JP2593475B2 - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JP2593475B2
JP2593475B2 JP62134944A JP13494487A JP2593475B2 JP 2593475 B2 JP2593475 B2 JP 2593475B2 JP 62134944 A JP62134944 A JP 62134944A JP 13494487 A JP13494487 A JP 13494487A JP 2593475 B2 JP2593475 B2 JP 2593475B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
mol
perovskite
oxygen
substitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62134944A
Other languages
Japanese (ja)
Other versions
JPS63303814A (en
Inventor
伸 福島
ひろみ 丹生
久士 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62134944A priority Critical patent/JP2593475B2/en
Publication of JPS63303814A publication Critical patent/JPS63303814A/en
Application granted granted Critical
Publication of JP2593475B2 publication Critical patent/JP2593475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は酸化物超電導体に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an oxide superconductor.

(従来の技術) 近年、Ba−La−Cu−O系の層状ペロブスカイト型酸化
物が高い臨界温度を有する可能性のあることが発表され
て以来、各所で酸化物超電導体の研究が行なわれている
(Z.Phys.B Condensed Matter 64,189−193(1986)。
その中でもY−Ba−Cu−O系に代表される酸素欠陥を有
する欠陥ペロブスカイト型(AB2C3O7−δ型)の酸化物
超電導体は、Tcが90K以上と液体窒素以上の高い温度を
示すため非常に有望な材料である(Phys.Rev.Lett.vol.
58 No.9,p908−910)。
(Prior Art) In recent years, since it was announced that a Ba-La-Cu-O-based layered perovskite-type oxide may have a high critical temperature, researches on oxide superconductors have been conducted in various places. (Z. Phys. B Condensed Matter 64, 189-193 (1986)).
Among them, a defect perovskite type (AB 2 C 3 O 7-δ type) oxide superconductor having an oxygen defect typified by a Y—Ba—Cu—O system has a high Tc of 90 K or more and a high temperature of liquid nitrogen or more. Is a very promising material to show (Phys. Rev. Lett. Vol.
58 No. 9, p908-910).

(発明が解決しようとする問題点) この様にペロブスカイト型の酸化物超電導体は前述の
如く非常に有望な材料であるが、実用上十分な電流密度
(Jc)を得るためには焼結性を高める必要がある。
(Problems to be Solved by the Invention) As described above, the perovskite-type oxide superconductor is a very promising material as described above. However, in order to obtain a practically sufficient current density (Jc), the sintering property is high. Need to be increased.

本発明はこの様な問題点を解決するためになされたも
のであり、焼結性の高い酸化物超電導体を得ることを目
的としてなされたものである。
The present invention has been made to solve such a problem, and has been made for the purpose of obtaining an oxide superconductor having high sinterability.

[発明の構成] (問題点を解決するための手段及び作用) 本発明は、Ln元素(LnはY,La,Sc,Nd,Sm,Eu,Gd,Dy,Ho,
Er,Tm,Yb,Luの少なくとも一種)、AE元素(Ba,Ca及びSr
の少なくとも一種)及びCuを含有するペロブスカイト型
構造の酸化物超電導体に於いて、Agを含有することを特
徴とする酸化物超電導体である。
[Constitution of the Invention] (Means and Actions for Solving the Problems) The present invention relates to an Ln element (Ln is Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho,
At least one of Er, Tm, Yb, Lu), AE element (Ba, Ca and Sr
) And a perovskite-type oxide superconductor containing Cu, characterized in that it contains Ag.

本発明でいうペロブスカイト型構造の酸化物超電導体
はLa−(Ba,Sr,Ca)−Cu−O系の層状ペロブスカイト型
酸化物超電導体、Y−Ba−Cu−O系の酸素欠陥を有する
欠陥ペロブスカイト型酸化物超電導体などの広義のペロ
ブスカイト型構造の酸化物超電導体をさす。
The oxide superconductor having a perovskite structure referred to in the present invention is a La- (Ba, Sr, Ca) -Cu-O-based layered perovskite oxide superconductor and a defect having a Y-Ba-Cu-O-based oxygen defect. An oxide superconductor having a perovskite structure in a broad sense, such as a perovskite oxide superconductor.

本発明に用いる酸化物超電導体は、例えば以下に示す
製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the following manufacturing method.

Y,Ba,Cu等の酸化物超電導体の構成元素とAgとを十分
混合する。混合の際にはY2O3,BaO,CuO等の酸化物を原料
として用いることができる。また、これらの酸化物のほ
かに、焼成後酸化物に転化する炭酸塩、硝酸塩、水酸化
物等の化合物を用いてもよい。さりには共沈法等で得た
しゅう酸塩等を用いても良い。ペロブスカイト型酸化物
超電導体を構成する元素は、基本的に化学量論比の組成
となるように混合するが、多少製造条件等との関係等で
ずれていても構わない。例えばY−Ba−Cu−O系ではY1
molに対しBa2 mol、Cu3 molが標準組成であるが、実用
上はY1 molに対し、Ba2±0.6mol、Cu3±0.2mol程度のず
れは問題ない。
Ag and the constituent elements of the oxide superconductor such as Y, Ba, and Cu are sufficiently mixed. At the time of mixing, an oxide such as Y 2 O 3 , BaO, or CuO can be used as a raw material. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Oxalate or the like obtained by a coprecipitation method or the like may be used for the clam. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but may be slightly shifted depending on the production conditions and the like. For example, in the Y-Ba-Cu-O system, Y1
The standard compositions are Ba2 mol and Cu3 mol with respect to mol, but practically, there is no problem about deviation of Ba2 ± 0.6 mol and Cu3 ± 0.2 mol with respect to Y1 mol.

前述の原料を混合した後、仮焼・粉砕し所望の形状に
成形した後、930−1000℃,好ましくは960−1000℃で焼
成する。仮焼は必ずしも必要ではない。焼成・仮焼は十
分な酸素が供給できるような酸素含有雰囲気で行なうこ
とが好ましい。所望の形状に焼成した後、酸素中で加熱
処理することにより、超電導特性を向上することができ
る。この加熱処理は通常600−960℃程度である。
After mixing the above-mentioned raw materials, they are calcined, pulverized, formed into a desired shape, and then fired at 930-1000 ° C, preferably 960-1000 ° C. Calcination is not always necessary. Firing and calcining are preferably performed in an oxygen-containing atmosphere that can supply sufficient oxygen. After baking to a desired shape, heat treatment in oxygen can improve superconductivity. This heat treatment is usually at about 600-960 ° C.

この様にして得られた酸化物超電導体は酸素欠陥δを
有するLnBa2Cu3Oγ−δ(δは通常1以下)の酸素欠陥
型ペロブスカイト構造となる。Cu元素、Ba元素の置換元
素はそれぞれのサイトに置換したかたちではいる。
The oxide superconductor thus obtained has an oxygen-defective perovskite structure of LnBa 2 Cu 3 O γ-δ (δ is usually 1 or less) having oxygen deficiency δ. The substitution elements of Cu element and Ba element are substituted for each site.

また上述の粉末焼結に限らず、蒸着法、スパッタリン
グ法、CVD法などの方法による膜状の酸化物超電導体を
形成することもできる。更に酸化物超電導体ペーストを
用いたスクリーン印刷法、ゾル・ゲル法等を用いての製
造もできる。更に金属管等のシース材を用いての線材
化、溶湯急冷法を用いての線材化等も可能である。
In addition to the above-described powder sintering, a film-shaped oxide superconductor can also be formed by a method such as an evaporation method, a sputtering method, or a CVD method. Further, it can be manufactured by a screen printing method using an oxide superconductor paste, a sol-gel method, or the like. Further, it is also possible to form a wire using a sheath material such as a metal tube, or a wire using a molten metal quenching method.

なお本発明に用いる酸化物超電導体ではBa元素をSr,C
aの少なくとも一種で置換することができる。この様の
置換によっても臨界電流密度を向上することができる。
置換は少量でその効果を発揮するが、0.01mol%以上の
添加でその効果が顕著となる。置換量は超電導特性を低
下させない程度の範囲で適宜設定可能であるが、あまり
多量の置換は超電導特性を低下してしまうため80mol%
以下、さらに実用上は20mol%以下程度の添加含有量が
好ましい。さらにCuの一部をTi,V,Cr,Mn,Fe,Co,Ni,Zn等
で置換して臨界電流密度を向上することもできる。置換
は少量でその効果を発揮するが、0.01mol以上の添加で
その効果が顕著となる。置換量は超電導特性を低下させ
ない程度の範囲で適宜設定可能であるが、あまり多量の
置換は超電導特性を低下してしまうため80mol%以下、
さらに実用上は20mol%以下程度の添加含有量が好まし
い。
In the oxide superconductor used in the present invention, Ba element is replaced by Sr, C
can be replaced by at least one of a. The critical current density can be improved by such substitution.
The substitution exerts its effect with a small amount, but the effect becomes remarkable with the addition of 0.01 mol% or more. The amount of substitution can be appropriately set within a range that does not lower the superconducting characteristics, but an excessively large amount of substitution lowers the superconducting characteristics.
Hereinafter, the addition content of about 20 mol% or less is more practical. Further, the critical current density can be improved by replacing a part of Cu with Ti, V, Cr, Mn, Fe, Co, Ni, Zn, or the like. Although the substitution exerts its effect with a small amount, the effect becomes remarkable with the addition of 0.01 mol or more. The amount of substitution can be appropriately set within a range that does not lower the superconducting properties, but too much substitution lowers the superconducting properties, so that 80 mol% or less,
Further, practically, the addition content of about 20 mol% or less is preferable.

本発明におけるAgの含有は少量でその効果を発揮す
る。実用上は0.1重量%以上が好ましい。上限は特に規
定しないが超電導特性を損なわない範囲での添加含有が
可能である。多量の含有は超電導特性を低下してしまう
ため、実用上は30重量%以下である。
The effect of Ag content in the present invention can be achieved with a small amount. Practically, 0.1% by weight or more is preferable. The upper limit is not particularly defined, but addition and addition are possible within a range that does not impair the superconducting properties. Since a large amount degrades superconductivity, the content is practically 30% by weight or less.

(実施例) 以下に本発明の実施例を説明する。(Example) An example of the present invention will be described below.

実施例−1 原子比でY:Ba:Cu=1:2:3となるように、Y2O3,BaCO3,C
uOを秤量しさらに5重量%のAgを添加した。この原料を
十分混合した後900℃で仮焼した後、粉砕した。この混
合原料を960℃、12H、酸素中の条件で焼成した。次いで
860℃,10Hの条件で加熱処理を施した。
Example 1 Y 2 O 3 , BaCO 3 , C were prepared so that the atomic ratio of Y: Ba: Cu = 1: 2: 3.
The uO was weighed and a further 5% by weight of Ag was added. After sufficiently mixing the raw materials, the mixture was calcined at 900 ° C. and then pulverized. This mixed raw material was fired under the conditions of 960 ° C., 12 H, and oxygen. Then
Heat treatment was performed at 860 ° C and 10H.

得られた酸化物超電導体は密度(対理論密度比)98%
であり、超電導特性を調べたところ、臨界電流密度はJc
=12000A/cm2と非常に優れたものであった。
The obtained oxide superconductor has a density (ratio to theoretical density) of 98%.
When the superconducting characteristics were examined, the critical current density was Jc
= 12000 A / cm 2, which was very excellent.

実施例−2 YをYbに変え、実施例−1と同様にして酸化物超電導
体を製造した。
Example 2 An oxide superconductor was manufactured in the same manner as in Example 1, except that Y was changed to Yb.

得られた酸化物超電導体は密度(対理論密度比)99%
であり、超電導特性を調べたところ、Jc=13000A/cm2
非常に優れたものであった。
The resulting oxide superconductor has a density (ratio to theoretical density) of 99%
When the superconducting characteristics were examined, it was very excellent as Jc = 13000 A / cm 2 .

実施例−3 Agを30重量%に変え、実施例−1と同様にして酸化物
超電導体を製造した。
Example 3 An oxide superconductor was manufactured in the same manner as in Example 1 except that Ag was changed to 30% by weight.

得られた酸化物超電導体は密度(対理論密度比)98%
であり、超電導特性を調べたところ、Jc=10000A/cm2
非常に優れたものであった。
The obtained oxide superconductor has a density (ratio to theoretical density) of 98%.
When the superconducting characteristics were examined, it was very excellent as Jc = 10000 A / cm 2 .

比較例−1 Agを添加することなく、実施例−1と同様にして酸化
物超電導体を製造した。
Comparative Example 1 An oxide superconductor was produced in the same manner as in Example 1 without adding Ag.

得られた酸化物超電導体は密度(対理論密度比)90%
であり、超電導特性を調べたところ、Jc=680A/cm2と低
いものであった。
The resulting oxide superconductor has a density (ratio to theoretical density) of 90%
When the superconducting characteristics were examined, it was as low as Jc = 680 A / cm 2 .

[発明の効果] 以上説明したように本発明によれば焼結性の良好な酸
化物超電導体を得ることができる。従ってJcを向上する
ことができ工業上寄与すること大である。
[Effects of the Invention] As described above, according to the present invention, an oxide superconductor having good sinterability can be obtained. Therefore, it is possible to improve Jc and to greatly contribute to industry.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ln元素(LnはY,La,Sc,Nd,Sm,Eu,Gd,Dy,Ho,
Er,Tm,Yb,Luの少なくとも一種)、AE元素(Ba,Ca及びSr
の少なくとも一種)及びCuを含有するペロブスカイト構
造の酸化物超電導体に於いて、Ln,AE,Cuを原子比で実質
的に1:2:3の比率で含有し、さらにAgを含有することを
特徴とする酸化物超電導体。
1. An Ln element (Ln is Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho,
At least one of Er, Tm, Yb, Lu), AE element (Ba, Ca and Sr
At least one) and a perovskite-structure oxide superconductor containing Cu, containing Ln, AE, Cu in an atomic ratio of substantially 1: 2: 3, and further containing Ag. Characterized oxide superconductor.
【請求項2】前記Agの含有量は30重量%以下であること
を特徴とする特許請求の範囲第1項記載の酸化物超電導
体。
2. The oxide superconductor according to claim 1, wherein the Ag content is 30% by weight or less.
【請求項3】前記Agの含有量は0.1重量%以上であるこ
とを特徴とする特許請求の範囲第1項記載の酸化物超電
導体。
3. The oxide superconductor according to claim 1, wherein the Ag content is 0.1% by weight or more.
【請求項4】前記酸化物超電導体はLnBa2Cu3O
7−δ(δは酸素欠陥を表わす)で表わされる酸素欠陥
型ペロブスカイト構造を有することを特徴とする特許請
求の範囲第1項記載の酸化物超電導体。
4. The oxide superconductor is LnBa 2 Cu 3 O.
2. The oxide superconductor according to claim 1, wherein the oxide superconductor has an oxygen-defective perovskite structure represented by 7-δ (δ represents an oxygen defect).
JP62134944A 1987-06-01 1987-06-01 Oxide superconductor Expired - Lifetime JP2593475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134944A JP2593475B2 (en) 1987-06-01 1987-06-01 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134944A JP2593475B2 (en) 1987-06-01 1987-06-01 Oxide superconductor

Publications (2)

Publication Number Publication Date
JPS63303814A JPS63303814A (en) 1988-12-12
JP2593475B2 true JP2593475B2 (en) 1997-03-26

Family

ID=15140209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134944A Expired - Lifetime JP2593475B2 (en) 1987-06-01 1987-06-01 Oxide superconductor

Country Status (1)

Country Link
JP (1) JP2593475B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153525A (en) * 1987-12-11 1989-06-15 Tokin Corp Oxide superconductor of ag fine particle-containing oxygen deficient triple structure perovskite type and production thereof
JPH01212221A (en) * 1988-02-18 1989-08-25 Chisso Corp Y-ba-cu-o oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248721A (en) * 1987-04-03 1988-10-17 Hitachi Ltd Superconductor
JPS63277514A (en) * 1987-05-08 1988-11-15 Koujiyundo Kagaku Kenkyusho:Kk Oxide superconductive material

Also Published As

Publication number Publication date
JPS63303814A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
JPS63291817A (en) Oxide superconductor
JP2593475B2 (en) Oxide superconductor
JP2752969B2 (en) Oxide superconductor
CA1335327C (en) Oxide superconductor and manufacturing method thereof
EP0368765B1 (en) Oxide superconducting material and process for preparing the same
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JP2588200B2 (en) Manufacturing method of oxide superconductor
JPS63270317A (en) Oxide superconductor
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63307110A (en) Oxide superconductor
JP2597578B2 (en) Superconductor manufacturing method
JPH01192758A (en) Superconducting ceramic
JP2597579B2 (en) Superconductor manufacturing method
JPS63297217A (en) Production of oxide superconductor
JPS63291818A (en) Oxide superconductor
JP2593480B2 (en) Manufacturing method of oxide superconductor
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JP2523928B2 (en) Oxide superconductor and method for producing the same
EP0413581A2 (en) Superconducting material
JPS63297213A (en) Production of oxide superconductor
JPS63297216A (en) Production of oxide superconductor
JP2748943B2 (en) Oxide superconductor
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JPH01153518A (en) Oxide superconductor and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11