JP2523928B2 - Oxide superconductor and method for producing the same - Google Patents

Oxide superconductor and method for producing the same

Info

Publication number
JP2523928B2
JP2523928B2 JP2095709A JP9570990A JP2523928B2 JP 2523928 B2 JP2523928 B2 JP 2523928B2 JP 2095709 A JP2095709 A JP 2095709A JP 9570990 A JP9570990 A JP 9570990A JP 2523928 B2 JP2523928 B2 JP 2523928B2
Authority
JP
Japan
Prior art keywords
phase
temperature
oxide superconductor
sample
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2095709A
Other languages
Japanese (ja)
Other versions
JPH03131521A (en
Inventor
修 井上
成司 安達
俊一郎 河島
幸宏 高橋
洋文 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2095709A priority Critical patent/JP2523928B2/en
Publication of JPH03131521A publication Critical patent/JPH03131521A/en
Application granted granted Critical
Publication of JP2523928B2 publication Critical patent/JP2523928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い超伝導転移温度を持つ酸化物超伝導体
に関するものである。
TECHNICAL FIELD The present invention relates to an oxide superconductor having a high superconducting transition temperature.

従来の技術 超伝導体は、イ)電気抵抗がゼロである、ロ)安全反
磁性である、ハ)ジョセフソン効果がある、といった、
他の材料にない特性を持っており、電力輸送、発電器、
核融合プラズマ閉じ込め、磁気浮上列車、磁気シール
ド、高速コンピュータ等の幅広い応用が期待されてい
る。
2. Description of the Related Art Superconductors have a) zero electrical resistance, b) safe diamagnetism, and c) Josephson effect.
It has properties not found in other materials, such as power transportation, generators,
A wide range of applications such as fusion plasma confinement, magnetic levitation trains, magnetic shields, and high-speed computers are expected.

ところが、従来の金属系超伝導体では、超伝導転移温
度は最も高いものでも23K程度であり、実使用時には高
価な液体ヘリウムと、大がかりな断熱装置を使って冷却
しなければならず、工業上大きな問題であった。
However, in the conventional metal-based superconductor, even the highest superconducting transition temperature is about 23K, and in actual use it must be cooled using expensive liquid helium and a large-scale heat insulation device, It was a big problem.

このため、より高温で超伝導体となる材料の探索が行
われていた。
Therefore, a search for a material that becomes a superconductor at higher temperatures has been made.

1986年にIBM社のベドノルツ(Bednorz)とミューラー
(Muller)により、約40Kという高い超伝導転移温度を
持つ酸化物系超伝導材料(La1-zSrz2CuOxが見いださ
れ、それ以後YBa2Cu3Ox,Bi−Sr−Ca−Cu−O,Tl−Ba−Ca
−Cu−Oなどであいついでより高い温度での超伝導転移
が報告されている。
In 1986, IBM's Bednorz and Muller found an oxide-based superconducting material (La 1-z Sr z ) 2 CuO x with a high superconducting transition temperature of about 40 K, and thereafter. YBa 2 Cu 3 O x , Bi-Sr-Ca-Cu-O, Tl-Ba-Ca
It has been reported that superconducting transition at higher temperature is followed by —Cu—O and the like.

超伝導転移温度が高いほど、冷却が容易となり、また
同じ温度で使用した場合の臨界電流密度や臨界磁場も大
きくなるとが予想され、応用範囲も広がるものと期待さ
れる。
It is expected that the higher the superconducting transition temperature, the easier the cooling becomes, and the larger the critical current density and the critical magnetic field when used at the same temperature, the wider the range of applications is expected.

このため現在、これらの材料の製造法、物性、応用等
に関して多くの研究がなされている。
For this reason, many studies are currently being conducted on the manufacturing methods, physical properties, and applications of these materials.

発明が解決しようとする課題 ところがこれらの材料の内、(La1-zSrz2CuOxは超
伝導転移温度が40K以下であるために、冷却に安価な液
体窒素を用いる事が出来ない。
Problems to be Solved by the Invention However, among these materials, (La 1-z Sr z ) 2 CuO x has a superconducting transition temperature of 40 K or less, and thus inexpensive liquid nitrogen cannot be used for cooling. .

YBa2Cu3Oxは転移温度が約90Kと液体窒素温度以上では
あるがその差は小さく、また焼成時に雰囲気を制御する
必要がある。
YBa 2 Cu 3 O x has a transition temperature of about 90 K, which is above the liquid nitrogen temperature, but the difference is small, and the atmosphere must be controlled during firing.

Bi−Sr−Ca−Cu−Oは100Kを越える転移温度を持つ
が、単一相とするためには融点近傍での長時間の焼成が
必要であるという課題があった。
Bi-Sr-Ca-Cu-O has a transition temperature of more than 100K, but there is a problem that long-term firing near the melting point is necessary to form a single phase.

これらに対し、Tl−Ba−Ca−Cu−Oは最高で約120Kと
いう転移温度を持ち、転移温度の面では最もすぐれてい
る。しかしながら毒性の高いTlを大量に含み、また融点
が920℃程度と低いために融点近傍で焼成する必要があ
り、このためTlが蒸発し易く、さらに異なる転移温度を
持つ。Tl量やCaCu量の異なる多くの化合物(TlBaCaCuの
モル比で、2212,2223,2234,2245,1212,1223,1234等)が
あり、一定の転移温度を持つものを合成するには、焼成
条件等のコントロールが難しいという課題があった。
On the other hand, Tl-Ba-Ca-Cu-O has a maximum transition temperature of about 120 K, and is the best in terms of transition temperature. However, since it contains a large amount of highly toxic Tl and its melting point is low at about 920 ° C, it is necessary to bake near the melting point, so that Tl easily evaporates and has a different transition temperature. There are many compounds with different Tl content and CaCu content (molar ratio of TlBaCaCu, 2212,2223,2234,2245,1212,1223,1234, etc.). There was a problem that it was difficult to control such as.

一方、Tl−Ba−Ca−Cu−OのBaをSrで置換した、Tl−
Sr−Ca−Cu−Oセラミックスは、融点が1000℃以上にな
るため焼成温度幅に余裕があり、かつ生成する化合物の
種類が2種類に限られているので(TlSrCaCuのモル比
で、1212,1223)単一相を作成するのも比較的容易と考
えられる。
On the other hand, Tl-Ba-Ca-Cu-O was prepared by substituting Sr for Ba in Tl-Ba-Ca-Cu-O.
Since the melting point of Sr-Ca-Cu-O ceramics is 1000 ° C or more, there is a margin in the firing temperature range, and the types of compounds that can be produced are limited to two types (the molar ratio of TlSrCaCu is 1212, 1223) It is also considered relatively easy to create a single phase.

