JPH07106893B2 - Manufacturing method of ceramics superconductor - Google Patents

Manufacturing method of ceramics superconductor

Info

Publication number
JPH07106893B2
JPH07106893B2 JP62106721A JP10672187A JPH07106893B2 JP H07106893 B2 JPH07106893 B2 JP H07106893B2 JP 62106721 A JP62106721 A JP 62106721A JP 10672187 A JP10672187 A JP 10672187A JP H07106893 B2 JPH07106893 B2 JP H07106893B2
Authority
JP
Japan
Prior art keywords
superconductor
temperature
carbonate
ceramics
guanidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62106721A
Other languages
Japanese (ja)
Other versions
JPS63270319A (en
Inventor
康治 山村
繁雄 近藤
進 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62106721A priority Critical patent/JPH07106893B2/en
Publication of JPS63270319A publication Critical patent/JPS63270319A/en
Publication of JPH07106893B2 publication Critical patent/JPH07106893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高温で電気抵抗がほとんどゼロになり高効率
電力貯蔵、強磁場発生、高効率送電等に利用できるセラ
ミックス超電導体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic superconductor, which has almost zero electric resistance at high temperatures and can be used for high-efficiency power storage, strong magnetic field generation, high-efficiency power transmission and the like.

従来の技術 従来の超電導体としては、ニオブ3スズ(18K),ニオ
ブ3ガリウム(20K),ニオブ3ゲルマニウム(24K)等
の合金系があり、これら合金系超電導体のほとんどが液
体ヘリウムを必要とするものであった。しかし、1986年
4月1日BMチューリッヒ研究所のK.A.ミュラーとJ.G.ベ
ドノルツ両博士によってLa−Ba−Cu−O系セラミックス
の高温における超電導現象の示唆があって以来、種々検
討され、La−Ba−Cu−O系(30K),La−Sr−Cu−O系
(54K),Y−Ba−Cu−O系(98K),Y−Ba−Cu−O系(12
3K),Sc−Ba−Cu−O系(175K)とセラミックス超電導
体の臨界温度はますます高くなってきており、その応用
研究も盛んに行われている。
2. Description of the Related Art Conventional superconductors include alloy systems such as niobium 3 tin (18K), niobium 3 gallium (20K), and niobium 3 germanium (24K), and most of these alloy-based superconductors require liquid helium. It was something to do. However, on April 1, 1986, Dr. KA Muller and Dr. JG Bednorz of the BM Zurich Research Center suggested that superconductivity of La-Ba-Cu-O ceramics at high temperature was investigated. Cu-O system (30K), La-Sr-Cu-O system (54K), Y-Ba-Cu-O system (98K), Y-Ba-Cu-O system (12
The critical temperature of 3K), Sc-Ba-Cu-O system (175K) and ceramics superconductors is getting higher and higher, and their applied researches are actively conducted.

発明が解決しようとする問題点 セラミックス超電導体の製造法としては、一般的には酸
化物や炭酸塩を粉砕混合して焼成する方法が知られてい
る。この方法では、特にバリウムを含むセラミックス超
電導体材料の合成に際しては炭酸バリウムを分解するた
めに1000℃付近、あるいは、それ以上の温度で焼成合成
する必要がある。しかるに、これらの材料系では1000℃
付近でセラミックス超電導体材料に含まれる酸化銅が焼
成時に使用するセラミックス基板やボートの成分、即
ち、アルミナ,シリカ,ジルコニア,窒素ケイ素等、ほ
とんどのセラミックスと反応するため得られた超電導体
材料中に含まれる銅の損失量が多く、また、その偏析等
も起こり、均一で超電導性の安定したものを作成するの
が難しかった。また、セラミックス超電導体のもう1つ
の製造法としてシュウ酸を用いた共沈法による合成の報
告がある。しかし、例えばマグネシウム,カルシウム,
ストロンチウム,バリウム等のII a族元素のシュウ酸塩
が酸に溶け易いため、一定の組成比で共沈させることは
極めて困難なものであった。
Problems to be Solved by the Invention As a method for producing a ceramics superconductor, generally known is a method in which oxides and carbonates are pulverized and mixed and then fired. In this method, in particular, when synthesizing a ceramic superconductor material containing barium, it is necessary to perform firing synthesis at a temperature of about 1000 ° C. or higher in order to decompose barium carbonate. However, 1000 ℃ for these material systems
The copper oxide contained in the ceramic superconductor material reacts with most of the ceramics such as alumina, silica, zirconia, silicon nitride, etc., which are used in the firing process, such as alumina, silica, zirconia, silicon nitride, etc. The amount of copper contained was large, and segregation of copper also occurred. Therefore, it was difficult to produce a uniform and stable superconducting material. In addition, there is a report of synthesis by a coprecipitation method using oxalic acid as another method for producing a ceramics superconductor. But, for example, magnesium, calcium,
Since the oxalates of Group IIa elements such as strontium and barium are easily soluble in acid, it was extremely difficult to coprecipitate them at a certain composition ratio.

