JPS63277514A - Oxide superconductive material - Google Patents

Oxide superconductive material

Info

Publication number
JPS63277514A
JPS63277514A JP62113260A JP11326087A JPS63277514A JP S63277514 A JPS63277514 A JP S63277514A JP 62113260 A JP62113260 A JP 62113260A JP 11326087 A JP11326087 A JP 11326087A JP S63277514 A JPS63277514 A JP S63277514A
Authority
JP
Japan
Prior art keywords
oxides
silver
copper
oxide
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62113260A
Other languages
Japanese (ja)
Inventor
Yoko Hochido
寳地戸 洋子
Minoru Kojima
穣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Original Assignee
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUJIYUNDO KAGAKU KENKYUSHO KK, Kojundo Kagaku Kenkyusho KK filed Critical KOUJIYUNDO KAGAKU KENKYUSHO KK
Priority to JP62113260A priority Critical patent/JPS63277514A/en
Publication of JPS63277514A publication Critical patent/JPS63277514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive material, selected from compound oxides consisting of respective oxides of a rare earth element, alkaline earth element and silver and oxides of a rare earth element, alkaline earth element, silver and copper and especially having a remarkably higher current density than that of a copper based mixed oxide, such as conventional Ba-Y-Cu-O. CONSTITUTION:The above-mentioned compound oxides are constituted of oxides at a constituent ratio of metallic element components expressed in detail by atomic ratio within the range of 0.1-0.9 and 0.9-0.1 of the rare earth element and alkaline earth metal to within the range of 0.01-1 and 0.99-0 of silver and copper. The afore-mentioned compound oxides constituting the oxide superconductive material of this invention are capable of moderating firing condition and firing at about 870 deg.C which is a lower temperature by replacing part or all of the silver oxide with copper oxide. The above-mentioned compound oxides have possibility of providing a current density of 100-1,000 times based on that of the above-mentioned conventional copper based mixed oxide.

Description

【発明の詳細な説明】 1911年にオランダのカマリン9オンネスが超電導現
象を発明して以来、Hおpb、 Nb、 Nls、 S
−等の金属あるいは導電体化合物が主流となって超電導
現象を引き起こす物質が次々と発見されて来た、またそ
の都度超電導現象が発生する臨界温度も向上してNb、
 GLを用いて23” Kまで臨界温度が上がフできた
。1986年にIBMチューリッヒ研究所のベドロノル
ツとミューラーbIL、a−−Bt−C,w□系の酸化
物焼結体が30°に程で超導現象を程することを発見し
、以来各方面で開発が進み、希土類、土類、鋼の複合酸
化物のあるものが特に高い臨界温度で超電導現象を程す
ることが判明した。B、−Y −−rO系で始めて液体
窒素温度以上での超電導現象が実現された。現在までに
実証された複合酸化物超電導材料としては(LL+−x
  s、、R)、  c14o、型、及びBa4 Y 
Q307型及びYをS、  (スカンジウム)にかえた
もの5rttBzに換えたもの等々が上げられている。
[Detailed Description of the Invention] Since the invention of superconductivity by Dutchman Camerin9onnes in 1911, Hpb, Nb, Nls, S
Substances that cause superconductivity have been discovered one after another, with metals or conductive compounds such as
Using GL, the critical temperature was raised to 23" K. In 1986, Bedronorz and Mueller bIL at IBM Zurich Research Institute, a--Bt-C, w□ system oxide sintered body was raised to 30°. Since then, development has progressed in various fields, and it has been discovered that certain composite oxides of rare earths, earths, and steel exhibit superconductivity at particularly high critical temperatures. B, -Y --rO system was the first to realize a superconducting phenomenon at temperatures above liquid nitrogen temperature.As complex oxide superconducting materials demonstrated to date, (LL+-x
s,,R), c14o, type, and Ba4Y
Type Q307, Y replaced with S, (scandium), 5rttBz, etc. are listed.

いずれも電流密度等では実用にまだ達していないとも云
われている。
It is said that neither of them has yet reached practical use in terms of current density, etc.

この材料の製造に当たっては粉末固相反応が主流であり
、いずれの場合も層状ベロアスカイト構造でありその反
応は非常にゆっくりとしたもので、その焼成方法により
電流密度や超電導臨界温度が変化する。以上の観点から
(1〕焼成条件のより簡単で再現性の大きなもの 〔2
〕超電導現象の臨界温度がより高いものという2つの条
件を満たす超電導複合酸化物を探究すべく実験を重ね以
下に記載するような構成で超電導を示す物質があること
を発見した。これらはり、L −5,−(、−0系、B
え−Y−C1−0系とも異なる特性を持つことから新素
材として新しい用途が期待される。
Powder solid phase reaction is the mainstream method for producing this material, and in both cases, the layered velorskite structure results in a very slow reaction, and the current density and superconducting critical temperature change depending on the firing method. . From the above points of view (1) simpler firing conditions with greater reproducibility [2]
] In order to find a superconducting composite oxide that satisfies the two conditions of having a higher critical temperature for superconductivity, we conducted repeated experiments and discovered that there is a material that exhibits superconductivity with the structure described below. These beams, L -5, -(, -0 series, B
Since it has properties different from those of the Y-C1-0 series, it is expected to find new uses as a new material.

構成は、 ■ 希土類酸化物、土類酸化物及び銀または銀と銅の酸
化物よりなる複合酸化物よりなり超電導現象を引き起こ
すもの。
The composition is as follows: ■ A composite oxide consisting of a rare earth oxide, an earth oxide, and an oxide of silver or silver and copper, which causes superconductivity.

■ 上記記載の■の複合酸化物で、その構成元素につい
ては、金属元素成分の構成比を原子比にて記述すれば希
土類金属、土類金属がそれぞれ0.1〜0.9.0.9
〜o、iに対して銀及び銅が金属成分で0.01〜1.
0.99〜0で記述される範囲の酸化物で構成される複
合酸化物体。
■ Regarding the constituent elements of the composite oxide described in (■) above, if the composition ratio of the metal element components is described in atomic ratio, the rare earth metal and the earth metal are 0.1 to 0.9, 0.9, respectively.
~o, i, silver and copper are metal components of 0.01 to 1.
A composite oxide object composed of oxides in the range of 0.99 to 0.

である。It is.

[実施例1コ B 炭酸塩、Y酸化物、銀および銅の酸化物を金属成分
が原子比でそれぞれBa、0.6、YO04、AIo、
 5、およびQO05になるように秤量してボールミル
で湿式約8時間部合し乾燥後1.5t/CrAにて加圧
成形して、約700°Cで大気中で仮焼を約6時間はど
行った。
[Example 1 B Carbonate, Y oxide, silver and copper oxide were prepared with metal components in atomic ratios of Ba, 0.6, YO04, AIo, respectively.
5, and QO05, wet part in a ball mill for about 8 hours, dried, pressure molded at 1.5t/CrA, and calcined in air at about 700°C for about 6 hours. Where did you go?

更にこれを粉砕して再び成形して充分な酸素をいれるよ
うにして、870’ Cで16時間の本焼成をして試作
サンプルを作成した。バリウム炭酸塩は長時間の焼成に
よりY、AI及びC,の酸化物と反応してCO,ガスを
放出し本来のBえ0の働きをし完全な複合酸化物を形成
した。このサンプルを用いて超電導現象が発生すること
を以下のような方法でマイスナー効果を起こして確認し
た。
Further, this was pulverized and re-molded, sufficient oxygen was introduced, and the final firing was performed at 870'C for 16 hours to prepare a trial sample. Barium carbonate reacted with oxides of Y, AI, and C by long-term firing, releasing CO and gas, acting as the original Be0, and forming a complete composite oxide. Using this sample, we confirmed that a superconducting phenomenon occurred by generating the Meissner effect using the method described below.

超電導現象の実証は液体窒素中に浸されたサンプルで行
われた。その方法を図でもって説明すると、図−1に示
すようにまず発泡スチロールの容器 〔1〕の中に液体
窒素 〔2〕を入れる。発泡スチロールには浅瀬(3)
をもうけ、本焼成により作られたサンプル (4]は発
泡スチロール中の深い場所(5)で充分冷却された後、
浅瀬 〔3〕に置かれる。永久磁石 〔6〕としてはC
6S、系の磁石的3mmφに8Jのものが使用された。
The demonstration of superconductivity was carried out in a sample immersed in liquid nitrogen. To explain this method with a diagram, as shown in Figure 1, liquid nitrogen [2] is first put into a Styrofoam container [1]. Shallow water for Styrofoam (3)
After the sample (4) made by main firing was sufficiently cooled in a deep place (5) in the Styrofoam,
Placed in shallow water [3]. Permanent magnet [6] is C
6S, 8J was used for the magnetic diameter of 3 mm in the system.

永久磁石(6)を液体窒素の深み部分で冷却した後に浅
瀬(3)に置かれたサンプル 〔4]の上に静かに位置
された。この際置き方が早すぎたり方向がいと完全な反
発を受けて、永久磁石 〔6)はサンプル(4)よりす
べって外へにげた。静かに永久磁石(6]を置くことに
より永久磁石 (6)はサンプルの上空約3mmの空中
で静止した。プラスチック棒でこの永久磁石 〔6)に
回転を与えると長時間に渡って回転しつづけた。
After cooling the permanent magnet (6) in the deep part of liquid nitrogen, it was gently placed on top of the sample [4] placed in shallow water (3). At this time, if it was placed too quickly or in the wrong direction, it received complete repulsion, and the permanent magnet [6] slipped from the sample (4) and fell out. By gently placing the permanent magnet (6), the permanent magnet (6) came to rest in the air approximately 3 mm above the sample. When the permanent magnet (6) was rotated with a plastic rod, it continued to rotate for a long time. Ta.

以上によりマイスナー効果の発生を確認した。The above confirmed the occurrence of the Meissner effect.

また、常温に於いてサンプルの抵抗値はY−Bえ−C2
−0系の複合酸化物の1,000分の1であった。
In addition, the resistance value of the sample at room temperature is Y-B-C2
It was 1/1,000th of -0 type composite oxide.

[実施例2] B9炭酸塩、Y酸化物、銀及び銅の酸化物を金属成分が
原子比で (1)それぞれB、0.4、Yo、6、へ0
.2、及びC,0,8(2)それぞれB、LO,6、Y
O04、A) 0.2、C−0,8の2種類の複合酸化
物を実施例1と同様な方法で作成し同様な実験を試みた
。〔1〕についてはマイスナー効果は弱く永久磁石はほ
んのわづかな浮上あるいは片側のみの浮上であったが 
(2〕については永久磁石が約2〜3mm程の浮上があ
った。
[Example 2] B9 carbonate, Y oxide, silver and copper oxides with metal components in atomic ratios (1) B, 0.4, Yo, 6, and 0, respectively
.. 2, and C, 0, 8 (2) respectively B, LO, 6, Y
Two types of composite oxides, O04, A) 0.2 and C-0,8, were prepared in the same manner as in Example 1, and similar experiments were attempted. Regarding [1], the Meissner effect was weak and the permanent magnet was only slightly levitated or levitated only on one side.
Regarding (2), the permanent magnet was floated by about 2 to 3 mm.

[発明の効果] 土類金属酸化物、希土類金属酸化物及び銅酸化物より構
成される超電導複合酸化物は従来より液体窒素温度程度
で超電導化される構成のあることが判明していたが、電
流密度の点で不充分であり、また焼成がむつかしく再現
性に欠けていた。しかるに酸化銀を銅酸化物に一部もし
くは全部を置き換えることによって焼成条件が緩和され
より低温的870’ Cで焼成が可能になり、また電流
密度が従来のBa=−Y −Cta=−0等の銅系の混
合酸化物より 100〜i、ooo倍の可能性を持った
材料となった。
[Effects of the Invention] It has been known that superconducting composite oxides composed of earth metal oxides, rare earth metal oxides, and copper oxides have a structure that becomes superconducting at about liquid nitrogen temperature. The current density was insufficient, and firing was difficult and lacked reproducibility. However, by replacing part or all of silver oxide with copper oxide, the firing conditions are relaxed, allowing firing at a lower temperature of 870'C, and the current density is lower than the conventional Ba=-Y-Cta=-0, etc. This material has 100 to i,00 times more potential than copper-based mixed oxides.

二のようなことから将来の重要な材料となり得る素材で
あることが判明した。
From the above two points, it was found that this material could become an important material in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実験に際し使われた器具の説明図である。 〔1〕発泡スチロール製の容器 〔2〕液体窒素 (3〕発泡スチロール容器の浅瀬部分 〔4)サンプル(超電導複合酸化物焼結体)〔5)発泡
スチロール容器の深み部分 〔6〕永久磁石(CoSm!り
FIG. 1 is an explanatory diagram of the equipment used in this experiment. [1] Styrofoam container [2] Liquid nitrogen (3) Shallow part of Styrofoam container [4] Sample (superconducting composite oxide sintered body) [5) Deep part of Styrofoam container [6] Permanent magnet (CoSm!

Claims (2)

【特許請求の範囲】[Claims] (1)希土類元素酸化物とアルカリ土類元素酸化物と銀
酸化物とからなる複合酸化物および希土類元素酸化物と
アルカリ土類元素酸化物と銀酸化物と銅酸化物とからな
る複合酸化物から選択された酸化物超電導体材料。
(1) Composite oxides consisting of rare earth element oxides, alkaline earth element oxides, and silver oxides, and composite oxides consisting of rare earth element oxides, alkaline earth element oxides, silver oxides, and copper oxides. Oxide superconductor materials selected from.
(2)希土類元素とアルカリ土類元素のモル比が0.1
〜0.9:0.9〜0.1であり、銀と銀のモル比が0
.01〜1:0.99〜0であり、かつ希土類元素とア
ルカリ土類元素の合計に対する銀または銀と銅との合計
のモル比が1:1である特許請求の範囲第1項記載の酸
化物超電導体材料。
(2) The molar ratio of rare earth elements and alkaline earth elements is 0.1
~0.9:0.9~0.1, and the molar ratio of silver to silver is 0
.. 01-1:0.99-0, and the molar ratio of silver or the sum of silver and copper to the sum of rare earth elements and alkaline earth elements is 1:1. Physical superconductor materials.
JP62113260A 1987-05-08 1987-05-08 Oxide superconductive material Pending JPS63277514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113260A JPS63277514A (en) 1987-05-08 1987-05-08 Oxide superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113260A JPS63277514A (en) 1987-05-08 1987-05-08 Oxide superconductive material

Publications (1)

Publication Number Publication Date
JPS63277514A true JPS63277514A (en) 1988-11-15

Family

ID=14607645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113260A Pending JPS63277514A (en) 1987-05-08 1987-05-08 Oxide superconductive material

Country Status (1)

Country Link
JP (1) JPS63277514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303814A (en) * 1987-06-01 1988-12-12 Toshiba Corp Oxide superconductor
JPH01212221A (en) * 1988-02-18 1989-08-25 Chisso Corp Y-ba-cu-o oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248721A (en) * 1987-04-03 1988-10-17 Hitachi Ltd Superconductor
JPS63257125A (en) * 1987-04-13 1988-10-25 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductive wire
JPS63277549A (en) * 1987-05-08 1988-11-15 Fujitsu Ltd Superconductive ceramic paste composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248721A (en) * 1987-04-03 1988-10-17 Hitachi Ltd Superconductor
JPS63257125A (en) * 1987-04-13 1988-10-25 Nippon Telegr & Teleph Corp <Ntt> Manufacture of superconductive wire
JPS63277549A (en) * 1987-05-08 1988-11-15 Fujitsu Ltd Superconductive ceramic paste composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303814A (en) * 1987-06-01 1988-12-12 Toshiba Corp Oxide superconductor
JPH01212221A (en) * 1988-02-18 1989-08-25 Chisso Corp Y-ba-cu-o oxide

Similar Documents

Publication Publication Date Title
Lee Engineering superconductivity
US3325888A (en) Method of making a superconductor by sintering powdered metals
AU604827B2 (en) New superconductive compounds of the k2nif4 structural type having a high transition temperature, and method for fabricating same
US5149684A (en) Production of a superconductor powder having a narrow melting transition width using a controlled oxygen atmosphere
Chevalier et al. Superconducting and magnetic properties of ternary silicides in some rare earth-noble metal (Rh or Ir)-silicon systems
Muralidhar et al. Microstructure, critical current density and trapped field experiments in IG-processed Y-123
JPS63277514A (en) Oxide superconductive material
EP0315977A2 (en) Superconductor material comprising a three-component metallic oxide
Kondoh et al. Synthesis of superconducting Ba K Bi O system with perovskite structure
US5041414A (en) Superconductor composite
US3323089A (en) Superconductive devices
US3262024A (en) Superconductive device
Wake et al. 1.8 K Test of binary and ternary superconducting conductors
US5444425A (en) Flux-trapped superconducting magnets and method of manufacture
Takata et al. Pressure Effect on the Magnetic Properties of Superconducting La and La-Ce
US5482917A (en) T1-M-Cu-O-F superconductors
JP2800473B2 (en) Alkali metal doped carbon superconductor
Yamada Bi-based bulk current leads and their applications
Yao et al. Ferromagnetic multifilamentary Fe and Ni wires with high coercive fields produced by powder metallurgy processing
JP3282688B2 (en) Manufacturing method of oxide superconductor
Wolowiec High-Pressure Investigations of Correlated-Electron Phenomena
Schirber et al. Search for high temperature superconductivity in LiPdHx
JPH01176218A (en) Superconducting material of compound oxide and production thereof
Dull et al. A teachers guide to superconductivity for high school students
Reynolds et al. New high field superconductor alloy.[Nb-40% Ti]