ところがこの系では、液体窒素温度以上で超伝導転移
する試料を作成する事が難しく、100K程度にオンセット
温度を持つ試料が得られても、零抵抗温度は50K以下と
なる場合が多かった。
In this system, however, it is difficult to prepare a sample that undergoes a superconducting transition above the liquid nitrogen temperature, and even if a sample with an onset temperature of about 100K was obtained, the zero resistance temperature was often below 50K.

また、これらBi−Sr−Ca−Cu−OとTl−Ba−Ca−Cu−
Oを組み合わせた(Tl,Bi)Sr2CaCu2Ox相も見いだされ
ているが、その超伝導転移温度は約80Kと低かった。
Moreover, these Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-
A (Tl, Bi) Sr 2 CaCu 2 O x phase in which O was combined was also found, but its superconducting transition temperature was as low as about 80K.

本発明は高い零抵抗温度を有する酸化物超伝導体を提
供すると共に、容易に製造でき、しかも毒性が極めて低
い酸化物超伝導体の製造方法を提供することを目的とす
る。
It is an object of the present invention to provide an oxide superconductor having a high zero resistance temperature, a method for producing the oxide superconductor which can be easily produced and has extremely low toxicity.

課題を解決するための手段 本発明は、組成として、少なくともTl,Bi,Sr,Caおよ
びCuを含み、格子定数がa=0.38nm、c=1.53nmの正方
晶系に属する結晶構造を有する、酸化物超伝導材料によ
り、上記の酸化物超伝導体の持つ欠点を除去したもので
あり、またその単一相セラミックスの作製法である。
Means for Solving the Problems The present invention has, as a composition, at least Tl, Bi, Sr, Ca and Cu, and has a crystal structure belonging to a tetragonal system with lattice constants of a = 0.38 nm and c = 1.53 nm, An oxide superconducting material eliminates the above-mentioned drawbacks of the oxide superconductor, and a method for producing a single-phase ceramic.

作用 発明者等は、従来知られていない酸化物高温超伝導体
の組成比を鋭意探索・研究した結果、上記の組成、構造
を有する物質において、最大120Kに近い超伝導転移を見
いだした。
Action The inventors of the present invention, as a result of diligent search and research on the composition ratio of a conventionally unknown oxide high-temperature superconductor, found a superconducting transition close to 120 K at maximum in the substance having the above composition and structure.

この超伝導体は高い転移温度をもつが、毒性の高いTl
の含有量は最大12〜13モルパーセント程度であり、Tl−
Ba−Ca−Cu−O系の高Tc相であるTl2Ba2Ca2Cu3Oxの約22
モルパーセントの1/2程度であり、かつTl2Ba2Ca2Cu3Ox
よりも融点が高く、同一温度においてはより安定であ
る。また、その製造法について検討を加え、単一相より
なるセラミックスの作成方法を開発した。
This superconductor has a high transition temperature, but the highly toxic Tl
The maximum content of 12-13 mol% is Tl-
About 22 of Tl 2 Ba 2 Ca 2 Cu 3 O x which is a high Tc phase of Ba-Ca-Cu-O system
It is about 1/2 of the mole percentage and Tl 2 Ba 2 Ca 2 Cu 3 O x
It has a higher melting point and is more stable at the same temperature. In addition, we examined the manufacturing method and developed a method for producing ceramics consisting of a single phase.

この作成方法は、Biを含まないTlSr2Ca2Cu3Ox相に対
しても有効であり、単一相の合成を容易とし、その転移
温度を向上させる効果を持つ。
This preparation method is also effective for the TlSr 2 Ca 2 Cu 3 O x phase that does not contain Bi, has the effect of facilitating the synthesis of a single phase, and improving its transition temperature.

実施例 以下、実施例1及び2でこの超伝導体の組成比と結晶
構造を説明し、実施例3及び4でその単一相よりなるセ
ラミックスの作成方法を説明する。
Example Hereinafter, the composition ratio and the crystal structure of this superconductor will be described in Examples 1 and 2, and the method for producing a ceramic having a single phase will be described in Examples 3 and 4.

実施例1 出発原料として、純度99%以上のTl2O3,Bi2O3,SrCO3,
CaCO3,CuOの各粉末を用いた。
Example 1 As a starting material, Tl 2 O 3 , Bi 2 O 3 , SrCO 3 ,
Powders of CaCO 3 and CuO were used.

これらの粉末のうち、SrCO3とCuOを、Sr:Cu=2:1の比
率となり、かつ合計30gとなるように秤量し、振動ミル
にて直径2mmのZrO2ボールを用い、エタノール40mlを分
散媒として1時間粉砕混合した。
Of these powders, SrCO 3 and CuO were weighed so that the ratio was Sr: Cu = 2: 1 and the total amount was 30 g, and 40 ml of ethanol was dispersed using a ZrO 2 ball with a diameter of 2 mm in a vibration mill. The medium was pulverized and mixed for 1 hour.

混合終了後、分散媒ごと全量を乾燥機中で120℃で乾
燥させた。得られた粉末を1000℃で5時間、空気中で仮
焼した後、振動ミルにて前述と同様の方法で30分間粉砕
し、120℃で乾燥させた。
After the completion of the mixing, the entire amount of the dispersion medium and the whole was dried at 120 ° C. in a dryer. The obtained powder was calcined in air at 1000 ° C. for 5 hours, pulverized in a vibration mill for 30 minutes in the same manner as described above, and dried at 120 ° C.

この仮焼粉末をX線回折により分析したところ、Sr2C
uO3が生成している事を確認した。
When this calcined powder was analyzed by X-ray diffraction, Sr 2 C
It was confirmed that uO 3 was generated.

次に同様の方法で、CaCO3とCuOより、950℃の仮焼でC
a2CuO3の粉末を合成した。
Then, in the same way, from CaCO 3 and CuO, C by calcination at 950 ° C
A powder of a 2 CuO 3 was synthesized.

これらSr2CuO3とCa2CuO3粉末について、その組成比を
分析し、目的組成からのずれがない事を確認した。
The composition ratio of these Sr 2 CuO 3 and Ca 2 CuO 3 powders was analyzed, and it was confirmed that there was no deviation from the target composition.

このSr2CuO3とCa2CuO3粉末およびTl2O3,Bi2O3,CuO粉
末を、Tl:Bi:Sr:Ca:Cu=2:0.5:2:3:4のモル比となり、
かつ総重量が20gとなるようにそれぞれ秤量した。
This Sr 2 CuO 3 and Ca 2 CuO 3 powder and Tl 2 O 3 ,, Bi 2 O 3 , CuO powder have a molar ratio of Tl: Bi: Sr: Ca: Cu = 2: 0.5: 2: 3: 4,
Moreover, each was weighed so that the total weight was 20 g.

秤量粉末をらいかい機により1時間粉砕混合した。混
合終了後、この粉末の0.4gを15mm×5mmの金型中で500Kg
/cm2の圧力で一軸加圧成形した。
The weighed powder was pulverized and mixed for 1 hour by a raker. After mixing, 0.4g of this powder is 500kg in a 15mm × 5mm mold.
Uniaxial pressure molding was performed at a pressure of / cm 2 .

この成形体を、Au箔で包み、さらに石英チューブ中に
減圧状態(約10-2Torr)で封じ込め、電気炉にて900〜9
50℃で1〜4時間焼成した。昇降温速度はいずれも400
℃/hrとした。
This molded body was wrapped in Au foil, further sealed in a quartz tube under reduced pressure (about 10 -2 Torr), and heated in an electric furnace for 900 ~ 9
It was baked at 50 ° C. for 1 to 4 hours. The temperature raising and lowering rate is 400
C / hr.

焼結体は銀電極を付け、通常の4端子法により電気抵
抗の温度変化を測定電流10mAで300Kから5Kまで測定し、
超伝導転移により電気抵抗が急激に低下し始める温度
(T1)と、抵抗が0となる温度(T2)を求めた。また、
焼結体の帯磁率の温度変化を測定し、マイスナー効果に
より帯磁率が急激に変化し始める温度(T3)を求めた。
結果を第1表に示した。
A silver electrode is attached to the sintered body, and the temperature change of the electric resistance is measured from 300K to 5K at a measuring current of 10mA by the usual 4-terminal method.
The temperature (T1) at which the electric resistance started to rapidly decrease due to the superconducting transition and the temperature (T2) at which the resistance became 0 were determined. Also,
The temperature change of the magnetic susceptibility of the sintered body was measured, and the temperature (T3) at which the magnetic susceptibility started to change rapidly due to the Meissner effect was obtained.
The results are shown in Table 1.

第1表より明らかなように、900℃以上の焼成温度に
おいて100Kを越えるTconsetが観察され、925℃で40時間
焼成では零抵抗温度も100Kを越えた。
As is clear from Table 1, a Tc onset exceeding 100K was observed at a baking temperature of 900 ° C or higher, and the zero resistance temperature also exceeded 100K when baked at 925 ° C for 40 hours.

次にこれらの焼結体を粉砕した後、X線回折にかけて
分析したところ、850℃焼成の試料では、a=0.35nm,c
=1.21nmの正方晶系に属する相が主要相であった。
Next, these sinters were crushed and then analyzed by X-ray diffraction. As a result, in the sample fired at 850 ° C., a = 0.35 nm, c
The phase belonging to the tetragonal system of = 1.21 nm was the main phase.

この相は既に報告されているような(Tl,Bi)Sr2CaCu
2Ox相と考えられ、そのTcは80K程度である。
This phase is (Tl, Bi) Sr 2 CaCu as previously reported.
It is considered to be a 2 O x phase and its Tc is about 80K.

一方、900℃以上の温度で焼成した試料では、a=0.3
8nm,c=1.53nmの正方晶系に属する相が生成が認められ
た。
On the other hand, in the case of the sample fired at a temperature of 900 ° C or higher, a = 0.3
Formation of a phase belonging to the tetragonal system of 8 nm, c = 1.53 nm was observed.

時に925℃で40時間焼成試料では、このc=1.53nm相
が主要相となった。不純物としてはCa2CuO3,CuOやc=
1.21nmの相が少量共存した。Tcが最も高くなるのは、こ
の925℃で40時間焼成試料であるので、このc=1.53nm
相が本系における超伝導相である。
Sometimes in the samples fired at 925 ° C for 40 hours, this c = 1.53 nm phase became the main phase. As impurities, Ca 2 CuO 3 , CuO or c =
A small amount of 1.21 nm phases coexisted. The highest Tc is the sample fired at 925 ° C for 40 hours, so c = 1.53 nm
The phase is the superconducting phase in this system.

実施例2 実施例1と同様の方法で、第2表の組成比となり、か
つ総重量が20gとなるようにSr2CuO3とCa2CuO3粉末、お
よびTl2O3,Bi2O3,CuO粉末を秤量した。但しTl:Sr:Ca:Cu
の配合比は2:2:3:4および2:2:2:3としたこれらを、配合
組成比(2234)および(2223)と呼ぶ事とする。
Example 2 In the same manner as in Example 1, Sr 2 CuO 3 and Ca 2 CuO 3 powder, and Tl 2 O 3 , Bi 2 O 3 were used so that the composition ratio shown in Table 2 and the total weight became 20 g. Then, CuO powder was weighed. However, Tl: Sr: Ca: Cu
The compounding ratios of (2): 2: 3: 4 and 2: 2: 2: 3 are referred to as compounding composition ratios (2234) and (2223).

秤量粉末を実施例1と同様の方法で、混合・成形・焼
成し、焼結体の超伝導転移温度を測定した。その結果を
第3表に示した。
The weighed powder was mixed, molded and fired in the same manner as in Example 1, and the superconducting transition temperature of the sintered body was measured. The results are shown in Table 3.

第3表より明らかなように、975℃で5hr焼成の場合、
配合組成比(2234)(2223)ともに、Bi無添加の組成で
は、抵抗測定で超伝導転移のオンセットは90K以下であ
り、零抵抗温度は15K以下であった。
As is clear from Table 3, in the case of firing at 975 ° C for 5 hours,
In the composition ratios (2234) and (2223) without addition of Bi, the onset of the superconducting transition was 90 K or less and the zero resistance temperature was 15 K or less in the resistance measurement.

これに対して、Biを0.1添加で零抵抗が15K以上となっ
て観察されるようになり、Biを0.2以上添加した組成で
は、配合組成比(2234)では、オンセットは110Kを越
え、零抵抗も100K以上となった。
On the other hand, when 0.1 is added to Bi, zero resistance becomes 15K or more, and it is observed, and in the composition in which Bi is added to 0.2 or more, the onset exceeds 110K and zero at the composition ratio (2234). The resistance was over 100K.

また、配合組成比(2223)でも、Bi添加により100K近
い転移温度を示すものが得られた。
In addition, even in the blending composition ratio (2223), a transition temperature close to 100 K was obtained by adding Bi.

次に焼成条件を、975℃で5hr焼成後850℃で100hrとし
た場合、Bi無添加試料は常伝導状態での抵抗が高くな
り、抵抗変化のオンセットこそ観察されるものの、零抵
抗およびマイスナー効果のオンセットは観察されなくな
った。
Next, if the firing conditions are 975 ° C. for 5 hours and 850 ° C. for 100 hours, the Bi-free sample has a high resistance in the normal conduction state, and onset of resistance change is observed, but zero resistance and Meissner The effect onset is no longer observed.

この試料の組成比を分析すると、Tlがほとんど含まれ
ていなかった。これは長時間の焼成によりTlが蒸発して
しまったものと考えられる。
When the composition ratio of this sample was analyzed, Tl was scarcely contained. It is considered that this is because Tl was evaporated by the long-term firing.

これに対し、Bi添加組成では、時に配合組成比(223
4)の時に最高のオンセット温度117K、零抵抗温度114K
が得られた。また組成分析では、Tlは配合した内の半分
程度残存していた。
On the other hand, with the Bi-added composition, the composition ratio (223
4) when the highest onset temperature 117K, zero resistance temperature 114K
was gotten. Further, in the composition analysis, about half of the compounded Tl remained.

次にこれらの焼結体の内、転移温度の高いものについ
て試料の一部を粉砕し、粉末X線回折測定を行い、また
焼結体の破断面の結晶粒子のEPMAによる組成分析を行
い、生成相を同定した。
Next, of these sintered bodies, a sample having a high transition temperature was crushed, a powder X-ray diffraction measurement was performed, and a composition analysis by EPMA of the crystal grains on the fracture surface of the sintered body was performed. The generative phase was identified.

Tl−Sr−Ca−Cu−O系では、Tl:Sr:Ca:Cu組成比が、
ほぼ1:2:1:2である相と、1:2:2:3である相の存在が報告
されている。これらをそれぞれ“1212"相および“1223"
相と呼ぶ事にする。
In the Tl-Sr-Ca-Cu-O system, the Tl: Sr: Ca: Cu composition ratio is
The existence of a phase that is approximately 1: 2: 1: 2 and a phase that is 1: 2: 2: 3 has been reported. These are “1212” phase and “1223” respectively
I will call it Ai.

本実施例のBi無添加の試料では、配合組成比(2234)
及び(2223)ともに、X線回折より975℃で5hr焼成で
“1212"相と未知相が、970℃で5hr焼成後850℃で100hr
焼成した試料では未知相のみが生成していた。
In the Bi-free sample of this example, the compounding composition ratio (2234)
For both (2223) and (2223), the "1212" phase and the unknown phase were calcined at 975 ° C for 5 hrs by X-ray diffraction, and 750 ° C for 5 hrs and then 850 ° C for 100 hrs.
Only the unknown phase was formed in the calcined sample.

この未知相は、EPMAによりTlをほとんど含まない相で
ある事が確認された。
This unknown phase was confirmed by EPMA to be a phase containing almost no Tl.

一方、Biを0.2以上添加した系では、X線回折によりT
l−Sr−Ca−Cu−O系の“1212"相および“1223"相それ
ぞれに類似した回折パターンが得られた。それぞれの格
子定数は、a=0.35nm,c=1.21nm(正方晶)と、a=0.
38nm,c=1.53nm(正方晶)であった。
On the other hand, in the system containing 0.2 or more of Bi, the T
Diffraction patterns similar to those of the "1212" phase and "1223" phase of the 1-Sr-Ca-Cu-O system were obtained. The respective lattice constants are a = 0.35 nm, c = 1.21 nm (tetragonal) and a = 0.
It was 38 nm, c = 1.53 nm (tetragonal).

前者は、“1212"相とおなじ結晶構造を持ち、Tlが一
部Biで置換された(Tl,Bi)Sr2CaCu2Ox相として既に報
告例があり、そのTcは80K程度とされている。
The former has already been reported as a (Tl, Bi) Sr 2 CaCu 2 O x phase, which has the same crystal structure as the “1212” phase and Tl is partially replaced by Bi, and its Tc is assumed to be around 80K. There is.

一方後者は、“1223"相と類似しているため、やはりT
lの一部がBiで置換された(Tl,Bi)Sr2Ca2Cu3Ox相と考
えられる。EPMA分析でも、ほぼ(Tl+Bi):Sr:Ca:Cu=
1:2:2:3の結晶が生成していた。これらのBiを含む相を
“1212"類似相および“1223"類似相と呼ぶ事にする。
On the other hand, the latter is similar to the "1223" phase, so T
A (Tl, Bi) Sr 2 Ca 2 Cu 3 O x phase in which a part of l is replaced by Bi is considered. In EPMA analysis, almost (Tl + Bi): Sr: Ca: Cu =
Crystals of 1: 2: 2: 3 had formed. The phases containing these Bis will be referred to as the “1212” similar phase and the “1223” similar phase.

Bi添加系で、配合組成比(2234)と(2223)を比較す
ると、(2234)では“1223"類似相が主要相で、“1212"
類似相はごくわずかであるのに対し、(2223)では、
“1212"類似相の方がかなり多かった。
Comparing the composition ratios (2234) and (2223) in the Bi-added system, in (2234), the “1223” similar phase is the main phase and “1212”
While there are very few similarities, in (2223),
There were considerably more "1212" similarities.

第2表では試料番号4及び6が試料番号8及び9より
も転移温度が高いことから、“1223"類似相が110Kを越
える転移温度を持つ超伝導体であると結論できる。
In Table 2, since sample Nos. 4 and 6 have higher transition temperatures than sample Nos. 8 and 9, it can be concluded that the "1223" -like phase is a superconductor having a transition temperature exceeding 110K.

組成的には、ほぼ(Tl,Bi)Sr2Ca2Cu3Oxであるが、そ
の生成量を多くするためには、(2234)の配合組成比と
する必要があった。しかしながらこの場合、当然CaとCu
が過剰であり、これらの不純物が生成している事が、X
線回折、EPMA分析により確認された。
The composition is almost (Tl, Bi) Sr 2 Ca 2 Cu 3 O x , but in order to increase the production amount, it was necessary to use the composition ratio of (2234). However, in this case, of course Ca and Cu
Is excessive and these impurities are generated,
It was confirmed by line diffraction and EPMA analysis.

次に生成した(Tl,Bi)Sr2Ca2Cu3Ox相の(Tl+Bi)/B
iの組成比を、EPMAにより分析した。
Next, the (Tl, Bi) Sr 2 Ca 2 Cu 3 O x phase (Tl + Bi) / B
The composition ratio of i was analyzed by EPMA.

その結果Bi添加量0.2および0.33では、それぞれにお
ける平均値は、ほぼ1/0.22と1/0.29であった。
As a result, the average values were about 1 / 0.22 and 1 / 0.29 for Bi additions of 0.2 and 0.33, respectively.

ところがBi添加量0.4でも(Tl,Bi)Sr2Ca2Cu3Ox相の
(Tl+Bi)/Biの組成比は1/0.31であり、さらにBi配合
比をふやしてもBi量はあまり増加しなかった。
However, the composition ratio of (Tl + Bi) / Bi in the (Tl, Bi) Sr 2 Ca 2 Cu 3 O x phase was 1 / 0.31 even when the Bi content was 0.4, and the Bi content increased much even if the Bi composition ratio was further increased. There wasn't.

一方、Bi添加量0.1では、第3表より特性改善の効果
はあるものの、あまり明瞭ではなかった。
On the other hand, when the added amount of Bi was 0.1, the effect of improving the characteristics was obtained from Table 3, but it was not so clear.

従って、Bi添加により転移温度が改善されるが、時に
Tl/Biの値が5/1〜2/1の範囲内とする事が望ましい。
Therefore, the addition temperature of Bi improves the transition temperature, but sometimes
It is desirable that the value of Tl / Bi is within the range of 5/1 to 2/1.

実施例3 実施例1及び2で述べたように、本発明の超伝導体
は、TlSr2Ca2Cu3Ox相のTlサイトがBiにより部分的に置
換され、ほぼ(Tl,Bi)Sr2Ca2Cu3Oxの組成よりなる、格
子定数がa=0.38nm,c=1.53nmの正方晶系に属する結晶
構造を有する相である。しかしながら通常の作成法で
は、CaとCuが過剰の組成から出発しないとこの相はわず
かしか生成せず、このためこの相単一相の試料は得られ
ていなかった。
Example 3 As described in Examples 1 and 2, in the superconductor of the present invention, the Tl site of the TlSr 2 Ca 2 Cu 3 O x phase was partially replaced by Bi, and the superconducting material was almost (Tl, Bi) Sr. It is a phase having a crystal structure consisting of a composition of 2 Ca 2 Cu 3 O x and having a lattice constant of a = 0.38 nm and c = 1.53 nm and belonging to a tetragonal system. However, in the conventional preparation method, only a small amount of this phase was formed unless Ca and Cu started from an excessive composition, and thus a single-phase sample of this phase was not obtained.

また、TlSr2Ca2Cu3Ox相自体、通常の作製法では生成
し難く、オンセット温度は90K程度の試料が得られて
も、零抵抗は観察されない場合が多かった。
In addition, the TlSr 2 Ca 2 Cu 3 O x phase itself is difficult to form by the usual production method, and even if a sample having an onset temperature of about 90 K was obtained, zero resistance was not often observed.

そこでまず、(Tl1-yBiy)Sr2Ca2Cu3Oxの、y=0で
あるTlSr2Ca2Cu3Ox相の合成について、出発物質の面か
ら検討した。
Therefore, first, the (Tl 1-y Bi y) Sr 2 Ca 2 Cu 3 O x, for the synthesis of TlSr 2 Ca 2 Cu 3 O x phase is y = 0, was studied in terms of the starting material.

出発物質として実施例1で用いたTl2O3,Bi2O3,CuO,Sr
2CuO3,Ca2CuO3粉末以外に、Tl2O,Cu2O及びCuの各粉末を
用いて試料の作成を行った。
Tl 2 O 3 , Bi 2 O 3 , CuO, and Sr used in Example 1 as starting materials
In addition to the 2 CuO 3 and Ca 2 CuO 3 powders, Tl 2 O, Cu 2 O, and Cu powders were used to prepare samples.

実施例1と同様に、Sr2CuO3とCa2CuO3の粉末を合成
し、これとTl2O,Tl2O3,Bi2O3,CuO,Cu2O及びCu粉末を、T
l:Sr:Ca:Cu=(1+Z):2:2:3のモル比となり、かつTl
2OとTi2O3の比率およびCuO,Cu2OとCuメタルの比率が第
4表に示したようになるように秤量した。総重量は5gと
した。
Similarly to Example 1, powders of Sr 2 CuO 3 and Ca 2 CuO 3 were synthesized, and Tl 2 O, Tl 2 O 3 , Bi 2 O 3 , CuO, Cu 2 O and Cu powder were mixed with T
l: Sr: Ca: Cu = (1 + Z): 2: 2: 3 molar ratio and Tl
It was weighed so that the ratio of 2 O and Ti 2 O 3 and the ratio of CuO, Cu 2 O and Cu metal were as shown in Table 4. The total weight was 5 g.

目的組成物はTlSr2Ca2Cu3Oxであるが、Tlが焼成中に
蒸発するため、Zは0〜3として実験を行った。
Although objective composition is TlSr 2 Ca 2 Cu 3 O x , since Tl evaporates during firing, Z is conducted experiments as 0-3.

秤量粉末を実施例1と同様の方法で、混合・成形・焼
成し、焼結体の超伝導転移温度を測定した。
The weighed powder was mixed, molded and fired in the same manner as in Example 1, and the superconducting transition temperature of the sintered body was measured.

焼結体の特性の結果を第5表に示した。 The results of the characteristics of the sintered body are shown in Table 5.

第5表より、通常のTl2O3やCuOのみを用い、Z=1と
した試料番号1では、X=10であり、この場合90K付近
で若干の抵抗変化が観察されるが零抵抗は15Kまででは
観察されず、マイスナー効果も確認されなかった。
From Table 5, in the case of Sample No. 1 in which only Tl 2 O 3 or CuO is used and Z = 1, X = 10. In this case, a slight resistance change is observed around 90K, but zero resistance is It was not observed up to 15K, and the Meissner effect was not confirmed.

Tl2O3をTl2Oで置き換えていくと、X=9.8以下となる
組成では焼結体の常伝導状態での抵抗も下がり、零抵
抗、マイスナー効果とも確認されるようになった。
When Tl 2 O 3 was replaced with Tl 2 O, the resistance in the normal conduction state of the sintered body decreased with the composition of X = 9.8 or less, and zero resistance and Meissner effect were also confirmed.

X=9.5となる試料番号5では、最高のオンセット99
K、零抵抗温度92Kが得られた。
The highest onset 99 for sample number 5 with X = 9.5
A K and a zero resistance temperature of 92K were obtained.

さらにXが小さくなると、X=9.0までは超伝導転移
が観察されるが、それ以下では常伝導状態での抵抗が大
きくなり、超伝導転移が観察されなくなった。
When X was further reduced, the superconducting transition was observed until X = 9.0, but below that, the resistance in the normal conduction state was increased and the superconducting transition was not observed.

試料番号7では、マイスナー効果が観察されている
が、これは試料の不均一さによるものである。
In the sample No. 7, the Meissner effect is observed, which is due to the nonuniformity of the sample.

従って、Z=1で9.0≦X≦9.8の範囲内、すなわち
(7.5+1.5Z)≦X≦(8.3+1.5Z)の範囲内で良好な超
伝導転移が観察された。
Therefore, good superconducting transition was observed in the range of 9.0 ≦ X ≦ 9.8 when Z = 1, that is, in the range of (7.5 + 1.5Z) ≦ X ≦ (8.3 + 1.5Z).

また、得られた試料をX線回折により調べたところ、
TlSr2Ca2Cu3Ox相が生成していた。
In addition, when the obtained sample was examined by X-ray diffraction,
A TlSr 2 Ca 2 Cu 3 O x phase was formed.

Xを調整するためにTl2OのかわりにCu2Oまたはメタル
Cuを用いた場合にも、またZの値を0〜3まで変化させ
た場合にも、試料番号10〜14の結果より明らかなよう
に、Tl2O3やCuOのみを用いた試料番号1の場合よりも超
伝導特性は向上した。
Cu 2 O or metal instead of Tl 2 O to adjust X
As is clear from the results of the sample numbers 10 to 14, the sample number 1 using only Tl 2 O 3 and CuO was obtained when Cu was used and when the value of Z was changed from 0 to 3. The superconducting property was improved as compared with the case.

発明者等は、試料番号10〜14以外にも種々の組成比で
検討を行ったが、いずれの場合にも、(7.5+1.5Z)≦
X≦(8.3+1.5Z)の範囲内とする事により、良好な超
伝導転移が観察された。
The inventors examined various composition ratios other than the sample numbers 10 to 14, and in any case, (7.5 + 1.5Z) ≦
Good superconducting transition was observed within the range of X ≦ (8.3 + 1.5Z).

なお、Sr:Ca:Cu=2:2:3としたが、この値より若干の
ずれがあっても、結果には大きな差は見られなかった。
Although Sr: Ca: Cu = 2: 2: 3 was set, no significant difference was found in the results even if there was a slight deviation from this value.

一方、Tlが蒸発するためZの値については制限がない
が、あまり多いと蒸発するのに時間がかかり、過剰のTl
が残留し易くなるので、1以下とする事が望ましい。
On the other hand, there is no limit to the value of Z because Tl evaporates, but if it is too much, it will take time to evaporate, and an excessive Tl
Is likely to remain, so 1 or less is desirable.

また実施例では減圧状態で焼成を行ったが、空気中や
酸素中で焼成すると、特性向上の効果が顕著ではなくな
った。これはTl2O,Cu2OやCuメタルが容易に酸化される
ためである。従って、非酸化性雰囲気中で焼成する事が
望ましい。
Further, in the examples, the firing was carried out under reduced pressure, but when firing in air or oxygen, the effect of improving the characteristics was not remarkable. This is because Tl 2 O, Cu 2 O and Cu metal are easily oxidized. Therefore, firing in a non-oxidizing atmosphere is desirable.

実施例4 次に(Tl,Bi)Sr2Ca2Cu3Ox相の合成条件に付いて検討
した。
Example 4 Next, the synthesis conditions of the (Tl, Bi) Sr 2 Ca 2 Cu 3 O x phase were examined.

実施例3と同様に、Sr2CuO3とCa2CuO3の粉末、および
Tl2O,Tl2O3,Bi2O3,CuO,Cu2O,Cu粉末を、Tl:Bi:Sr:Ca:Cu
=2:0.25:2:2:3のモル比となり、かつTl2OとTl2O3の比
率およびCuO,CuO2とCuメタルの比率が第6表に示したよ
うになるように秤量した。但し総重量は5gとした。
As in Example 3, powders of Sr 2 CuO 3 and Ca 2 CuO 3 , and
Tl 2 O, Tl 2 O 3 ,, Bi 2 O 3 ,, CuO, Cu 2 O, Cu powder, Tl: Bi: Sr: Ca: Cu
= 2: 0.25: 2: 2: 3 molar ratio, and weighed so that the ratio of Tl 2 O to Tl 2 O 3 and the ratio of CuO, CuO 2 to Cu metal were as shown in Table 6. . However, the total weight was 5 g.

目的組成物はTl0.75Bi0.25Sr2Ca2Cu3Oxであるが、Tl
が焼成中に蒸発するため、Tl量を過剰として実験を行っ
た。
The target composition is Tl 0.75 Bi 0.25 Sr 2 Ca 2 Cu 3 O x.
Was evaporated during firing, so an experiment was conducted with an excessive amount of Tl.

実施例1と同様の方法で、秤量粉末を混合・成形・焼
成し、焼結体の転移温度を測定した。その結果を第7表
に示した。
In the same manner as in Example 1, the weighed powder was mixed, molded and fired, and the transition temperature of the sintered body was measured. The results are shown in Table 7.

第7表より、通常のTl2O3やCuOのみを用いた試料番号
1に比べ、Tl2OやCu2O、Cuメタルを部分的に用いた試料
番号2,3,5及び6では全体的に転移温度が向上し、その
差は特に975℃で5時間焼成後850℃で100時間焼成した
試料で顕著となった。
From Table 7, compared with the sample No. 1 using only Tl 2 O 3 or CuO, the sample Nos. 2, 3, 5 and 6 partially using Tl 2 O, Cu 2 O or Cu metal are all The transition temperature was improved, and the difference was particularly remarkable in the sample fired at 975 ° C. for 5 hours and then fired at 850 ° C. for 100 hours.

試料番号2では、最高のオンセット温度118K、零抵抗
温度115Kが得られた。
Sample No. 2 had the highest onset temperature of 118K and zero resistance temperature of 115K.

一方、Tl2O3を全く用いず、Tl2Oのみを用いた試料で
は、絶縁体となった。
On the other hand, the sample using only Tl 2 O without using Tl 2 O 3 was an insulator.

次に試料を粉砕して粉末X線回折により生成相を同定
したところ、試料番号1の試料では、どちらの焼成条件
でも、目的の(Tl,Bi)Sr2Ca2Cu3Ox相以外に、転移温度
の低い(Tl,Bi)Sr2CaCu2Ox相や、未知の不純物相など
が生成していた。
Next, when the sample was crushed and the generated phase was identified by powder X-ray diffraction, it was found that in the sample of sample No. 1, in addition to the target (Tl, Bi) Sr 2 Ca 2 Cu 3 O x phase under both firing conditions. , A (Tl, Bi) Sr 2 CaCu 2 O x phase with a low transition temperature and an unknown impurity phase were formed.

一方試料番号2,3,5及び6では、(Tl,Bi)Sr2Ca2Cu3O
x相が主要相であり、(Tl,Bi)Sr2CaCu2Ox相や、未知相
はわずかしか見られず、特に試料番号2の975℃で5時
間焼成後850℃で100時間焼成した試料は、ほとんど(T
l,Bi)Sr2Ca2Cu3Ox相単相となった。
On the other hand, in sample numbers 2, 3, 5 and 6, (Tl, Bi) Sr 2 Ca 2 Cu 3 O
The x phase is the main phase, and only a small amount of (Tl, Bi) Sr 2 CaCu 2 O x phase and unknown phase are seen. Especially, the sample No. 2 was fired at 975 ° C for 5 hours and then at 850 ° C for 100 hours. Most of the samples (T
l, Bi) Sr 2 Ca 2 Cu 3 O x phase became a single phase.

またTl2O3を全く用いず、Tl2Oのみを用いた試料は、
(Tl,Bi)Sr2CaCu2Ox相が少量と、あと未知相よりなっ
ていた。
Also, the sample using only Tl 2 O without using Tl 2 O 3 at all
The (Tl, Bi) Sr 2 CaCu 2 O x phase was a small amount, and was also composed of an unknown phase.

発明者等は試料番号2〜6以外にもTl2O、Cu2O、もし
くはCuメタルの比率を様々に変えて試料を作成したが、
転移温度にある程度の差は生じるものの、いずれの場合
にも(7.5+1.5Z)≦X≦(8.3+1.5Z)の範囲内とする
事により良好な超伝導転移が観察され、(Tl,Bi)Sr2Ca
2Cu3Ox相単相の試料が得られ易かった。
The inventors made samples by changing the ratio of Tl 2 O, Cu 2 O, or Cu metal in addition to the sample numbers 2 to 6.
Although there is some difference in the transition temperature, good superconducting transition was observed by setting (7.5 + 1.5Z) ≦ X ≦ (8.3 + 1.5Z) in all cases, and (Tl, Bi ) Sr 2 Ca
It was easy to obtain a single-phase sample of 2 Cu 3 O x phase.

従って、y=0の場合を含む(Tl1-yBiy)Sr2Ca2Cu3O
x相について、酸素量調整下での作成の効果が確認され
た。
Therefore, including the case of y = 0 (Tl 1-y Bi y ) Sr 2 Ca 2 Cu 3 O
Regarding the x- phase, the effect of production under adjustment of the oxygen amount was confirmed.

発明の効果 本発明は、組成として少なくともTl,Bi,Sr,CaおよびC
uを含み、格子定数がa=0.38nm、c=1.53nmの正方晶
系に属する結晶構造を有することを特徴とする、酸化物
超伝導体と、この超伝導体相単一相よりなるセラミック
スの製造方法であるため、次のような効果がある。
EFFECTS OF THE INVENTION The present invention has at least Tl, Bi, Sr, Ca and C as a composition.
A ceramic consisting of an oxide superconductor and a single phase of this superconductor phase characterized by having a crystal structure containing u and having a lattice constant of a = 0.38 nm and c = 1.53 nm belonging to a tetragonal system. Since it is a manufacturing method of, there are the following effects.

この超伝導体は、Bi−Sr−Ca−Cu−O系と、Tl−Ba−
Ca−Cu−O系の超伝導酸化物の長所を併せ持つ効果があ
る。
This superconductor consists of Bi-Sr-Ca-Cu-O system and Tl-Ba- system.
It has the effect of having the advantages of the Ca-Cu-O-based superconducting oxide.

即ち、最高115Kの高い零抵抗温度を持つ超伝導酸化物
を実現できる効果があり、Bi系のように焼成温度を融点
直下5〜10℃の範囲内に制御する必要がないため、超伝
導酸化物を容易に製造できる効果があり、かつ毒性の高
いTlの含有量はTl系酸化物超伝導体の1/2程度であるた
め、毒性も極めて少ない効果がある。
In other words, it has the effect of realizing a superconducting oxide with a high zero resistance temperature of up to 115 K, and since it is not necessary to control the firing temperature within the range of 5 to 10 ° C just below the melting point, unlike the case of Bi type, superconducting oxidation is possible. Since the content of highly toxic Tl is about half that of Tl-based oxide superconductors, it is extremely toxic.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 幸宏 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 平野 洋文 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 J.M.Wheatley et a l.,NATURE,Vol.333,N o.6169,P.121.(MAY 1988) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukihiro Takahashi 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hirofumi Hirano 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial (56) References J. M. Whereley et al. , NATURE, Vol. 333, No. 6169, P.I. 121. (MAY 1988)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成として、少なくともTl,Bi,Sr,Caおよ
びCuを含み、格子定数がa=0.38nm、c=1.53nmの正方
晶系に属する結晶構造を有することを特徴とする、酸化
物超伝導体。
1. An oxidation characterized by comprising at least Tl, Bi, Sr, Ca and Cu as a composition and having a crystal structure belonging to a tetragonal system with lattice constants of a = 0.38 nm and c = 1.53 nm. Thing superconductor.
【請求項2】(Tl+Bi):Sr:Ca:Cu=1:2:2:3に等しい
か、ごく近い組成比を有し、Tl/Bi比が5/1から2/1の範
囲内にあることを特徴とする、請求項1記載の酸化物超
伝導体。
2. A composition ratio of (Tl + Bi): Sr: Ca: Cu = 1: 2: 2: 3 or close to each other, and a Tl / Bi ratio within a range of 5/1 to 2/1. The oxide superconductor according to claim 1, wherein the oxide superconductor is present.
【請求項3】出発原料物質に含まれる金属酸化物相当成
分の組成比を(Tl1-yBiy):Sr:Ca:Cu:O=(1+Z):2:
2:3:Xとし(0≦y≦1/3)、Xの値を(7.5+1.5Z)≦
X≦(8.3+1.5Z)の範囲内であり、かつ非酸化性雰囲
気で焼成することを特徴とする、(Tl1-yBiy)Sr2Ca2Cu
3Oy系酸化物超伝導体の製造方法。
3. The composition ratio of the metal oxide equivalent component contained in the starting material is (Tl 1-y Bi y ): Sr: Ca: Cu: O = (1 + Z): 2:
2: 3: X is set (0 ≦ y ≦ 1/3), and the value of X is (7.5 + 1.5Z) ≦
(Tl 1-y Bi y ) Sr 2 Ca 2 Cu, characterized by being in the range of X ≦ (8.3 + 1.5Z) and firing in a non-oxidizing atmosphere
3 O y- based oxide superconductor manufacturing method.
【請求項4】出発原料物質の一部にTl2O,Cu2OまたはCu
メタルの内少なくとも1つを用いることを特徴とする、
請求項3記載の酸化物超伝導体の製造方法。
4. Tl 2 O, Cu 2 O or Cu as a part of the starting material
Characterized in that at least one of the metals is used,
The method for producing an oxide superconductor according to claim 3.
【請求項5】Zの値を0〜1の範囲内とすることを特徴
とする、請求項3または4何れかに記載の酸化物超伝導
体の製造方法。
5. The method for producing an oxide superconductor according to claim 3, wherein the value of Z is in the range of 0 to 1.
【請求項6】焼成が成形体を密閉状態とした後に行うこ
とを特徴とする、請求項3記載の酸化物超伝導体の製造
方法。
6. The method for producing an oxide superconductor according to claim 3, wherein the firing is performed after the molded body is closed.
【請求項7】焼成温度が900℃以上1000℃以下であるこ
とを特徴とする、請求項3記載の酸化物超伝導体の製造
方法。
7. The method for producing an oxide superconductor according to claim 3, wherein the firing temperature is 900 ° C. or higher and 1000 ° C. or lower.
【請求項8】900℃以上1000℃以下の温度で焼成した
後、900℃未満の温度でアニールすることを特徴とす
る、請求項3記載の酸化物超伝導体の製造方法。
8. The method for producing an oxide superconductor according to claim 3, wherein after firing at a temperature of 900 ° C. or more and 1000 ° C. or less, annealing is performed at a temperature of less than 900 ° C.
JP2095709A 1989-04-10 1990-04-10 Oxide superconductor and method for producing the same Expired - Lifetime JP2523928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095709A JP2523928B2 (en) 1989-04-10 1990-04-10 Oxide superconductor and method for producing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP9011289 1989-04-10
JP15779589 1989-06-20
JP18551689 1989-07-18
JP1-90112 1989-07-18
JP1-157795 1989-07-18
JP1-185516 1989-07-18
JP2095709A JP2523928B2 (en) 1989-04-10 1990-04-10 Oxide superconductor and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03131521A JPH03131521A (en) 1991-06-05
JP2523928B2 true JP2523928B2 (en) 1996-08-14

Family

ID=27467741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095709A Expired - Lifetime JP2523928B2 (en) 1989-04-10 1990-04-10 Oxide superconductor and method for producing the same

Country Status (1)

Country Link
JP (1) JP2523928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597441A (en) * 1991-10-09 1993-04-20 Agency Of Ind Science & Technol High temperature oxide superconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.M.Wheatleyetal.,NATURE,Vol.333,No.6169,P.121.(MAY1988)

Also Published As

Publication number Publication date
JPH03131521A (en) 1991-06-05

Similar Documents

Publication Publication Date Title
JP2533108B2 (en) Superconducting material
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
KR970001258B1 (en) Super conducting material
JP2789118B2 (en) Oxide superconductor and manufacturing method thereof
JP2593475B2 (en) Oxide superconductor
JP2577380B2 (en) Superconductive material
JP2778104B2 (en) Oxide superconducting material
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2855128B2 (en) Oxide superconductor
JP2789103B2 (en) Oxide superconductor and manufacturing method thereof
JPS63176353A (en) Superconductive raw material
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2855127B2 (en) Oxide superconductor
JPS63230524A (en) Superconductive material
JPH02129022A (en) Oxide superconducting material
JPH0230618A (en) Oxide high-temperature superconductor
JPH03112852A (en) Oxide superconductive material
JPH0365512A (en) High-temperature superconductive material and production thereof
WO1995008518A1 (en) Superconductors containing thallium, copper, oxygen, fluorine and at least one of barium and strontium
Arumugam A new superconductor YBa 2 Ca 3 Cu 4 O x
EP0392430A2 (en) Oxide superconductor and method of the production thereof
JPH03122017A (en) Superconducting material
Lu et al. MICROSTRUCTURE AND PROPERTIES OF Bi-BASED SUPERCONDUCTORS IN THE PARTIAL MELTING AND SINTERING PROCESS
JPH0574547B2 (en)