問題点を解決するための手段 本発明は、上記の問題点を解決するため、セラミックス
超電導体の構成金属の各成分を含む溶液にグアニジン系
の炭酸塩,シュウ酸塩,クエン酸塩,または酒石酸塩の
うち少なくとも一種の塩を含む溶液を混合しpH5〜9を
終点として超電導体材料の各金属塩の共沈物を作成、焼
成し超電導体材料を合成するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a solution containing each component of a constituent metal of a ceramics superconductor in a guanidine-based carbonate, oxalate, citrate, or tartaric acid. A solution containing at least one kind of salt is mixed, and a coprecipitate of each metal salt of the superconductor material is prepared at a pH of 5 to 9 and fired to synthesize the superconductor material.

作用 本発明によるセラミックス超電導体の製造法により合成
した超電導体は、構成金属の各成分が、使用する有機塩
基物塩により炭酸塩,シュウ酸塩,クエン酸塩,あるい
は酒石酸塩と水酸化物の混合物として共沈されるため、
その粒子径は1μm以下の非常に微細なものになり、粒
子の混合に際しても均一に混合されるために、従来の合
成方法による金属酸化物や金属炭酸塩を使用して合成す
る方法に比べて合成に必要な焼成温度も低く、また、作
成された焼成体も極めて緻密な焼成体であり、超電導特
性が優れ、かつ安定した特性をもつセラミックス超電導
体が合成される。特に、グアニジン系の塩では、グアニ
ジン系有機物の水中での塩基度がII a族元素に比べて強
いためpH5〜9を終点とすることで容易に仕込み組成比
と同様の組成比をもつ各金属塩の共沈物を得ることがで
き、超電導特性が、再現性よく得られる。
Action In the superconductor synthesized by the method for producing a ceramic superconductor according to the present invention, each component of the constituent metals is a carbonate, an oxalate, a citrate, or a tartrate and a hydroxide depending on the organic base salt used. Because it co-precipitates as a mixture,
The particle size becomes very small, 1 μm or less, and even when the particles are mixed, they are uniformly mixed. Therefore, compared with the conventional method of synthesizing using a metal oxide or metal carbonate. The firing temperature required for synthesis is low, and the produced fired body is an extremely dense fired body, and a ceramic superconductor having excellent superconducting properties and stable properties can be synthesized. In particular, in the case of guanidine-based salts, the basicity of guanidine-based organic matter in water is stronger than that of Group IIa elements. A salt coprecipitate can be obtained, and superconducting properties can be obtained with good reproducibility.

実施例 以下、本発明の実施例について説明する。Examples Examples of the present invention will be described below.

(実施例1) Y:Ba:Cu=1:2:3のモル比で各金属硝酸塩を含む水溶液を
撹拌し、pH計でpH値を確認しながらグアニジン炭酸塩水
溶液を添加した。沈澱物は、pH4以上から確認されpH5付
近からグアニジン炭酸塩水溶液を添加してもpH値の変動
の少ない領域が現れ、沈殿物が生成する。その間pH値は
7付近まで徐々に上昇する。pH7〜9付近までは急激に
変動し、pH9より高い値で再びpHの変動が少なくなり、
この領域で銅の溶出が起こる。本実施例では、pH8を終
点としてグアニジン炭酸塩の添加を止め、静置後、濾過
し室温で予備乾燥させた後、アルミナルツボに入れ空気
中700℃で仮焼した。仮焼後、混合擂潰機で粉砕混合
し、アルミナルツボに入れ空気中900℃で焼成し、セラ
ミックス超電導体粉末を得た。
(Example 1) An aqueous solution containing each metal nitrate was stirred at a molar ratio of Y: Ba: Cu = 1: 2: 3, and an aqueous guanidine carbonate solution was added while confirming the pH value with a pH meter. The precipitate is confirmed from pH 4 or above, and even if the aqueous solution of guanidine carbonate is added from around pH 5, a region where the pH value does not fluctuate appears and a precipitate is formed. During that time, the pH value gradually rises to around 7. The pH fluctuates sharply around pH 7 to 9, and at higher values than pH 9, the pH fluctuates again,
Copper elution occurs in this region. In this example, the addition of guanidine carbonate was stopped at pH 8 as the end point, allowed to stand, filtered, pre-dried at room temperature, then placed in an alumina crucible and calcined at 700 ° C. in air. After the calcination, the mixture was crushed and mixed by a mixing and crushing machine, put into an alumina crucible and fired at 900 ° C. in air to obtain a ceramics superconductor powder.

このセラミックス超電導体粉末を硝酸水溶液に入れ二酸
化炭素の発生を調べたが二酸化炭素は発生しなかった。
同一組成比で酸化イットリウム,炭酸バリウム,酸化銅
を混合擂潰機で充分に粉砕混合し、前述と同様の操作を
行い作成した。
This ceramic superconductor powder was placed in a nitric acid aqueous solution to check the generation of carbon dioxide, but no carbon dioxide was generated.
Yttrium oxide, barium carbonate, and copper oxide having the same composition ratio were sufficiently pulverized and mixed by a mixing and crushing machine, and the same operation as described above was performed.

従来の方法で作成した粉末では、多重の二酸化炭素が発
生し、炭酸バリウムが分解して反応していないことが認
められた。このため従来の合成法、即ち、酸化イットリ
ウム,炭酸バリウム,酸化銅を原料とする試料について
は1000℃以上の温度で焼成し、粉砕混合した。
It was confirmed that in the powder prepared by the conventional method, multiple carbon dioxides were generated and barium carbonate was decomposed and did not react. For this reason, a conventional synthesis method, that is, a sample using yttrium oxide, barium carbonate, and copper oxide as raw materials was fired at a temperature of 1000 ° C. or higher and pulverized and mixed.

本実施例による製造法と従来の合成法である酸化物と炭
酸塩で合成したセラミックス超電導体粉末を各々1トン
/cm2以上で加圧成型し、空気中900℃で焼成した後、ダ
イヤモンドカッターで2mm角の棒状に切り出して電気抵
抗の温度特性を測定し、その結果を第1図に示した。酸
化物と炭酸塩で合成した場合、焼成温度が偏析やルツボ
との反応を起こす温度であるために特性の高いものが得
られにくく、また電流密度を高くした場合、臨界温度付
近で電気抵抗はゼロにならずテーリングを起こした。こ
れに対して、本実施例の製造法で合成した試料では電流
密度を高くしても臨界温度付近で電気抵抗はゼロであり
特性の優れたものであった。
1 ton of each of the ceramic superconductor powder synthesized by the production method according to the present embodiment and the conventional synthesis method of oxide and carbonate.
After pressure molding at a pressure of not less than / cm 2 and baking at 900 ° C. in air, a diamond cutter was used to cut a 2 mm square rod, and the temperature characteristics of electrical resistance were measured. The results are shown in FIG. When synthesized with oxides and carbonates, it is difficult to obtain those with high characteristics because the firing temperature is the temperature that causes segregation and reaction with the crucible, and when the current density is increased, the electrical resistance near the critical temperature is I made tailing instead of zero. On the other hand, the sample synthesized by the manufacturing method of the present example had excellent electrical characteristics with zero electric resistance near the critical temperature even when the current density was increased.

(実施例2) Sc:Ba:Cu=1:2:3のモル比で各金属硝酸塩を含む水溶液
を攪拌し、pH計でpH値を確認しながらグアニジン炭酸塩
水溶液を添加した。本実施例ではpH8を終点としてグア
ニジン炭酸塩水溶液を添加を止め、静置後、濾過し室温
で予備乾燥させた後、アルミナルツボに入れ空気中700
℃で仮焼した。仮焼後、混合擂潰機で粉砕混合し、アル
ミナルツボに入れ空気中900℃で焼成してセラミックス
超電導体粉末を得た。この超電導体粉末を1トン/cm2
上で加圧成型し、空気中900℃で焼成後、ダイヤモンド
カッターで2mm角の棒状に切り出して電気抵抗の温度特
性を測定した。比較のために酸化スカンジウム,炭酸バ
リウム,酸化銅を出発原料としてセラミックス超電導体
を作成し、電気抵抗の温度特性を測定した。合成は、空
気中1000℃以上の温度で焼成し、粉砕混合後、本実施例
の製造法で合成したものと同様の操作で電気抵抗測定試
料を作成した。
(Example 2) An aqueous solution containing each metal nitrate was stirred at a molar ratio of Sc: Ba: Cu = 1: 2: 3, and an aqueous guanidine carbonate solution was added while confirming the pH value with a pH meter. In this example, the addition of the guanidine carbonate aqueous solution was stopped at pH 8 as the end point, the mixture was allowed to stand, filtered and pre-dried at room temperature, then placed in an alumina crucible and placed in the air at 700
It was calcined at ℃. After calcination, the mixture was crushed and mixed by a mixing and crushing machine, put into an alumina crucible and fired at 900 ° C. in air to obtain a ceramics superconductor powder. This superconductor powder was pressure-molded at 1 ton / cm 2 or more, fired at 900 ° C. in air, and cut into a 2 mm square rod shape with a diamond cutter to measure temperature characteristics of electric resistance. For comparison, a ceramic superconductor was prepared using scandium oxide, barium carbonate, and copper oxide as starting materials, and the temperature characteristics of electric resistance were measured. The synthesis was carried out by firing in air at a temperature of 1000 ° C. or higher, pulverizing and mixing, and then preparing an electrical resistance measurement sample by the same operation as the one synthesized by the production method of this example.

その結果、電気抵抗は、100K付近で急激に減少しゼロに
なった。しかし、酸化物と炭酸塩で合成した試料では電
流密度を高くした場合、臨界温度付近で電気抵抗はゼロ
にならずテーリングをおこした。これに対して、本実施
例の製造法で合成した試料では電流密度を高くしても臨
界温度付近で電気抵抗はゼロであり特性の優れたもので
あった。
As a result, the electrical resistance rapidly decreased to around zero at 100K. However, in the sample synthesized with oxide and carbonate, when the current density was increased, the electrical resistance did not become zero near the critical temperature and tailing occurred. On the other hand, the sample synthesized by the manufacturing method of the present example had excellent electrical characteristics with zero electric resistance near the critical temperature even when the current density was increased.

さらに、本実施例ではAがSc,Y,La、BがSr,Baの場合の
みを述べたがこれに限らず、Aがランタノイド58〜71の
元素の場合についても、また、BがSr,Ba以外のII a族
の元素の場合についても本実施例と同様、酸化物と炭酸
塩を用いた場合に比べ合成温度が低くでき、しかも、均
一で緻密なものができ特性の優れたものが得られること
は当然であり、本発明の範疇に属するものである。
Further, in the present embodiment, the case where A is Sc, Y, La and B is Sr, Ba is described, but the present invention is not limited to this, and when A is an element of lanthanoids 58 to 71, B is Sr, Ba. Also in the case of the IIa group elements other than Ba, as in this example, the synthesis temperature can be lower than that in the case of using the oxide and the carbonate, and moreover, a uniform and dense one can be obtained, which has excellent characteristics. Naturally, it is obtained and belongs to the category of the present invention.

また、グアニジン塩のみ述べたが、グアニジンの水素を
他の有機物に置換した場合にも同様の効果を得ることは
当然であり、同様の効果を得ることは容易に推測される
ものである。有機塩基物塩として炭酸塩,シュウ酸塩の
み述べたが、クエン酸塩,酒石酸塩でも同様の効果を得
ることができる。
Although only the guanidine salt is described, it is natural that the same effect is obtained when the hydrogen of guanidine is replaced with another organic substance, and it is easily presumed that the same effect is obtained. Although only carbonates and oxalates have been described as organic base salts, similar effects can be obtained with citrates and tartrates.

発明の効果 本発明は、グアニジン炭酸塩,シュウ酸塩,グエン酸
塩,または酒石酸塩のうち少なくとも一種の塩を含む溶
液を用いてpH値を調整してセラミックス超電導体の構成
金属の各成分を含む溶液と混合し、共沈させることで微
細な粒子を均一に混合することができ、そのため従来に
比べて低い温度で合成することができ、しかも、均一で
緻密な超電導特性の優れたセラミックス超電導体を得る
ことができる。
EFFECTS OF THE INVENTION The present invention adjusts the pH value using a solution containing at least one salt of guanidine carbonate, oxalate, guenoate, or tartrate to adjust the components of the constituent metals of the ceramic superconductor. Fine particles can be uniformly mixed by mixing with a solution containing and coprecipitating, so that it is possible to synthesize at a lower temperature than before, and moreover, it is uniform and dense ceramic superconductivity with excellent superconducting properties. You can get the body.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の製造法で作成したセラミッ
クス超電導体の電気抵抗の温度特性図である。
FIG. 1 is a temperature characteristic diagram of the electric resistance of a ceramics superconductor prepared by the manufacturing method of one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/12 ZAA C // H01B 12/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 39/12 ZAA C // H01B 12/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成比0.5≦(A+B)/Cu≦2.5(AはSc,
Y,ランタノイド57〜71元素のうち少なくとも一種の元
素,BはII a族元素のうち少なくとも一種の元素)の元素
を含む溶液と、グアニジン系の炭酸塩、シュウ酸塩、ク
エン酸塩、酒石酸塩のうち少なくとも一種の塩を含む溶
液とを混合してpH5〜9を終点として金属成分を共沈さ
せ、焼成したことを特徴とするセラミックス超電導体の
製造法。
1. A composition ratio of 0.5 ≦ (A + B) /Cu≦2.5 (A is Sc,
Y, lanthanoid 57-71 element at least one element, B is at least one element of Group IIa element) and a solution containing guanidine carbonate, oxalate, citrate, tartrate A method for producing a ceramics superconductor, which comprises mixing a solution containing at least one salt among them to coprecipitate a metal component at a pH of 5 to 9 and firing.
JP62106721A 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor Expired - Fee Related JPH07106893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106721A JPH07106893B2 (en) 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106721A JPH07106893B2 (en) 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor

Publications (2)

Publication Number Publication Date
JPS63270319A JPS63270319A (en) 1988-11-08
JPH07106893B2 true JPH07106893B2 (en) 1995-11-15

Family

ID=14440815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106721A Expired - Fee Related JPH07106893B2 (en) 1987-04-30 1987-04-30 Manufacturing method of ceramics superconductor

Country Status (1)

Country Link
JP (1) JPH07106893B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791054B2 (en) * 1987-07-31 1995-10-04 三菱マテリアル株式会社 Manufacturing method of complex metal oxide
JPH01215711A (en) * 1988-02-24 1989-08-29 Oki Electric Ind Co Ltd Formation of superconducting thick film
US5252314A (en) * 1990-11-30 1993-10-12 Case Western Reserve University Method for producing coprecipitated multicomponent oxide powder precursors using guanidine oxalate as precipitating agent
KR102655140B1 (en) * 2020-09-14 2024-04-05 엔지케이 인슐레이터 엘티디 Composite sintered body, semiconductor manufacturing apparatus member, and method of producing composite sintered body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252925A (en) * 1987-04-10 1988-10-20 Kazuo Fueki Production of superconductive material

Also Published As

Publication number Publication date
JPS63270319A (en) 1988-11-08

Similar Documents

Publication Publication Date Title
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
EP0354537B1 (en) Method of manufacturing a powder of bi-based superconductive oxide containing lead and method of manufacturing of a sintered body therefrom
EP0452423B1 (en) Preparation of a uniform mixed metal oxide
JPH0764628B2 (en) Yttrium-barium-copper oxide powder and method for producing yttrium-barium-copper oxide superconducting sintered body
JPH0791054B2 (en) Manufacturing method of complex metal oxide
JPH01126204A (en) Synthesis of oxide mixture
EP0287064A2 (en) Process for producing superconductive ceramics
HUT52646A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
US5149682A (en) Manufacturing method for superconducting ceramics and products thereof
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH0753212A (en) High temperature superconductor and its production
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP2854338B2 (en) Copper oxide superconductor
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPS63303851A (en) Sintered body of superconducting ceramic
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP3151558B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
EP0321862A2 (en) Use of barium peroxide in superconducting Y1Ba2Cu3Ox and related materials
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JPS63252925A (en) Production of superconductive material
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same
JPH01141868A (en) Production of superconducting ceramics
JPS63288911A (en) Production of high temperature superconductor
EP0436723A1 (en) Oxide superconductor and method of producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees