JP2893405B2 - Bi-Pb-Sr-Ca-Cu-o based superconducting material - Google Patents

Bi-Pb-Sr-Ca-Cu-o based superconducting material

Info

Publication number
JP2893405B2
JP2893405B2 JP63150634A JP15063488A JP2893405B2 JP 2893405 B2 JP2893405 B2 JP 2893405B2 JP 63150634 A JP63150634 A JP 63150634A JP 15063488 A JP15063488 A JP 15063488A JP 2893405 B2 JP2893405 B2 JP 2893405B2
Authority
JP
Japan
Prior art keywords
substance
superconducting
temperature
phase
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63150634A
Other languages
Japanese (ja)
Other versions
JPH0244028A (en
Inventor
利夫 高田
幹夫 高野
嘉矢 三浦
潤 高田
喜一 小田
直一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP63150634A priority Critical patent/JP2893405B2/en
Publication of JPH0244028A publication Critical patent/JPH0244028A/en
Application granted granted Critical
Publication of JP2893405B2 publication Critical patent/JP2893405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は近時、液体窒素の沸点である77K以上、場合
によって更に高温の100K以上で超電導を示す可能性があ
るとして注目されているBi−Sr−Ca−Cu−O系物質にPb
を含有させた超電導物質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention has recently attracted attention as a possibility of exhibiting superconductivity at a boiling point of liquid nitrogen of 77K or higher, and in some cases even higher temperature of 100K or higher. -Pb for Sr-Ca-Cu-O-based material
The present invention relates to a superconducting substance containing.

〔従来の技術〕[Conventional technology]

最近、金属材料研究所よりBi1Sr1Ca1Cu2の組成の焼結
体が120Kで電気抵抗が減少しはじめ、約107Kまで急激に
電気抵抗が落ちた後、約75Kで電気抵抗がゼロになると
の発表があった。この発表によれば、この物質には電気
抵抗がゼロになる超電導遷移終了点が約105K(実験デー
タから外挿して得た値)の超電導相(高Tc相)と約75K
の超電導相(低Tc相)の2種類の超電導相が存在してい
て、全体が完全に高Tc相の試料とはなっていないとのこ
とであるが、この物質には、マイスナー効果が認められ
るとのことであった。
Recently, the electrical resistance of a sintered body of Bi 1 Sr 1 Ca 1 Cu 2 composition began to decrease at 120 K from the Institute for Metals, and then dropped sharply to about 107 K. Was announced. According to the announcement, this material has a superconducting transition end point of about 105K (value obtained by extrapolating from experimental data) and a superconducting phase (high Tc phase) of about 75K at which the electrical resistance becomes zero.
It is said that there are two types of superconducting phases (low Tc phase), and the whole is not completely a high Tc phase sample. However, this substance has a Meissner effect. It was to be done.

また、この物質は希土類を含まない超電導物質であ
り、かつY−Ba−Cu−O系に比して水等に安定である点
も特徴があると報じられた。
It has also been reported that this substance is a superconducting substance containing no rare earth elements, and is also characterized by being stable in water and the like as compared with the Y-Ba-Cu-O system.

この発表があった後、日,米のみならず世界各国で、
その追試が行われたが、その一例は次のとおりである。
After this announcement, not only in Japan and the United States, but also around the world,
An additional test was conducted, one example of which is as follows.

即ち、無機材研等は、Bi2(Ca,Sr)3Cu2O9或いはBi2
(Ca,Sr)3-xCu2O9の組成の焼結体が約110Kより電
気抵抗が低下し始め約70〜40Kでゼロとなることを発表
した。
In other words, the inorganic materials laboratory, etc., use Bi 2 (Ca, Sr) 3 Cu 2 O 9 or Bi 2
It has been announced that the electrical resistance of the sintered body having the composition of (Ca, Sr) 3-x Cu 2 O 9 -y starts to decrease from about 110K and becomes zero at about 70 to 40K.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

現在迄に発表されたBi−Ca−Sr−Cu−O系物質は高Tc
相,低Tc相が混在するものが殆どであり、その化学組成
も種々異なる。
Bi-Ca-Sr-Cu-O-based materials announced to date have high Tc
Phase and low Tc phase are mostly mixed, and their chemical compositions are also variously different.

また、本発明者等の追試によれば、この物質は製法的
にも、試料の融点ぎりぎりの熱処理温度で処理しなけれ
ば高臨界温度物質とならず、合成条件が極めて制限され
ていることが判明している。
According to additional tests by the present inventors, this material also requires a heat treatment temperature just below the melting point of the sample to produce a high critical temperature material, and synthesis conditions are extremely limited. It is known.

本発明者等はこの様な欠点を克服すべく、Bi−Sr−Ca
−Cu−O系にPbを添加するとともに、成分元素の組成比
を種々変え、また熱処理条件を種々変える等の研究を重
ね、超電導臨界温度が少なくとも液体窒素の沸点77K以
上で、条件次第では105K以上にも達する物質の合成に成
功し、本発明に到達したものである。
The present inventors have attempted to overcome these disadvantages by using Bi-Sr-Ca
While adding Pb to the -Cu-O system, changing the composition ratio of the component elements and changing the heat treatment conditions repeatedly, the superconducting critical temperature is at least the boiling point of liquid nitrogen 77K or more, and 105K depending on the conditions. The inventors have succeeded in synthesizing the above substances, and have reached the present invention.

〔課題を解決するための手段〕[Means for solving the problem]

即ち、本発明は金属材料研究所の発表したBi1Sr1Ca1C
u2OxにPbを含有させた物質、更にはこれに加うるに構成
各元素の組成比をも変化させた物質を提供するものであ
り、更に詳しくは、Bi−Pb−Sr−Ca−Cu−O系酸化物で
あって、構成元素Bi,Pb,Sr,Ca,Cuのモル数の比がBin,Pb
m,Srx,Cay,Cuz(n,m,x,y,zは0.5<2.6,0.01≦m≦1.5,
1.5≦x≦2.2,0.8≦y≦2.2,2.0≦z≦4.0の値を示す)
で表されるBi−Pb−Sr−Ca−Cu−O系超伝導物質で、10
0K以上の超電導臨界温度をもつBi−Pb−Sr−Ca−Cu−O
系超電導物質を提供するものである。
That is, the present invention relates to Bi 1 Sr 1 Ca 1 C
It is intended to provide a substance in which Pb is contained in u 2 O x , and in addition to this, a substance in which the composition ratio of each of the constituent elements is changed, and more specifically, Bi-Pb-Sr-Ca- a Cu-O-based oxide, constituent elements Bi, Pb, Sr, Ca, number of moles is Bi n of Cu, Pb
m , Sr x , Ca y , Cu z (n, m, x, y, z are 0.5 <2.6,0.01 ≦ m ≦ 1.5,
1.5 ≦ x ≦ 2.2, 0.8 ≦ y ≦ 2.2, 2.0 ≦ z ≦ 4.0)
Bi-Pb-Sr-Ca-Cu-O superconducting material represented by
Bi-Pb-Sr-Ca-Cu-O with superconducting critical temperature above 0K
A superconducting material is provided.

本発明は、この様に従来のBi−Sr−Ca−Cu−O系にPb
を含有させるものであるが、この際Pbの含有量、即ちm
値が1.5より大きいと、物質が半導体になることが多
く、逆に0.01より小さいと物質がPbを添加しない従来の
ものに比較して大差のないものとなる。
Thus, the present invention provides Pb to the conventional Bi-Sr-Ca-Cu-O system.
In this case, the content of Pb, that is, m
When the value is larger than 1.5, the substance often becomes a semiconductor, and when the value is smaller than 0.01, the substance is not much different from the conventional one in which Pb is not added.

上記の化合物は下記する方法によって製造することが
できる。
The above compound can be produced by the following method.

即ち、原料としてBi2O3,SrCO3,CaCO3,CuO及びPbOを出
発原料としてそれぞれ所望の比に秤量混合するか、Bi,P
b,Sr,Ca,Cuをそれぞれを所望の比に含む蓚酸塩を沈殿法
で合成する。この際Bi,Sr,Ca,Cuは、目的とする組成比
でよいが、Pbは、後程行う熱処理中蒸発するため、Pbの
目的とする組成比以上になるよう加える必要がある。そ
れら混合粉或いは蓚酸塩を、空気中で約800℃で加熱固
相反応を行わせるが、蓚酸塩を加熱する場合は約250℃
で熱分解を行わせた場合、約800℃での加熱反応を行う
のが好ましい。その後これを粉砕して約1000kg/cm2で加
圧しペレットとした後、更に810℃〜880℃で焼成すれば
よい。
That is, Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO and PbO as starting materials are weighed and mixed at desired ratios as starting materials, respectively, or Bi, P
An oxalate containing each of b, Sr, Ca, and Cu in a desired ratio is synthesized by a precipitation method. At this time, Bi, Sr, Ca, and Cu may have a desired composition ratio, but Pb evaporates during a heat treatment performed later, so that Pb needs to be added so as to have a target composition ratio of Pb or more. The mixed powder or oxalate is subjected to a solid-phase reaction by heating at about 800 ° C. in the air.
When the thermal decomposition is carried out at, it is preferable to carry out a heating reaction at about 800 ° C. Thereafter, this is pulverized and pressurized at about 1000 kg / cm 2 to form a pellet, and then fired at 810 ° C. to 880 ° C.

以下、生成するBi−Pb−Sr−Ca−Cu−O系超電導物質
の性状と、構成元素のモル数の比や製法上の条件との関
係について更に具体的に説明する。
Hereinafter, the relationship between the properties of the generated Bi-Pb-Sr-Ca-Cu-O-based superconducting material, the ratio of the number of moles of the constituent elements, and the manufacturing conditions will be described more specifically.

先ず、生成する超電導物質の超電導臨界温度は、構成
元素のモル数の比によって大きな影響をうける。Cuを2
として他の構成元素のモル数の比の範囲を示すと、Bi
0.7〜1.2Pb0.04〜0.2Sr1.0〜1.3Ca1.0〜1.3Cu2が好適な
範囲であり、この範囲の超電導物質は、100K以上の超電
導臨界温度を達成する確率が高い。
First, the superconducting critical temperature of the generated superconducting material is greatly affected by the molar ratio of the constituent elements. Cu 2
When the range of the ratio of the number of moles of other constituent elements is shown as
A preferable range is 0.7 to 1.2 Pb 0.04 to 0.2 Sr 1.0 to 1.3 Ca 1.0 to 1.3 Cu 2 , and a superconducting substance in this range has a high probability of achieving a superconducting critical temperature of 100K or more.

次に、製法であるが、本発明に係る超電導物質の製造
にあたり、原料粉末をそのまま混合して所定の組成比に
調製する場合と、沈澱法により所定の組成比の蓚酸塩、
クエン酸塩等のカルボン酸塩として沈澱させ調製する場
合とでは、後者の調製法を採用する方が、同一性状の目
的物を得る点で製法上の再現性が高くなり、また高Tc相
の比率の高い目的物も得易い。
Next, the production method, in the production of the superconducting material according to the present invention, in the case where the raw material powder is directly mixed to prepare a predetermined composition ratio, and oxalate having a predetermined composition ratio by a precipitation method,
In the case of preparing by precipitation as a carboxylate such as citrate, the latter preparation method is more reproducible in the production method in that the same target product is obtained, and the high Tc phase It is easy to obtain a target with a high ratio.

〔実施例〕〔Example〕

実施例1 原料粉末としてBi2O3,PbO,SrCO3,CaCO3及びCuOを構成
元素のモル比がBi2.0,Pb0.6,Sr2,Ca2,Cu3.6となるよう
に秤量し、これを乳鉢にて充分混合粉砕した後、アルミ
ナボード中に入れ、800℃ 24時間 電気炉中、空気中
で加熱固相反応を行わせて黒色粉末を得た。この粉末を
乳鉢で再び充分混合粉砕した後、約1000kg/cm2のプロレ
スで直径約1cm、厚さ約1mmの圧粉体ペレットとなし、こ
れを845℃で143時間電気炉中、空気中加熱焼成した。焼
成後の試料についてICAPにより構成元素のモル比を分析
した結果(Cuのモル数でノーマライズした結果)B
i1.98,Pb0.18,Sr2.00,Ca1.96,Cu3.60であった。
Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO were weighed as raw material powders such that the molar ratios of the constituent elements were Bi 2.0 , Pb 0.6 , Sr 2 , Ca 2 , and Cu 3.6. After sufficiently mixing and pulverizing in a mortar, the mixture was placed in an alumina board and subjected to a heating solid phase reaction in air at 800 ° C. for 24 hours in an electric furnace to obtain a black powder. After the powder was again thoroughly mixed and pulverized in a mortar, about 1000 kg / cm 2 of wrestling with a diameter of about 1 cm, a thickness of about 1mm of the green compact pellets and without, which in 143 hours an electric furnace at 845 ° C., in air heated Fired. Analysis of the molar ratios of the constituent elements of the fired sample by ICAP (results normalized by the number of moles of Cu) B
i 1.98 , Pb 0.18 , Sr 2.00 , Ca 1.96 , Cu 3.60 .

このものの電気抵抗の温度変化は第1図に示す通りで
ある。本図からも明らかな通り、この物質の電気抵抗は
120Kより落下し始め、115Kより急激に落下し約105Kでゼ
ロとなっており、この物質が極めて超電導特性に優れて
いることを認めた。
The temperature change of the electric resistance is as shown in FIG. As is clear from this figure, the electrical resistance of this substance is
It began to fall from 120K, dropped sharply from 115K, and became zero at about 105K, confirming that this substance has extremely excellent superconducting properties.

また、マイスナー効果測定結果は、第2図に示す通
り、約105K以上で超電導体となることが確認された。
In addition, as shown in FIG. 2, the measurement results of the Meissner effect confirmed that a superconductor was obtained at about 105 K or more.

更に、本物質は実用上機械的強度の充分な焼結体とな
っていた。
Further, this material was a sintered body having sufficient mechanical strength for practical use.

実施例2 実施例1における845℃での焼成時間を244時間に延長
し、他は同様に実施した。焼成後の試料についてICAPに
より組成を分析した結果(Cuのモル数でノーマライズし
た結果)その組成はBi1.96,Pb0.10,Sr2.00,Ca1.94,Cu
3.60であった。
Example 2 The same procedure was performed as in Example 1 except that the firing time at 845 ° C. was extended to 244 hours. The result of analyzing the composition of the fired sample by ICAP (the result of normalizing by the number of moles of Cu) is Bi 1.96 , Pb 0.10 , Sr 2.00 , Ca 1.94 , Cu
It was 3.60 .

本実施例で得た物質の、電気抵抗の温度変化は第3図
に示す通りである。本図からも明らかな通り、この物質
の電気抵抗は115Kより落下し始め、110Kより急激に落下
し約107Kでゼロとなっており、この物質が極めて超電導
特性に優れていることを認めた。
The temperature change of the electric resistance of the substance obtained in this example is as shown in FIG. As is clear from this figure, the electric resistance of this substance began to fall from 115K, dropped sharply from 110K, and became zero at about 107K, confirming that this substance has extremely excellent superconducting properties.

実施例3 Bi,Pb,Sr,Ca,Cuのそれぞれの硝酸塩の混合水溶液に蓚
酸アンモニウムを加え成分元素の組成比がBi1.92,Pb
0.48,Sr2.0,Ca2.0,Cu3.2の蓚酸塩を沈殿させ、これを10
0℃で乾燥、250℃で加熱後800℃ 24時間電気炉中、空
気中で加熱して黒色粉末を合成した。これを再粉砕混合
し、約1000kg/cm2のプレスで直径1cm、厚さ1mmの圧粉体
ペレットとして、これを845℃ 48時間電気炉中、空気
中加熱焼成した。この試料をICAPで分析した結果(Cuの
モル数でノーマライズした結果)Bi1.88,Pb0.20,S
r2.00,Ca1.96,Cu3.20であった。
Example 3 Ammonium oxalate was added to a mixed aqueous solution of nitrates of Bi, Pb, Sr, Ca, and Cu, and the composition ratio of component elements was Bi 1.92 , Pb
Oxalates of 0.48 , Sr 2.0 , Ca 2.0 and Cu 3.2 were precipitated,
After drying at 0 ° C and heating at 250 ° C, the mixture was heated in an electric furnace at 800 ° C for 24 hours in air to synthesize a black powder. This was reground and mixed, and pressed into a green compact having a diameter of 1 cm and a thickness of 1 mm with a press of about 1000 kg / cm 2 and fired in air at 845 ° C. for 48 hours in an electric furnace. The result of analyzing this sample by ICAP (the result of normalizing by the number of moles of Cu) Bi 1.88 , Pb 0.20 , S
r 2.00 , Ca 1.96 and Cu 3.20 .

このものの電気抵抗の温度変化は第4図に示すように
約120Kより急激に落下し約105Kでゼロとなった。また本
物質のマイスナー効果及び機械的強度は実施例1の場合
と略同様の結果を示した。
As shown in FIG. 4, the temperature change of the electric resistance sharply dropped from about 120K and became zero at about 105K. In addition, the Meissner effect and the mechanical strength of this substance showed substantially the same results as in Example 1.

実施例4 Bi,Pb,Sr,Ca,Cuのそれぞれの硝酸塩の混合水溶液に蓚
酸アンモニウムを加え成分元素の組成比がBi1.92,Pb
0.48,Sr2.0,Ca2.0,Cu3.2の蓚酸塩を沈殿させ、これを10
0℃で乾燥、250℃で加熱後800℃ 24時間電気炉中、空
気中で加熱して黒色粉末を合成した。これを再粉砕混合
し、約1000kg/cm2のプレスで直径1cm、厚さ1mmの圧粉体
ペレットとして、これを835℃ 92時間電気炉中、空気
中加熱焼成した。この試料をICAPで分析した結果(Cuの
モル数でノーマライズした結果)Bi1.82,Pb0.08,S
r2.00,Ca1.90,Cu3.20であった。
Example 4 Ammonium oxalate was added to a mixed aqueous solution of respective nitrates of Bi, Pb, Sr, Ca, and Cu, and the composition ratio of component elements was Bi 1.92 , Pb
Oxalates of 0.48 , Sr 2.0 , Ca 2.0 and Cu 3.2 were precipitated,
After drying at 0 ° C and heating at 250 ° C, the mixture was heated in an electric furnace at 800 ° C for 24 hours in air to synthesize a black powder. This was re-crushed and mixed, and pressed into a compact having a diameter of 1 cm and a thickness of 1 mm with a press of about 1000 kg / cm 2 to be fired and heated in air at 835 ° C. for 92 hours in an electric furnace. Analysis results of this sample by ICAP (results normalized by moles of Cu) Bi 1.82 , Pb 0.08 , S
r 2.00 , Ca 1.90 and Cu 3.20 .

このものの電気抵抗の温度変化は第5図に示すように
約120Kより急激に落下し約107Kでゼロとなった。このも
ののX線回折図は第6図の如く高温相は90%以上となっ
た。また本物質のマイスナー効果は第7図の如く高温相
は約95%以上となっていることを認めた。
As shown in FIG. 5, the temperature change of the electric resistance rapidly dropped from about 120K and became zero at about 107K. The X-ray diffraction pattern of this sample showed that the high-temperature phase was 90% or more as shown in FIG. The Meissner effect of this substance was confirmed to be about 95% or more in the high temperature phase as shown in FIG.

実施例5 Bi,Pb,Sr,Ca,Cuのそれぞれの硝酸塩の混合水溶液に蓚
酸アンモニウムを加え成分元素の組成比がBi1.92,Pb
0.48,Sr2.0,Ca2.0,Cu3.2の蓚酸塩を沈殿させ、これを10
0℃で乾燥、250℃で加熱後800℃ 24時間電気炉中、空
気中で加熱して黒色粉末を合成した。これを再粉砕混合
し、約1000kg/cm2のプレスで直径1cm、厚さ1mmの圧粉体
ペレットとして、これを830℃ 72時間電気炉中、空気
中加熱焼成した。この試料をICAPで分析した結果(Cuの
モル数でノーマライズした結果)Bi1.90,Pb0.20,S
r2.00,Ca1.96,Cu3.20であった。
Example 5 Ammonium oxalate was added to a mixed aqueous solution of nitrates of Bi, Pb, Sr, Ca, and Cu, and the composition ratio of component elements was Bi 1.92 , Pb
Oxalates of 0.48 , Sr 2.0 , Ca 2.0 and Cu 3.2 were precipitated,
After drying at 0 ° C and heating at 250 ° C, the mixture was heated in an electric furnace at 800 ° C for 24 hours in air to synthesize a black powder. This was re-crushed and mixed, and pressed into a compact of 1 cm in diameter and 1 mm in thickness by a press of about 1000 kg / cm 2 and fired in an electric furnace at 830 ° C. for 72 hours in the air. The result of analyzing this sample by ICAP (the result of normalizing by the number of moles of Cu) Bi 1.90 , Pb 0.20 , S
r 2.00 , Ca 1.96 and Cu 3.20 .

このものの電気抵抗の温度変化は約120Kより急激に落
下し約107Kでゼロとなった。このもののX線回折図は第
8図の如く高温相は約95%以上であった。また本物質の
マイスナー効果は実施例4の場合と略同様の結果を示し
た。
The temperature change of the electrical resistance of this one dropped sharply from about 120K and became zero at about 107K. Its X-ray diffraction pattern showed that the high-temperature phase was about 95% or more as shown in FIG. The Meissner effect of this substance showed substantially the same results as in Example 4.

実施例6 Bi,Pb,Sr,Ca,Cuのそれぞれの硝酸塩の混合水溶液に蓚
酸アンモニウムを加え成分元素の組成比がBi1.4,Pb0.6,
Sr2.0,Ca2.0,Cu3.6の蓚酸塩を沈殿させ、これを100℃で
乾燥、250℃で加熱後800℃ 24時間電気炉中、空気中で
加熱して黒色粉末を合成した。これを再粉砕混合し、約
1000kg/cm2のプレスで直径1cm、厚さ1mmの圧粉体ペレッ
トとして、これを845℃ 150時間電気炉中、空気中加熱
焼成した。この試料をICAPで分析した結果(Cuのモル数
でノーマライズした結果)Bi1.4,Pb0.09,Sr1.96,C
a1.90,Cu3.60であった。
Example 6 Ammonium oxalate was added to a mixed aqueous solution of respective nitrates of Bi, Pb, Sr, Ca, and Cu, and the composition ratio of the constituent elements was Bi 1.4 , Pb 0.6 ,
The oxalate of Sr 2.0 , Ca 2.0 , and Cu 3.6 was precipitated, dried at 100 ° C., heated at 250 ° C., and then heated in air in an electric furnace at 800 ° C. for 24 hours to synthesize a black powder. This is crushed and mixed.
As a green compact pellet having a diameter of 1 cm and a thickness of 1 mm with a press of 1000 kg / cm 2 , this was heated and fired in air in an electric furnace at 845 ° C. for 150 hours. The result of analyzing this sample by ICAP (the result of normalizing by the number of moles of Cu) Bi 1.4 , Pb 0.09 , Sr 1.96 , C
a 1.90 and Cu 3.60 .

このものの電気抵抗の温度変化は約120Kより急激に落
下し約107Kでゼロとなった。ものもののX線回折図およ
びマイスナー効果測定の結果高温相は約95%程度含有さ
れることが認められた。
The temperature change of the electrical resistance of this one dropped sharply from about 120K and became zero at about 107K. As a result of X-ray diffraction and Meissner effect measurement, it was confirmed that the high-temperature phase was contained at about 95%.

〔発明の効果〕〔The invention's effect〕

本発明によるBi−Pb−Sr−Ca−Cu−O系物質は少なく
とも液体窒素沸点77K以上に超電導臨界温度があり、さ
らに高温の105K以上に臨界温度をもつ超電導物質であ
る。
The Bi-Pb-Sr-Ca-Cu-O-based material according to the present invention is a superconducting material having a superconducting critical temperature at least at a liquid nitrogen boiling point of 77K or more and a critical temperature at a high temperature of 105K or more.

この物質の製法は上記の如く容易であり、特に沈澱法
による場合は、前述したように製法上の再現性が高くな
り、又高Tc相の比率の高い目的物も得やすいという特徴
をもっている。
As described above, the method for producing this substance is easy. Particularly, in the case of the precipitation method, the reproducibility in the production method is high as described above, and the target substance having a high ratio of a high Tc phase is easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、実施例1で得た物質の電気抵抗−温度相関図
であり、第2図は同物質の複素帯磁率−温度相関図であ
る。 第3図は実施例2で得た物質の、第4図は実施例3で得
た物質の、夫々電気抵抗−温度相関図である。 第5図は実施例4で得た物質の電気抵抗−温度相関図、
第6図は同実施例で得た物質のX線回折図、第7図は同
実施例で得た物質の複素帯磁率−温度相関図を夫々示
す。 第8図は実施例5で得た物質のX線回折図である。
FIG. 1 is an electric resistance-temperature correlation diagram of the substance obtained in Example 1, and FIG. 2 is a complex susceptibility-temperature correlation diagram of the substance. FIG. 3 is an electric resistance-temperature correlation diagram of the substance obtained in Example 2, and FIG. 4 is an electric resistance-temperature correlation diagram of the substance obtained in Example 3. FIG. 5 is an electric resistance-temperature correlation diagram of the substance obtained in Example 4,
FIG. 6 shows an X-ray diffraction diagram of the substance obtained in the example, and FIG. 7 shows a complex susceptibility-temperature correlation diagram of the substance obtained in the example. FIG. 8 is an X-ray diffraction diagram of the substance obtained in Example 5.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 直一 大阪府吹田市佐竹台1―2 佐竹台ハイ ツD―17―203 (56)参考文献 特開 平1−242421(JP,A) 特開 平1−215721(JP,A) 特開 平1−224229(JP,A) 特開 平2−9721(JP,A) 特開 平1−275433(JP,A) 特表 平2−504261(JP,A) 国際公開89/7579(WO,A1) (58)調査した分野(Int.Cl.6,DB名) C01G 1/00 - 35/00 H01L 39/00 - 39/24 H01B 12/00 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoichi Yamamoto 1-2 Satakedai, Suita-shi, Osaka Satakedai Heights D-17-203 (56) References JP-A-1-242421 (JP, A) JP-A-1-215721 (JP, A) JP-A-1-224229 (JP, A) JP-A-2-9721 (JP, A) JP-A-1-275433 (JP, A) JP, A) WO 89/7579 (WO, A1) (58) Fields investigated (Int. Cl. 6 , DB name) C01G 1/00-35/00 H01L 39/00-39/24 H01B 12/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Bi−Pb−Sr−Ca−Cu−O系酸化物であっ
て、該酸化物の構成元素Bi,Pb,Sr,Ca,Cuのモル数の比
が、Bin,Pbm,Srx,Cay,Cuz(n,m,x,y,zは0.5<n<2.6,
0.01≦m≦1.5,1.5≦x≦2.2,0.8≦y≦2.2,2.0≦z≦
4の値を示す)であり、かつ、100K以上で電気抵抗が零
となるBi−Pb−Sr−Ca−Cu−O系超電導物質。
1. A Bi-Pb-Sr-Ca- Cu-O -based oxide, constituent elements of Bi oxide, Pb, Sr, Ca, is the ratio of the number of moles of Cu, Bi n, Pb m , Sr x , Ca y , Cu z (n, m, x, y, z are 0.5 <n <2.6,
0.01 ≦ m ≦ 1.5,1.5 ≦ x ≦ 2.2,0.8 ≦ y ≦ 2.2,2.0 ≦ z ≦
4 which shows a value of 4), and has an electrical resistance of zero at 100 K or more, a Bi-Pb-Sr-Ca-Cu-O-based superconducting material.
JP63150634A 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material Expired - Fee Related JP2893405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150634A JP2893405B2 (en) 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11183188 1988-05-09
JP63-111831 1988-05-09
JP63150634A JP2893405B2 (en) 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material

Publications (2)

Publication Number Publication Date
JPH0244028A JPH0244028A (en) 1990-02-14
JP2893405B2 true JP2893405B2 (en) 1999-05-24

Family

ID=26451132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150634A Expired - Fee Related JP2893405B2 (en) 1988-05-09 1988-06-17 Bi-Pb-Sr-Ca-Cu-o based superconducting material

Country Status (1)

Country Link
JP (1) JP2893405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644878B2 (en) * 2005-06-08 2011-03-09 Dowaエレクトロニクス株式会社 Black electrode and plasma display panel

Also Published As

Publication number Publication date
JPH0244028A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
US4861753A (en) Process for making superconductors using barium nitrate
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
JP2636057B2 (en) Manufacturing method of oxide superconductor
JP2879448B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JP2879447B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
WO1988010515A1 (en) Improved process for making 90 k superconductors
JP3151558B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH01242419A (en) Bi-pb-ca-sr-cu-o based superconducting material
JP2648524B2 (en) Ceramics and their manufacturing method
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JP2831755B2 (en) Oxide superconductor
EP0446552B1 (en) Superconductive compounds and process for producing said compounds
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JP2859283B2 (en) Oxide superconductor
JP2838312B2 (en) Oxide superconducting material
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPH01320226A (en) Production of bismuth-containing oxide superconducting material
JPH02271920A (en) Production of superconductor oxide material
JPH01278458A (en) Production of superconductor
JPH03146416A (en) Oxide superconductor
JPH03223118A (en) Production of oxide superconductor
JPH01278461A (en) Production of superconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees