JPH03146416A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH03146416A
JPH03146416A JP1282701A JP28270189A JPH03146416A JP H03146416 A JPH03146416 A JP H03146416A JP 1282701 A JP1282701 A JP 1282701A JP 28270189 A JP28270189 A JP 28270189A JP H03146416 A JPH03146416 A JP H03146416A
Authority
JP
Japan
Prior art keywords
sample
powder
content
superconducting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1282701A
Other languages
Japanese (ja)
Other versions
JP2748942B2 (en
Inventor
Takahiro Wada
隆博 和田
Takeshi Sakurai
健 桜井
Noburo Suzuki
鈴木 信郎
Takayuki Miyatake
宮武 孝之
Hisao Yamauchi
尚雄 山内
Naoki Koshizuka
直己 腰塚
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kobe Steel Ltd
Mitsubishi Materials Corp
Panasonic Holdings Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Tokyo Electric Power Co Inc
Kobe Steel Ltd
Mitsubishi Materials Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, Tokyo Electric Power Co Inc, Kobe Steel Ltd, Mitsubishi Materials Corp, Matsushita Electric Industrial Co Ltd filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP1282701A priority Critical patent/JP2748942B2/en
Priority to EP90115823A priority patent/EP0413360B1/en
Priority to DE69018898T priority patent/DE69018898T2/en
Priority to KR1019900012912A priority patent/KR0160509B1/en
Publication of JPH03146416A publication Critical patent/JPH03146416A/en
Priority to US08/068,587 priority patent/US5468724A/en
Application granted granted Critical
Publication of JP2748942B2 publication Critical patent/JP2748942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce the content of Ba as a poison and widen the selectivity of the raw Ba material by allowing the superconductor to have a specified chemical composition formula. CONSTITUTION:(i) The powder of Ln2O3 (Ln is Y, Nd, Sm, Eu, Gd, Dy, Ho, Er and Tm), (ii) CaO powder, (iii) Ba(NO3)2 powder, (iv) Sr(NO3)2 powder and (v) CuO powder are mixed in an inert atmosphere, The mixture is calcined in a gaseous oxygen current, and the product is crushed and formed to obtain a formed body. The body is then presintered, heat-treated, crushed and formed to obtain a formed body, which is sintered to obtain the oxide superconductor having a chemical composition formula shown by the formula ((x) is 0.001-0.3 and (y) is 0.001-0.6).

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、IB電導転移温度C以下、Tcと略す)が液
体窒素温度(絶対温度77K)を越える酸化物超電導体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an oxide superconductor whose IB conductivity transition temperature C or lower (abbreviated as Tc) exceeds liquid nitrogen temperature (absolute temperature 77 K).

[従来の技術] 液体窒素温度を越えるTcを示す酸化物MJ電導体とし
て2重のCu−0重次元鎖を持つ層状ペロプスカイト型
の結晶構造を有する80に級のLnBa2Cu a O
s (L n =Y + N d + S m 、E 
u + G d 、D y * Ho 、E r * 
TI)が知られている( Phys、rev、B、 、
 39(1989)7347)。
[Prior Art] An 80-grade LnBa2Cu a O having a layered perovskite crystal structure with double Cu-0 heavy-dimensional chains is used as an oxide MJ conductor that exhibits Tc exceeding the liquid nitrogen temperature.
s (L n = Y + N d + S m , E
u + G d , D y * Ho , E r *
TI) is known (Phys, rev, B, ,
39 (1989) 7347).

その結晶構造は、第1図のように決定されている。Its crystal structure has been determined as shown in FIG.

さらに、Yの一部をCaで置換することにより90Kま
でTcを上昇させることが可能であることも知られてい
る(Nature、、341(1989)41)。
Furthermore, it is known that it is possible to increase Tc to 90K by substituting a part of Y with Ca (Nature, 341 (1989) 41).

このような酸化物超電導体の合成には、炭酸ナトリウム
(NaCO3)を反応促進剤として原料に混合し800
℃以下の温度で長時間(例えば50時間以上)の焼成を
行う方法(Nature、 、338(1989)32
8)や、酸素ガスと不活性ガスの混合雰囲気中で熱間静
水圧プレスを用いる方法(特願平1−213730)が
既に提案されている。
To synthesize such an oxide superconductor, sodium carbonate (NaCO3) is mixed with the raw material as a reaction accelerator, and 800
A method of firing for a long time (for example, 50 hours or more) at a temperature of ℃ or less (Nature, 338 (1989) 32
8) and a method using hot isostatic pressing in a mixed atmosphere of oxygen gas and inert gas (Japanese Patent Application No. 1-213730) have already been proposed.

[本発明が解決しよつとする課題] しかしながら、この超電導酸化物にはY B a2Cu
a−0・の組成で13.33モル%のBaを含んでおり
、その合成には劇物であるバリウム化合物(例えば、B
aO,BaCO5,Ba(NO3)t)を用いなければ
ならず、製造過程での取扱には十分な対策を講じなけれ
ばならない。また、低温あるいは高圧でこの物質の合成
が進行するため、安価な炭酸バリウム(B aC03)
は、その分解温度が900 ’C以上の高温であること
から、この超電導物質の出発原料にすることができず、
他の高価な化合物を出発原料にしなければならない。
[Problems to be solved by the present invention] However, this superconducting oxide contains YBa2Cu
It has a composition of a-0. containing 13.33 mol% Ba, and its synthesis requires the use of barium compounds (e.g. B
aO, BaCO5, Ba(NO3)t) must be used, and sufficient measures must be taken to handle them during the manufacturing process. In addition, since the synthesis of this substance proceeds at low temperatures or high pressures, barium carbonate (BaC03) is inexpensive.
cannot be used as a starting material for this superconducting material because its decomposition temperature is over 900'C.
Other expensive compounds must be used as starting materials.

本発明は、これらの問題点を解決するためになされたも
のである。
The present invention has been made to solve these problems.

本発明の目的は、劇物であるBaの含有量を減らすと共
にBa原料の選択性を拡大することにある。
The purpose of the present invention is to reduce the content of Ba, which is a deleterious substance, and to expand the selectivity of Ba raw materials.

[課題を解決するための手段] 前記目的を達成するために、本発明の酸化物超電導体は
、(Ln+−xcax)(Bat−vsry)2cua
osの組成を有し、LnがY、Nd,Sm,Eu、Gd
、DLH。
[Means for Solving the Problem] In order to achieve the above object, the oxide superconductor of the present invention has the following properties: (Ln+-xcax)(Bat-vsry)2cua
os composition, Ln is Y, Nd, Sm, Eu, Gd
, D.L.H.

Er、Tg+のうちの1つあるいは複数の任意の組み合
せであり、Xがo、ooi以上0.3以下の範囲にあり
、yが0.001以上0.6以下の範囲にあることを特
徴とする。
Any combination of one or more of Er, Tg+, characterized in that X is in the range of o, ooi or more and 0.3 or less, and y is in the range of 0.001 or more and 0.6 or less do.

[作用] 前述した手段によれば、従来技術で製造されるTc=8
0に級の超電導体Y B a2Cua O++にはBa
が13.33モル%含有されていて、Baの供給源には
硝酸バリウム(Ba(NO3)2)を使用しているのに
対して、(Ln+−xcax)(Bat−ySry)2
cuiO1lの組成をイfし、LnがY、Nd,Sm,
Eu、Gd、Dy、Ho、Er、Tiのうちの1つある
いは複数の任意の組み合せであり、Xがo、oot以上
0.3以下の範囲にあり、yが0.001以上0.6以
下の範囲にある本実施例では、Baの供給源に安価なり
aCO3を使用してもTc=80に以上を示し、Baの
含1’Tfflも5.33モル%まで低減することが可
能になる。さらに、熱重量分析の結果、本発明の超電導
体は、850″C付近まで酸素の出入りがなく安定に存
在するというYBa2CuaOe超電導材料の特長を失
っていないことも確認された。
[Operation] According to the above-mentioned means, Tc=8 manufactured by the conventional technology
0 class superconductor Y B a2Cua O++ contains Ba
barium nitrate (Ba(NO3)2) is used as the source of Ba, whereas (Ln+-xcax)(Bat-ySry)2
If the composition of cuiO1l is set, Ln is Y, Nd, Sm,
Any combination of one or more of Eu, Gd, Dy, Ho, Er, and Ti, where X is in the range of o, oot or more and 0.3 or less, and y is 0.001 or more and 0.6 or less In this example, which is within the range of , even if cheap aCO3 is used as the Ba supply source, Tc = 80 or higher is achieved, and the Ba content 1'Tffl can be reduced to 5.33 mol%. . Further, as a result of thermogravimetric analysis, it was confirmed that the superconductor of the present invention does not lose the feature of the YBa2CuaOe superconducting material that it exists stably without oxygen entering or exiting up to around 850''C.

従って、本発明の超電導体によれば、Baの含有率が低
く、原料選択性の広い80に級の超電導遷移温度を示す
Y B 82Cu40 m超電導材料を作製することが
できる。
Therefore, according to the superconductor of the present invention, it is possible to produce a YB82Cu40m superconducting material that has a low Ba content and exhibits a superconducting transition temperature of 80 degrees with wide raw material selectivity.

[発明の実施例コ 以下、本発明の実施例について説明する。[Embodiments of the invention] Examples of the present invention will be described below.

まず、本発明による酸化物超電導体の主成分であるYB
a2Cu40sの基本構造を第1図に示す。第1図にお
いて、1はY、  2はBas  3はCu、  4は
線分の交差点に配置されているOである。
First, YB, which is the main component of the oxide superconductor according to the present invention,
The basic structure of a2Cu40s is shown in FIG. In FIG. 1, 1 is Y, 2 is Bas, 3 is Cu, and 4 is O located at the intersection of the line segments.

本発明の酸化物超電導体の(Ln+−、Ca、)(Ba
t−v S r、 )l! Cu40 @は、第1図に
示すYBa2Cu*Oeの構造の中でYの位置にCa、
 L nが置換し、Baの位置にSrが置換することが
本発明の一つの特徴である。
(Ln+-,Ca,)(Ba
tv S r, )l! Cu40 @ has Ca,
One feature of the present invention is that Ln is substituted and Sr is substituted at the Ba position.

〔実施例1〕 純度99.9%以上のLn2O3,CaO,Ba(NO
s)2+ S r(N 03)2. CuOの各種粉末
を化学組成式(Ln+−xcax)(Bat−gsr、
)2cu40sにおいてx=0.0.0.001,0.
01,0.1,0.3,0.5.y=0゜0.0.00
1.0.01,0.1.0.3,0.5,0.6.0,
7の各組み合せの組成で不活性雰囲気中で混合し、酸素
気流中で750℃で10時間(hr)、その後750℃
から900℃の間の任意の温度で10時間の仮焼した。
[Example 1] Ln2O3, CaO, Ba(NO
s)2+ S r(N 03)2. Various CuO powders have chemical composition formulas (Ln+-xcax) (Bat-gsr,
)2cu40s x=0.0.0.001,0.
01, 0.1, 0.3, 0.5. y=0゜0.0.00
1.0.01, 0.1.0.3, 0.5, 0.6.0,
7. Mix in an inert atmosphere and heat at 750°C for 10 hours (hr) in an oxygen stream, then at 750°C.
and 900° C. for 10 hours.

仮焼後、試料を粉砕し矩形に成形した。この成形体を酸
素気流中で800°Cから950℃の間の温度で5時間
予備焼結した。この予備焼結体を1000 kg/cm
2の圧力下でAr80%−0220%のガス雰囲気下で
熱処理を行った。
After calcining, the sample was crushed and shaped into a rectangle. This compact was presintered for 5 hours at a temperature between 800°C and 950°C in an oxygen stream. This preliminary sintered body was heated to 1000 kg/cm
The heat treatment was carried out under a pressure of 2 and 2 in an Ar 80%-0220% gas atmosphere.

200℃/hrの昇温速度で1000℃まで加熱し、こ
の温度で10時間保持した。冷却は200℃/hrで3
00℃まで行い、1気圧まで減圧したあと試料を空気中
に取り出した。この試料を再び粉砕して成形した。この
成形体を酸素気流中800″Cで20時間焼結して所定
の試料を得た。前記Ln2O3のLnは、Y、Nd,S
m,Eu、Gd、Dy、Ho、Er、T11のうちの一
つあるいは所定の組み合せである。この組み合せは、例
えば、Y:Er=1:lX Y:Eu=1:1、Y:H
o=1:1である。
It was heated to 1000°C at a heating rate of 200°C/hr and held at this temperature for 10 hours. Cooling is 200℃/hr 3
After heating to 00°C and reducing the pressure to 1 atm, the sample was taken out into the air. This sample was ground again and shaped. This molded body was sintered at 800''C in an oxygen stream for 20 hours to obtain a specified sample. Ln of the Ln2O3 was Y, Nd, S
It is one or a predetermined combination of m, Eu, Gd, Dy, Ho, Er, and T11. This combination is, for example, Y:Er=1:lX Y:Eu=1:1, Y:H
o=1:1.

この様にして得られた(Ln+−、Ca、)(B al
−、S r、)2 Cua Osの焼結体の構成相を粉
末X線回折を用いて確認した。得られた試料の主成分は
いずれもYBaaCu40i型の結晶構造を有すること
を確認した。x==0.1.y=0−3の粉末X線回折
図形を第2図に示した。図中の数字はY B a2Cu
408型構造にもとづいたピークの指数である。この試
料は超電導相単一相であった。X=O,Oから0.15
以下、y=0.0から0.5以下の組成範囲ではいずれ
の試料も超電導相型−相であった。試料の構成相を第1
表にまとめて示した。
The thus obtained (Ln+-, Ca,) (B al
The constituent phases of the sintered body of -, S r, )2 Cua Os were confirmed using powder X-ray diffraction. It was confirmed that the main components of the obtained samples all had a YBaaCu40i type crystal structure. x==0.1. The powder X-ray diffraction pattern for y=0-3 is shown in FIG. The numbers in the diagram are YB a2Cu
This is a peak index based on the 408 type structure. This sample was a single superconducting phase. X=O, O to 0.15
Hereinafter, in the composition range of y=0.0 to 0.5 or less, all samples were in the superconducting phase type-phase. The constituent phases of the sample are
They are summarized in the table.

超電導特性を抵抗測定により調べた。その結果を第3図
及び第1表に示した。本実施例の(Lr++−x Ca
、)(B a、−、S ry)2Cua 0sa71S
導体試料は、第3図及び第1表かられかるように、Ca
の含有量がO≦X≦0.3.Srの含1!rmがO≦y
≦0.6の範囲の試料はいずれも80に級のB電導転移
温度を示す。また、交流帯磁率の測定でも80に以上の
温度から反磁性が観測された(第4図)。これは、80
に以上の温度で超電導性が発現していることを示し、抵
抗測定の結果を裏付けている。この超電導転移温度は、
液体窒素の沸点(77K)よりも高い温度である。
The superconducting properties were investigated by resistance measurements. The results are shown in FIG. 3 and Table 1. (Lr++-x Ca
, ) (B a, -, S ry)2Cua 0sa71S
As can be seen from Fig. 3 and Table 1, the conductor sample had Ca
The content of O≦X≦0.3. Including 1 of Sr! rm is O≦y
All samples in the range ≦0.6 exhibit B conduction transition temperatures of the order of 80. In addition, diamagnetic properties were observed at temperatures above 80°C in measurements of AC magnetic susceptibility (Figure 4). This is 80
This shows that superconductivity occurs at temperatures above , supporting the results of resistance measurements. This superconducting transition temperature is
This temperature is higher than the boiling point (77K) of liquid nitrogen.

これらの試料におけるBaの含有率についての分析値を
第1表にまとめて示した。この結果を見ると、Srの含
有量が増加するとともにBaの含有率が低下し、製造上
有利になることがわかる。S「の含有ff1yが0.6
の場合には、Baの含有量は、約5モル%になる。しか
しながら、あまりSrの含有量が多くなると、超電導転
移温度(Tc)が低下する。
The analytical values for the Ba content in these samples are summarized in Table 1. Looking at the results, it can be seen that as the Sr content increases, the Ba content decreases, which is advantageous in manufacturing. S' content ff1y is 0.6
In this case, the Ba content is about 5 mol%. However, if the Sr content increases too much, the superconducting transition temperature (Tc) decreases.

試料番号26のy=0.7の試料の場合には、T。In the case of sample number 26 with y=0.7, T.

は40Kまで低下してしまう。will drop to 40K.

第5図にx=o、1.y=0.3の組成を持つ試料の熱
重量分析の結果を示す。常温から850℃付近まで重量
変化を示さず、850℃から900℃で重量減少を示す
ことから、従来のYBa2Cu40、組成の超電導酸化
物同様、850℃という高温に至るまで酸素の出入りも
なく安定に存在することが確認できた。
In FIG. 5, x=o, 1. The results of thermogravimetric analysis of a sample having a composition of y=0.3 are shown. It shows no weight change from room temperature to around 850°C, and shows weight loss from 850°C to 900°C, so it is stable without oxygen entering or exiting up to a high temperature of 850°C, just like the conventional YBa2Cu40 superconducting oxide with the composition. We confirmed that it exists.

以上の説明かられかるように、本実施例1によれば、従
来のYBaaCuaO*組成の超電導酸化物では、13
.33モル%に及ぶBaが含有され、その製造工程中の
取扱には十分な対策を講じていたのに対し、(L n+
−x CaxXB at−、S r、)2Cua O@
の組成を有し、LnがY、Nd、Sm、Eu、Gd、D
y、Ho、Er、Ti+のうちの1つあるいは複数の任
意の組み合せであり、Xがo、oot以上0.3以下の
範囲にあり、yがo、oot以上0.8以下の範囲にあ
る超電導酸化物は、いずれも超電導転移温度が80に以
上であり、Baの含有率を5.33モル%まで低減する
ことができた。さらに、これらの材料は850℃付近ま
で、酸素の出入りがなく安定に存在することが確認でき
た。
As can be seen from the above description, according to Example 1, in the conventional superconducting oxide having a composition of YBaaCuaO*, 13
.. Contains up to 33 mol% of Ba, and sufficient measures were taken to handle it during the manufacturing process, whereas (L n+
-x CaxXB at-, S r, )2Cua O@
has the composition, and Ln is Y, Nd, Sm, Eu, Gd, D
Any combination of one or more of y, Ho, Er, Ti+, where X is in the range of o,oot or more and 0.3 or less, and y is in the range of o,oot or more and 0.8 or less All of the superconducting oxides had a superconducting transition temperature of 80 or higher, and the Ba content could be reduced to 5.33 mol%. Furthermore, it was confirmed that these materials existed stably up to around 850° C. without oxygen entering or exiting.

したがって、本発明の酸化物超電導体は、Baの含有量
を従来の40%まで低減しながら80に以上の超電導転
移温度を得ることができる。
Therefore, the oxide superconductor of the present invention can obtain a superconducting transition temperature of 80 or higher while reducing the Ba content to 40% of the conventional value.

〔実施例2〕 純度99.9%以上のLn2O3(Ln=Y、Nd,S
m,Eu、Gd、Dy、Ho、Er、Tm)、CaCO
3,BaC0*。
[Example 2] Ln2O3 (Ln=Y, Nd, S
m, Eu, Gd, Dy, Ho, Er, Tm), CaCO
3, BaC0*.

5rCOs、CuOの各種粉末を化学式(Ln+−Ca
w)(Ba+−、Srv)2cua0mにおいてx=0
.0,0.001.0.01.0.1.0.3,0.5
.y=o−,0,0,001,0,01,0,1,0,
3,0,5,0,6,0,7の各組み合せの組成で混合
し、酸素気流中で900℃から950℃の間の任意の温
度で10時間の仮焼を行った。仮焼後、試料を粉砕し矩
形に成形した。この成形体を酸素気流中で900℃から
950℃の間の温度で5時間予備焼結した。この予備焼
結体を1000 kg/cm’の圧力下でAr80%−
0220%のガス雰囲気下で熱処理を行った。200”
C/hrの昇温速度で1000℃まで加熱し、この温度
で10時間保持した。冷却は200″C/hrで300
℃まで行い、1気圧まで減圧したあと試料を空気中に取
り出した。この試料を再び粉砕して成形した。この成形
体を酸素気流中800℃で20時間焼結して所定の試料
を得た。
Various powders of 5rCOs and CuO are prepared using the chemical formula (Ln+-Ca
w) (Ba+-, Srv) x=0 at 2cua0m
.. 0,0.001.0.01.0.1.0.3,0.5
.. y=o-,0,0,001,0,01,0,1,0,
The compositions of each combination of 3, 0, 5, 0, 6, 0, and 7 were mixed and calcined for 10 hours at an arbitrary temperature between 900°C and 950°C in an oxygen stream. After calcining, the sample was crushed and shaped into a rectangle. This compact was presintered in an oxygen stream at a temperature between 900°C and 950°C for 5 hours. This preliminary sintered body was heated with 80% Ar under a pressure of 1000 kg/cm'.
Heat treatment was performed in a gas atmosphere of 0.0220%. 200"
It was heated to 1000° C. at a heating rate of C/hr and held at this temperature for 10 hours. Cooling is 300 at 200″C/hr
℃, and after reducing the pressure to 1 atm, the sample was taken out into the air. This sample was ground again and shaped. This molded body was sintered at 800° C. for 20 hours in an oxygen stream to obtain a predetermined sample.

この様にして得られた(Ln+−xcaj(Ba+−1
1srv)2Cu40・の焼結体の構成相を粉末X線回
折を用いて確認した。得られた試料の主成分はいずれも
YBaaCu40*型の結晶構造を有することを確認し
た。x=0.1.y=0.3の粉末X線回折図形を第6
図に示した。図中の数字はY B 82 Cua 0 
m型構造にもとづいたピークの指数である。この試料は
超電導相型−相であった。X=O,Oから0.15以下
、y=0.0から0.5以下の組成範囲ではいずれの試
料も超電導相型−相であった。試料の構成相を第2表に
まとめて示した。
Thus obtained (Ln+-xcaj(Ba+-1
The constituent phases of the sintered body of 1srv)2Cu40. were confirmed using powder X-ray diffraction. It was confirmed that the main components of the obtained samples all had a YBaaCu40* type crystal structure. x=0.1. The powder X-ray diffraction pattern of y=0.3 is
Shown in the figure. The numbers in the diagram are Y B 82 Cua 0
This is a peak index based on the m-type structure. This sample was superconducting phase type-phase. In the composition range of X=O, O to 0.15 or less, and y=0.0 to 0.5 or less, all samples were in the superconducting phase type-phase. The constituent phases of the samples are summarized in Table 2.

超電導特性を抵抗測定により調べた。その結果を第7図
及び第2表に示した。本実施例の(Ln+−xCax)
(Ba+−、Sr、)2Cu40s超電導体試料は、第
7図及び第2表かられかるように、Caの含有■がO≦
X≦0.3.Srの含有量が0≦y≦0.6の範囲の試
料はいずれも80KJaの超電導転移温度を示す。交流
帯磁率の測定でも80に以上の温度から反磁性が観測さ
れた(第8図)。これは、80に以上の温度で超電導性
が発現していることを示しており、抵抗測定の結果を裏
付けている。この超電導転移温度は、液体窒素の沸点(
77K)よりも高い温度である。
The superconducting properties were investigated by resistance measurements. The results are shown in FIG. 7 and Table 2. (Ln+-xCax) in this example
As can be seen from Figure 7 and Table 2, the (Ba+-, Sr,)2Cu40s superconductor sample has a Ca content of O≦
X≦0.3. All samples in which the Sr content is in the range of 0≦y≦0.6 exhibit a superconducting transition temperature of 80 KJa. Diamagnetism was also observed in AC magnetic susceptibility measurements at temperatures above 80°C (Figure 8). This indicates that superconductivity is expressed at temperatures above 80°C, and supports the results of resistance measurement. This superconducting transition temperature is the boiling point of liquid nitrogen (
77K).

これらの試料におけるBaの含有率についでの分析値を
第2表にまとめて示した。この結果を見ると、Srの含
有量が増加するとともにBaの含有率が低下し、製造上
有利になることがわかる。Srの含有ff1yが0.6
の場合には、Baの含有量は、約5モル%になる。しか
しながら、あまりSrの含有量が多くなると、超電導転
移温度(Tc)が低下する。
The analytical values for the Ba content in these samples are summarized in Table 2. Looking at the results, it can be seen that as the Sr content increases, the Ba content decreases, which is advantageous in manufacturing. Sr content ff1y is 0.6
In this case, the Ba content is about 5 mol%. However, if the Sr content increases too much, the superconducting transition temperature (Tc) decreases.

試料番号26のy=0.7の試料の場合には、Tcは4
OKまで低下してしまう。
In the case of sample number 26 with y=0.7, Tc is 4
It drops to OK.

第9図にx=0.1 、y=0.3の組成を持つ試料の
熱重量分析の結果を示す。常温から850″C付近まで
重量変化を示さず、850℃から900℃で重量減少を
示すことから、従来のY B a2 Cu408組成の
超電導酸化物間m、s5o℃という高温に至るまで酸素
の出入りもなく安定に存在することが確認できた。
FIG. 9 shows the results of thermogravimetric analysis of a sample having a composition of x=0.1 and y=0.3. The weight does not change from room temperature to around 850''C, but the weight decreases from 850℃ to 900℃, which indicates that oxygen does not enter and exit between the conventional superconducting oxides with YBa2Cu408 composition up to high temperatures of 5o℃. It was confirmed that it existed stably.

以上の説明かられかるように、本実施例2によれば、従
来のYBa2Cu40*組成の超電導酸化物では、13
.33モル%に及ぶBaが含有され、Baの供給源とし
て高価な硝酸塩を用い、その製造工程中の取扱には十分
な対策を講じていたのに対し、(Ln+−、Ca、)(
B al−y S ry)2c u−Osの組成を有し
、LnがY、Nd、Sm、Eu、Gd、Dy、Ho、E
r、Tiのうちの1つあるいは複数の任意の組み合せで
あり、Xが0.001以上0.3以下の範囲にあり、y
が0.001以上0.6以下の範囲にある超電導酸化物
は、いずれも超電導転移温度が80に以上であり、Ba
の含有率を5.33モル%まで低減し、安価な炭酸塩を
原料とすることができた。さらに、これらの材料は85
0℃付近まで、酸素の出入りがなく安定に存在すること
が確認できた。
As can be seen from the above explanation, according to Example 2, in the conventional superconducting oxide having a composition of YBa2Cu40*, 13
.. Containing up to 33 mol% of Ba, expensive nitrate was used as a source of Ba, and sufficient measures were taken to handle it during the manufacturing process.
B al-y S ry) 2c u-Os, and Ln is Y, Nd, Sm, Eu, Gd, Dy, Ho, E
r, any combination of one or more of Ti, X is in the range of 0.001 or more and 0.3 or less, and y
All of the superconducting oxides in which Ba
We were able to reduce the content of carbonate to 5.33 mol% and use inexpensive carbonate as a raw material. Furthermore, these materials are 85
It was confirmed that it existed stably up to around 0°C with no oxygen going in or out.

したがって、本発明の酸化物超電導体は、Baの含有量
を従来の40%まで低減し、原料の選択性を広げながら
80に以上の超電導転移温度を得ることができる。
Therefore, in the oxide superconductor of the present invention, the Ba content can be reduced to 40% of the conventional value, and a superconducting transition temperature of 80 or higher can be obtained while widening the selectivity of raw materials.

以下、余白。Below is the margin.

[発明の効果コ 以上、説明したように、本発明によれば、液体窒素の沸
点よりも十分高い超電導転移温度を有し、劇物であるB
aの使用量を低減し、かつ原料選択性の広い高温まで安
定な超電導体を捉供することができる。
[Effects of the Invention] As explained above, according to the present invention, B, which has a superconducting transition temperature sufficiently higher than the boiling point of liquid nitrogen and is a deleterious substance,
It is possible to reduce the amount of a used and provide a stable superconductor with wide raw material selectivity up to high temperatures.

【図面の簡単な説明】 第1図は、本発明の(Ln+−、Ca、)(Bat−、
S r、)2Cu40sの結晶構造を説明するための図
、第2図は、本実施例1に係る(Lr+、−、Cax)
(BaH−、sry)2Cu40gにおけるx=0.1
 、y=0.3の試料の粉末X線回折図形、 第3図は、本実施例Iの(L nl−x Ca−)(B
 al−、Sr、 )2 Cu40 sにおけるx=0
.1.y=0.3の試料の抵抗−温度特性図。 第4図は、本実施例1の(Ln+−、Ca、)(Bat
−,5ry)+Cu40eにおけるx=0.1.y=0
.3の試料の交流帯磁率の測定結果を示す図、 第5図は、本実施例1の(Ln+−8Ca−)(B a
t−、Sr、 )2 Cua O*におけるx=0.1
.y=:0.3の試料の熱重量分析の結果を示す図、 第6図は、本実施例2に係る(t、nl−0Ca、)(
Bat−vSr、)2cu40*におけるx=0.1.
/=0.3の試料の粉末X線回折図形、 第7図は、本実施例2の(Ln+−xcax)(Bat
−ySr、 )2 Cua O*におけるx=0.1.
y=0.3の試料の抵抗−温度特性図、 第8図は、本実施例2の(Ln+−xcax)(Bat
−、Sr、 )2 CL120 sにおけるx=0.1
.y=0.3の試料の交流帯磁率の測定結果を示す図、 第9図は、本実施例2の(Ln+−、Cax)(Bat
−ySri+)2cu40sにおけるx=0.1.y=
0.3の試料の熱重量分析の結果を示す図である。 図中、 l・・・Y、  2・・・Ba、  3・・・
Cu、  4・・・Oである。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 shows (Ln+-, Ca,) (Bat-,
Figure 2 is a diagram for explaining the crystal structure of Sr,)2Cu40s, (Lr+, -, Cax) according to Example 1.
(BaH-,sry)x=0.1 in 40g of 2Cu
, the powder X-ray diffraction pattern of the sample with y=0.3, FIG. 3 shows the (L nl-x Ca-) (B
x=0 in al-, Sr, )2 Cu40 s
.. 1. A resistance-temperature characteristic diagram of a sample with y=0.3. FIG. 4 shows (Ln+-,Ca,)(Bat
-, 5ry)+x=0.1 in Cu40e. y=0
.. Figure 5 is a diagram showing the measurement results of the AC magnetic susceptibility of the sample of Example 1.
x=0.1 in t-, Sr, )2 Cua O*
.. Figure 6 shows the results of thermogravimetric analysis of a sample with y=:0.3, (t, nl-0Ca,) (
Bat-vSr, )2cu40* x=0.1.
The powder X-ray diffraction pattern of the sample with /=0.3, FIG.
−ySr, )2 x=0.1 in Cua O*.
The resistance-temperature characteristic diagram of the sample with y=0.3, FIG.
−, Sr, )2 x=0.1 at CL120 s
.. FIG. 9 is a diagram showing the measurement results of the AC magnetic susceptibility of the sample with y=0.3.
-ySri+)2cu40s x=0.1. y=
It is a figure which shows the result of the thermogravimetric analysis of the sample of 0.3. In the figure, l...Y, 2...Ba, 3...
Cu, 4...O.

Claims (1)

【特許請求の範囲】[Claims] 1.化学組成式(Ln_1_−_xCa_x)(Ba_
1_−_ySr_y)_2Cu_4O_3で表わされる
酸化物超電導体において、LnがY,Nd,Sm,Eu
,Gd,Dy,Ho,Er,Tmのうちの1つあるいは
複数の任意の組み合せであり、xが0.001以上0.
3以下の範囲にあり、yが0.001以上0.6以下の
範囲にあることを特徴とする酸化物超電導体。
1. Chemical composition formula (Ln_1_-_xCa_x) (Ba_
In the oxide superconductor represented by 1_-_ySr_y)_2Cu_4O_3, Ln is Y, Nd, Sm, Eu
, Gd, Dy, Ho, Er, and Tm, or any combination of them, and x is 0.001 or more and 0.
3 or less, and y is in the range of 0.001 or more and 0.6 or less.
JP1282701A 1989-08-18 1989-10-30 Oxide superconductor Expired - Lifetime JP2748942B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1282701A JP2748942B2 (en) 1989-10-30 1989-10-30 Oxide superconductor
EP90115823A EP0413360B1 (en) 1989-08-18 1990-08-17 High-temperature oxide superconductor
DE69018898T DE69018898T2 (en) 1989-08-18 1990-08-17 High temperature oxide superconductor.
KR1019900012912A KR0160509B1 (en) 1989-08-18 1990-08-18 High temperature oxide superconductor
US08/068,587 US5468724A (en) 1989-08-18 1993-05-27 High temperature oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282701A JP2748942B2 (en) 1989-10-30 1989-10-30 Oxide superconductor

Publications (2)

Publication Number Publication Date
JPH03146416A true JPH03146416A (en) 1991-06-21
JP2748942B2 JP2748942B2 (en) 1998-05-13

Family

ID=17655930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282701A Expired - Lifetime JP2748942B2 (en) 1989-08-18 1989-10-30 Oxide superconductor

Country Status (1)

Country Link
JP (1) JP2748942B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164427A (en) * 1989-04-19 1991-07-16 Jeffrey L Tallon Rbco 124 superconducting material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164427A (en) * 1989-04-19 1991-07-16 Jeffrey L Tallon Rbco 124 superconducting material and its manufacture

Also Published As

Publication number Publication date
JP2748942B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
US5149683A (en) Method for producing oxide superconductor
JPH03146416A (en) Oxide superconductor
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JP2593475B2 (en) Oxide superconductor
JP2748943B2 (en) Oxide superconductor
JPH04175224A (en) Oxide superconductor and production thereof
JP2593480B2 (en) Manufacturing method of oxide superconductor
JP2831755B2 (en) Oxide superconductor
JPH0333055A (en) Oxide superconducting material and its production
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
JP2635704B2 (en) Method for producing Bi-based oxide high-temperature superconductor
JP2618047B2 (en) Oxide superconducting material and its manufacturing method
JPS63176353A (en) Superconductive raw material
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JP2855127B2 (en) Oxide superconductor
JP2879447B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JP2642194B2 (en) Oxide superconducting material and its manufacturing method
JP2838312B2 (en) Oxide superconducting material
WO1991003426A1 (en) Superconducting material and production thereof
EP0413581A2 (en) Superconducting material
JPH02157154A (en) Ceramics electrical conductive material
JPH0796448B2 (en) Method for producing Y-Ba-Cu-O-based superconductor powder
JPH0393626A (en) Oxide superconducting material and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12