not form a complex with copper is used, the pH can be adjusted without causing the above-mentioned disadvantages, and the pH of the aqueous solution is moved to the alkaline side by the amine. By adding a weak acid that forms a water-insoluble salt, such as oxalic acid or carbonic acid, it is possible to obtain a starting material for calcination with a specific composition with good reproducibility.

特にpHを8以上とした場合に特に良好な結果が得られ
る。
Particularly good results are obtained when the pH is set to 8 or higher.

本発明で使用することのできるアミンは、銅と錯体を形
成しないアミンの中から適宜選択することができる。こ
のようなアミンとしては、例えば、トリエチルアミン、
トリメチルアミン、ジメチルアミン、メチルアミン、エ
チルアミン、トリエタノールアミン、ヒドロキシテトラ
エチルアミン等を挙げることができるが、特にこれらの
中でもトリエチルアミンが好ましい。
The amine that can be used in the present invention can be appropriately selected from amines that do not form a complex with copper. Such amines include, for example, triethylamine,
Examples include trimethylamine, dimethylamine, methylamine, ethylamine, triethanolamine, and hydroxytetraethylamine, and among these, triethylamine is particularly preferred.

(発明の効果) 本発明の方法は、機械的に粉砕して混合する方法とは異
なり化学的方法によって混合物を得るので混合の程度は
完全である。又、pHをアミンでアルカリ側に移動せし
めて共沈させるので、不溶性の金属で汚染されることも
ない。更に、沈澱物の溶解度を小さく抑えることもでき
るので再現性良く、同−組成且つ均一に混合された出発
原料を得ることもできる。このような均−原料を焼成し
て得た複合金属酸化物は、目的通りの組成を有するので
、超伝導性材料として優れた性能を有するのみならず、
電子デバイス等における薄膜製造に原料として用いるタ
ーゲット材料としても極めて高性能である。
(Effects of the Invention) Unlike the method of mechanically grinding and mixing, the method of the present invention obtains a mixture by a chemical method, so that the degree of mixing is perfect. Furthermore, since the pH is shifted to the alkaline side using the amine and coprecipitation is carried out, there is no possibility of contamination with insoluble metals. Furthermore, since the solubility of the precipitate can be kept low, it is possible to obtain starting materials having the same composition and being uniformly mixed with good reproducibility. The composite metal oxide obtained by firing such homogeneous raw materials has the desired composition, so it not only has excellent performance as a superconducting material, but also has excellent performance as a superconducting material.
It also has extremely high performance as a target material used as a raw material for manufacturing thin films in electronic devices and the like.

(実施例) 以下本発明を実施例によって更に詳述するが、本発明は
これによって限定されるものではない。
(Example) The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.

実施例1゜ 複合金属酸化物超伝導体としてバリウム−イツトリウム
−銅−酸化物、Ba2YCu309−δを作製した。
Example 1 A barium-yttrium-copper oxide, Ba2YCu309-δ, was prepared as a composite metal oxide superconductor.

目的物0.1モルが得られるように計算量のBaCO3
、Y2O3、CuOを秤りとり、少量の硝酸で完全に溶
解させた後、純水を加えて1゜Omlとした。
Calculated amount of BaCO3 to obtain 0.1 mole of the target substance
, Y2O3, and CuO were weighed and completely dissolved with a small amount of nitric acid, and then pure water was added to make a total volume of 1°Oml.

一方、共沈に用いるシュウ酸は、5a2yCu309−
δに対しBaは2価、Yは3価、Cuは大部分水酸化物
で沈澱するため、計算量(1,3モル当11−0.65
モル)は必要ない。
On the other hand, the oxalic acid used for coprecipitation is 5a2yCu309-
For δ, Ba is divalent, Y is trivalent, and Cu is mostly precipitated as hydroxide, so the calculated amount (11-0.65 per 1.3 mol)
mole) is not necessary.

ここでは0.5モルのシュウ酸を純水に溶かし、100
mlとした。そこへ250gのトリエチルアミン((C
2H5)3N)を加えた。トリエチルアミンは水と混合
しないが、シュウ酸とは反応しシュウ酸のアミン塩を生
成する。得られた2層に分離した液の中へ、Ba、、Y
% Cu熔液を注ぎ込むと、直ちに青色の沈澱が生じた
。沈澱は一晩熟成させた後、アスピレータ−で吸引濾過
して焼成用の出発原料とした。
Here, 0.5 mol of oxalic acid is dissolved in pure water, and 100 mol of oxalic acid is dissolved in pure water.
ml. Add 250g of triethylamine ((C
2H5)3N) was added. Triethylamine is immiscible with water, but reacts with oxalic acid to form the amine salt of oxalic acid. Into the resulting liquid separated into two layers, Ba, Y
% Cu melt, a blue precipitate immediately formed. The precipitate was aged overnight and then filtered with suction using an aspirator to serve as a starting material for calcination.

出発原料をルツボに入れ、500℃に2時間保ってシュ
ウ酸を飛ばした後、900℃に昇温しで6時間予備焼成
し、炉から取り出した後再び粉砕し、約1,000kg
/cm2の圧力でプレスジてペレットとし950℃の炉
中で4時間焼結した。
The starting materials were placed in a crucible and kept at 500°C for 2 hours to evaporate the oxalic acid, then heated to 900°C and pre-calcined for 6 hours, taken out from the furnace and crushed again to yield approximately 1,000 kg.
The pellets were pressed at a pressure of /cm2 and sintered in a furnace at 950°C for 4 hours.

取り出したサンプルは更に700℃の純酸素中で12時
間のアニールを行った。
The taken sample was further annealed for 12 hours in pure oxygen at 700°C.

得られたサンプルを一部硝酸で溶解した後、プラズマ発
光分析法にて定量分析を行ったところ、目的組成が得ら
れていることが確認された。
After partially dissolving the obtained sample in nitric acid, quantitative analysis was performed using plasma emission spectrometry, and it was confirmed that the desired composition had been obtained.

比較例として、Ba2YCu309−δ 0゜1モルが
得られるように計算量の13 a CO3、Y203 
、及びCuOの各粉末を秤りとり、エタノール中でめの
う乳鉢により混合し、焼成用出発原料とした。
As a comparative example, a calculated amount of 13 a CO3, Y203 to obtain 1 mole of Ba2YCu309-δ 0°
, and CuO powders were weighed and mixed in ethanol in an agate mortar to obtain starting materials for firing.

これについてシュウ酸を飛ばすための500℃2時間の
過程を除き全く同一のペレット作製処理を施し、超伝導
体とした。
This pellet was subjected to the same pellet preparation process except for the step of 2 hours at 500°C to evaporate the oxalic acid, and a superconductor was obtained.

各焼結物は、X線回折により、酸素欠損ペロブスカイト
型結晶構造を有することが認められた。
Each sintered product was found to have an oxygen-deficient perovskite crystal structure by X-ray diffraction.

各々につき、超伝導開始転移温度Tc(電気抵抗率が超
伝導転移を示し始める温度)及び転移温度幅ΔTc (
電気抵抗率がTc近傍の通常の値から変化するときの変
化率が、90%から10%になる時の温度幅)を測定し
た結果を第1表に示す。
For each, superconductivity onset transition temperature Tc (temperature at which electrical resistivity begins to show superconductivity transition) and transition temperature width ΔTc (
Table 1 shows the results of measuring the temperature range when the rate of change in electrical resistivity from a normal value near Tc goes from 90% to 10%.

第1表 Tc      ΔTc 本発明    96K      1.2K”    
 94K     3に 実施例2゜ 複合金属酸化物超伝導体としてランタン−ストoシーF
−ウムー銅−酸化物、(La0.925SrO,075
)2Cu04−1を作製した。
Table 1 Tc ΔTc Invention 96K 1.2K”
Example 2 in 94K 3: Lanthanum-Storage F as a composite metal oxide superconductor
-umu copper-oxide, (La0.925SrO,075
)2Cu04-1 was produced.

目的物0.1モルが得られるように計算量のLa2O3
,5rco3、CuOを秤量し、少量の硝酸で完全に溶
解させた後、純水を加えて100m1とした。
Calculated amount of La2O3 to obtain 0.1 mole of the target substance
, 5rco3, and CuO were weighed and completely dissolved with a small amount of nitric acid, and then pure water was added to make the volume 100 ml.

本系においてもシュウ酸は0.785モル当量(0,3
925モル)必要となる計算であるが、前述の理由によ
り0.3モル秤量し、純水に溶かし100m1tとした
。そこへトリエチルアミン150gを加えた。
In this system as well, the amount of oxalic acid is 0.785 molar equivalent (0.3
(925 mol) was necessary for the calculation, but for the above-mentioned reason, 0.3 mol was weighed out and dissolved in pure water to make 100 ml. 150 g of triethylamine was added thereto.

以上で得られた2層に分離した液の中へLa。Add La into the liquid separated into two layers obtained above.

S r s Cu溶液を注ぎ込むと、直ちに青色の沈澱
が生じた。沈澱は一晩熟成させた後、アスピレータ−で
吸引濾過し、焼成用の出発原料とした。
As soon as the S r s Cu solution was poured, a blue precipitate formed. The precipitate was aged overnight, filtered with suction using an aspirator, and used as a starting material for calcination.

出発原料をルツボに入れ、500℃に2時間保ってシュ
ウ酸を飛ばした後、900℃に昇温しで6時間予備焼成
した。炉から取り出した後再び粉砕し、約1,000k
g/cm2の圧力でプレスしてペレットとし1.050
℃の炉中で24時間焼結した。取り出したサンプルは更
に700℃の純酸素中で12時間のアニールを行った。
The starting materials were placed in a crucible, kept at 500°C for 2 hours to remove oxalic acid, and then heated to 900°C and pre-calcined for 6 hours. After taking it out of the furnace, it is crushed again and weighs approximately 1,000 kg.
Press with a pressure of g/cm2 to make pellets 1.050
It was sintered in a furnace at .degree. C. for 24 hours. The taken sample was further annealed for 12 hours in pure oxygen at 700°C.

得られたサンプルを一部硝酸で溶解し、プラズマ発光分
析法にて定量分析を行ったところ、目的の組成が得られ
ていることが確認された。
When the obtained sample was partially dissolved in nitric acid and quantitatively analyzed using plasma emission spectrometry, it was confirmed that the desired composition had been obtained.

比較例として、(Lao、925S、ro、075) 
2Cu04−r  O,1モルが得られるように計算量
のL a 203.5rC03、及びCuOの各粉末を
秤量し、エタノール中でめのう乳鉢により混合し、焼成
用出発原料とした。
As a comparative example, (Lao, 925S, ro, 075)
Calculated amounts of each powder of La 203.5rC03 and CuO were weighed so as to obtain 1 mol of 2Cu04-rO, and mixed in an agate mortar in ethanol to obtain a starting material for firing.

これについてシュウ酸を飛ばすための500℃2時間の
過程を除き全く同一のベレット作製処理を施し、超伝導
体とした。
This was subjected to exactly the same pellet manufacturing process except for the 2-hour process at 500°C to evaporate the oxalic acid, and a superconductor was obtained.

各焼結物は、X線回折により、K2NiF4型ペロブス
カイト類似構造であることが(il認された。
It was confirmed by X-ray diffraction that each sintered product had a K2NiF4 type perovskite-like structure.

各々につき、超伝導開始転移温度Tc (電気抵抗率が
超伝導転移を示し始める温度)及び転移温度幅ΔTc 
(電気抵抗率がTc近傍の通常の値から変化するときの
変化率が、90%から10%になる時の温度@)を測定
した結果を第2表に示す。
For each, superconductivity starting transition temperature Tc (temperature at which electrical resistivity begins to show superconducting transition) and transition temperature width ΔTc
Table 2 shows the results of measuring (temperature at which the rate of change of electrical resistivity from a normal value near Tc goes from 90% to 10%).

第2表 Tc      ΔTc 本発明    40K      1.5K・−5’ 
    37 K       5 K以上、実施例に
基づき本発明の詳細な説明したが、アミンとしてはここ
で用いたトリエチルアミンに限らず、他のアミン類でも
構わない。
Table 2 Tc ΔTc Invention 40K 1.5K・-5'
37 K 5 K Although the present invention has been described above in detail based on Examples, the amine is not limited to triethylamine used here, but other amines may be used.

又、沈緻生成用のイオンとしてはシュウ酸イオン(Co
olを用いたが、炭酸イオン (CO32−)等、他の適当なイオンを使うこともでき
る。
In addition, oxalate ions (Co
Although ol was used, other suitable ions such as carbonate ion (CO32-) can also be used.

更に本実施例では2種類の複合酸化物超伝導体について
のみその作製法を述べたが、本発明は他の系、例えば、
バリウム−イッテルビウム−銅−酸素系の酸化物、バリ
ウム−エルビウム−銅−酸素系の酸化物等、略すべでの
系に通用できる技術であり、それらへの通用を除外され
るものでないことは言うまでもない。
Furthermore, in this example, the manufacturing method was described only for two types of composite oxide superconductors, but the present invention can also be applied to other systems, such as
It goes without saying that this technology can be applied to almost all systems, such as barium-ytterbium-copper-oxygen oxides and barium-erbium-copper-oxygen oxides, and its application to these systems is not excluded. stomach.

Claims (1)

【特許請求の範囲】 1)成分元素として銅を含有する複合金属酸化物超伝導
性材料を製造するにあたり、各成分元素の塩を溶解した
水溶液に各成分を共沈せしめる物質を加える共沈法にお
いて、前記各成分元素の塩を溶解した水溶液に、銅と錯
体を形成しないアミンの群から選択された少なくとも1
種のアミンを添加して、前記水溶液のpHを塩基性側へ
移動せしめ、しかる後各成分元素を共沈せしめることの
できる弱酸を加えることを特徴とする超伝導性材料の製
造方法。 2)水溶液に加えるアミン類が第3級アミンである特許
請求の範囲第1項に記載の超伝導性材料の製造方法。 3)第3級アミンがトリエチルアミンである特許請求の
範囲第2項に記載の超伝導性材料の製造方法。 4)共沈せしめるために添加する弱酸がシュウ酸である
特許請求の範囲第1項乃至第3項のいずれかに記載の超
伝導性材料の製造方法。
[Scope of Claims] 1) Co-precipitation method in which a substance for co-precipitating each component is added to an aqueous solution in which salts of each component element are dissolved in the production of a composite metal oxide superconducting material containing copper as a component element. At least one amine selected from the group of amines that do not form a complex with copper is added to the aqueous solution in which the salts of the respective component elements are dissolved.
A method for producing a superconducting material, which comprises adding a seed amine to shift the pH of the aqueous solution to the basic side, and then adding a weak acid capable of co-precipitating each component element. 2) The method for producing a superconducting material according to claim 1, wherein the amine added to the aqueous solution is a tertiary amine. 3) The method for producing a superconducting material according to claim 2, wherein the tertiary amine is triethylamine. 4) The method for producing a superconducting material according to any one of claims 1 to 3, wherein the weak acid added for coprecipitation is oxalic acid.
JP62088461A 1987-04-10 1987-04-10 Production of superconductive material Pending JPS63252925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088461A JPS63252925A (en) 1987-04-10 1987-04-10 Production of superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088461A JPS63252925A (en) 1987-04-10 1987-04-10 Production of superconductive material

Publications (1)

Publication Number Publication Date
JPS63252925A true JPS63252925A (en) 1988-10-20

Family

ID=13943415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088461A Pending JPS63252925A (en) 1987-04-10 1987-04-10 Production of superconductive material

Country Status (1)

Country Link
JP (1) JPS63252925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256519A (en) * 1987-04-15 1988-10-24 Nippon Telegr & Teleph Corp <Ntt> Production of superconductor
JPS63270319A (en) * 1987-04-30 1988-11-08 Matsushita Electric Ind Co Ltd Production of ceramic superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256519A (en) * 1987-04-15 1988-10-24 Nippon Telegr & Teleph Corp <Ntt> Production of superconductor
JPS63270319A (en) * 1987-04-30 1988-11-08 Matsushita Electric Ind Co Ltd Production of ceramic superconductor

Similar Documents

Publication Publication Date Title
US4859652A (en) Method for preparation of high temperature superconductors using trichloroacetates
US4956340A (en) Process for preparing compound metal oxides of yttrium, barium and copper
JPS63252925A (en) Production of superconductive material
US4886777A (en) Process for preparing compound metal oxides
NZ226103A (en) Preparation of superconducting mixed metal oxide ceramics with minimal extraneous matter
JPH0583486B2 (en)
US5149682A (en) Manufacturing method for superconducting ceramics and products thereof
JPS63307102A (en) Preparation of ceramics raw material by coprecipitation
US5863867A (en) Fine-particle bi-sr-ca-cu-o having high phase purity made by chemical precipitation and low-pressure calcination method
JPH02133322A (en) Bi-pb-sr-ba-ca-cu-o superconducting material
EP0366721A1 (en) Improved process for making 90 k superconductors
EP0287064A2 (en) Process for producing superconductive ceramics
JPS63277515A (en) Production of superconductive material
JPS63230523A (en) Superconductive material
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
JPS63288912A (en) Production of inorganic oxide superconductor
De Guire et al. Guanidine oxalate: a new reagent for coprecipitation in the synthesis of multicomponent ceramics
JP2748942B2 (en) Oxide superconductor
JP2748943B2 (en) Oxide superconductor
JP3151558B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same
JPH0446015A (en) Oxide superconducting material and its production
JPH0662332B2 (en) Method for producing oxide-based superconducting material
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials
JPS63288911A (en) Production of high temperature superconductor