JPS63297217A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPS63297217A
JPS63297217A JP62133955A JP13395587A JPS63297217A JP S63297217 A JPS63297217 A JP S63297217A JP 62133955 A JP62133955 A JP 62133955A JP 13395587 A JP13395587 A JP 13395587A JP S63297217 A JPS63297217 A JP S63297217A
Authority
JP
Japan
Prior art keywords
oxide superconductor
fluorine
oxygen
production
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62133955A
Other languages
Japanese (ja)
Inventor
Motomasa Imai
今井 基真
Shin Fukushima
福島 伸
Hisami Ochiai
落合 久美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62133955A priority Critical patent/JPS63297217A/en
Publication of JPS63297217A publication Critical patent/JPS63297217A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide

Abstract

PURPOSE:To obtain an oxide superconductor having a high critical temperature in production of an oxide superconductor of perovskite type containing an Ln element, an AE element and Cu, by injecting a fluorine ion the oxide superconductor to partially replace oxygen with fluorine. CONSTITUTION:In producing an oxide superconductor of perovskite structure containing a Ln element (Ln is at least one of Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu), an AE element (at least one of Ba, Ca and Sr) and Cu, a fluorine ion is injected to the oxide superconductor to partially replace oxygen with fluorine. The injection of fluorine ion is carried out after firing the oxide superconductor into a desired shape and SiF4 or CF4 is used as an ion source. The amount of fluorine replaced is <=about 90atom. wt.% oxygen.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は酸化物超電導体の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing an oxide superconductor.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
酸化物が高い臨界温度を有する可能性のあることが発表
されて以来、各所で酸化物超電導体の研究が行なわれて
いる(Z、Phys、B Condensed Mat
ter 64゜189−193(198B) 、その中
でもY−Ba−Cu−0系に代表される酸素欠陥ををす
る欠陥ペロブスカイト型(AB  CO型)の酸化物超
電導体は、Te237−δ が90に以上と液体窒素以上の高い温度を示すため非常
に有望な材料である(Phys、I?ev、Lett、
vol、5gNo、9.p908−910)。
(Prior Art) In recent years, since it was announced that layered perovskite oxides based on Ba-La-Cu-0 may have a high critical temperature, research on oxide superconductors has been conducted in various places. There is (Z, Phys, B Condensed Mat
ter 64゜189-193 (198B), among which defective perovskite type (AB CO type) oxide superconductors with oxygen defects represented by the Y-Ba-Cu-0 system have a Te237-δ of 90. It is a very promising material because it exhibits a temperature higher than that of liquid nitrogen (Phys, I?ev, Lett,
vol, 5gNo, 9. p908-910).

(発明が解決しようとする問題点) この様にペロブスカイト型の酸化物超電導体は前述の如
く非常に有望な材料であるが、より高い臨界温度への発
展が望まれている。
(Problems to be Solved by the Invention) As described above, perovskite-type oxide superconductors are very promising materials, but it is desired to develop them to higher critical temperatures.

本発明はこの様な問題点を解決するためになされたもの
であり、臨界温度の高い酸化物超電導体を得ることを目
的としてなされたものである。
The present invention has been made to solve these problems, and has been made for the purpose of obtaining an oxide superconductor with a high critical temperature.

[発明の構成] (問題点を解決するための手段及び作用)本発明は、L
n元元素LnはY 、 La 、 Sc 、 Nd 、
 Sm 、 Eu 、 Gd 。
[Structure of the invention] (Means and effects for solving the problems) The present invention is based on L
The n-element Ln is Y, La, Sc, Nd,
Sm, Eu, Gd.

Dy、Ho、Er、Tm、Yb、Luの少なくとも一種
”) 、AE元素(Ba、Ca及びSrの少なくとも一
種)及びCuを含有するペロブスカイト構造の酸化物超
電導体の製造方法に於いて、弗素イオンを注入すること
により酸素の一部を弗素で置換することを特徴とする酸
化物超電導体の製造方法である。
In a method for manufacturing an oxide superconductor having a perovskite structure containing at least one of Dy, Ho, Er, Tm, Yb, and Lu), an AE element (at least one of Ba, Ca, and Sr), and Cu, fluorine ion This method of manufacturing an oxide superconductor is characterized in that a part of oxygen is replaced with fluorine by implanting fluorine.

本発明でいうペロブスカイト型構造の酸化物超電導体は
La−(Ba、Sr、Ca)−Cu−0系の層状ペロブ
スカイト型酸化物超電導体、Y−Ba−Cu−0系の酸
素欠陥を有する欠陥ペロブスカイト型酸化物超電導体な
どの広義のペロブスカイト型構造の酸化物超電導体をさ
す。
The perovskite-type oxide superconductor in the present invention is a La-(Ba, Sr, Ca)-Cu-0-based layered perovskite-type oxide superconductor, and a Y-Ba-Cu-0-based defect having oxygen defects. Refers to oxide superconductors with a broad perovskite structure, such as perovskite-type oxide superconductors.

本発明に用いる酸化物超電導体は、例えば以下に示す製
造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.

Y 、 Cu 、 Ba等の酸化物超電導体の構成元素
を含有する原料を十分混合する。混合の際にはY2O3
゜BaO,CuO等の酸化物を原料として用いることが
できる。また、これらの酸化物のほかに、焼成後酸化物
に転化する炭酸塩、硝酸塩、水酸化物また弗化イツトリ
ウム、弗化バリウム、弗化銅等の弗化物等の化合物を用
いてもよい。さらには共沈法等で得たしゅう酸塩等を用
いても良い。
Raw materials containing constituent elements of the oxide superconductor, such as Y, Cu, and Ba, are thoroughly mixed. Y2O3 when mixing
Oxides such as BaO and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, hydroxides, and fluorides such as yttrium fluoride, barium fluoride, and copper fluoride, which are converted into oxides after firing, may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used.

前述の原料を混合した後、仮焼・粉砕し所望の形状に成
形した後、930−1000℃程度の温度で焼成する。
After mixing the aforementioned raw materials, they are calcined and pulverized to form a desired shape, and then fired at a temperature of about 930-1000°C.

仮焼は必ずしも必要ではない。焼成・仮焼は十分な酸素
が供給できるような酸素含有雰囲気で行なうことが好ま
しい。所望の形状に焼成した後、SiF4.CF4等を
イオン源としてイオン注入を行ない酸素の一部を弗素で
置換する。
Calcining is not necessarily necessary. Firing and calcination are preferably carried out in an oxygen-containing atmosphere where sufficient oxygen can be supplied. After firing into the desired shape, SiF4. Ion implantation is performed using CF4 or the like as an ion source to replace a portion of oxygen with fluorine.

本発明にかかる酸化物超電導体は酸素中で加熱処理する
ことにより超電導特性を向上することができる。この加
熱処理は通常600−9[10℃程度である。
The superconducting properties of the oxide superconductor according to the present invention can be improved by heat treatment in oxygen. This heat treatment is usually about 600-9[10°C.

この様にして得られた酸化物超電導体はLn、 AE 
The oxide superconductors obtained in this way were Ln, AE
.

Cuを原子比で実質的にl:2:3の比率で含有する酸
素欠陥δを有するLnBa  Cu  O(δは2 3
7−δ 通常1以下)の酸素欠陥型ペロブスカイト構造となる。
LnBa Cu O (δ is 2 3
7-δ (usually 1 or less), resulting in an oxygen-deficient perovskite structure.

Cu元元素Ba元素の置換元素はそれぞれのサイトに置
換した形で入る。なおF元素は0元素を置換する形で入
る。弗素の置換量は超電導特性を低下しない範囲で適宜
設定できるが、実用上は90原子%以下、好ましくは5
0原子%以下程度である。また少量の置換量で臨界温度
の上昇の効果を得ることができるが0.O11原子以上
の置換量で顕著である。
Substituting elements for the Cu element and the Ba element enter the respective sites in a substituted form. Note that the F element replaces the 0 element. The amount of fluorine substitution can be set as appropriate within a range that does not deteriorate the superconducting properties, but in practice it is less than 90 atomic %, preferably 5.
It is about 0 atomic % or less. Also, the effect of increasing the critical temperature can be obtained with a small amount of substitution, but 0. This is noticeable when the amount of substitution is more than 11 O atoms.

ペロブスカイト型酸化物超電導体を構成する元素は、基
本的に化学量論比の組成となるように混合するが、多少
製造条件等との関係等でずれていても構わない。例えば
Y−Ba−Cu−0系ではYIIIlolに対しB a
 2  mol、 Cu 3  molが標準組成であ
るが、実用上はYIIIlolに対し、Ba2±0.8
 ff1ol、Cu3±0.211101程度のずれは
問題ない。
The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation depending on the manufacturing conditions, etc. For example, in the Y-Ba-Cu-0 system, B a
The standard composition is 2 mol, Cu 3 mol, but in practice Ba2 ± 0.8 for YIIIlol.
A deviation of about ff1ol, Cu3±0.211101 is not a problem.

また上述の粉末焼結に限らず、蒸着法、スパッタリング
法、CVD法などの方法による膜状の酸化物超電導体を
形成することもできる。更に酸化物超電導体ペーストを
用いたスクリーン印刷法、ゾル・ゲル法等を用いての製
造もできる。°更に金属管等のシース材を用いての線材
化、溶湯急冷法を用いての線材化等も可能である。
In addition to the powder sintering described above, a film-like oxide superconductor can also be formed by a method such as a vapor deposition method, a sputtering method, or a CVD method. Furthermore, it can also be manufactured using a screen printing method using an oxide superconductor paste, a sol-gel method, or the like. Further, it is also possible to make a wire using a sheath material such as a metal tube, or to make a wire using a molten metal quenching method.

なお本発明に用いる酸化物超電導体ではBa元素をSr
、Ca’の少なくとも一種で置換することができる。こ
の様な置換によっても臨界電流密度を向上することがで
きる。置換は少量でその“効果を発揮するが%−0,0
1a+o1%以上の添加でその効果が顕著となる。置換
量は超電導特性を低下させない程度の範囲で適宜設定可
能であるが、あまり多量の置換は超電導特性を低下して
しまうため80mo1%以下、さらに実用上は20II
lo1%以下程度の添加含有量が好ましい。さらにCu
の一部をTI 、V、Cr、Mn、Pe、Co、Ni。
In addition, in the oxide superconductor used in the present invention, Ba element is replaced with Sr.
, Ca'. Such a substitution can also improve the critical current density. Substitution has its “effect” in small amounts, but %-0,0
The effect becomes remarkable when 1a+o1% or more is added. The amount of substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it should be 80 mo1% or less, and moreover 20 II for practical purposes.
The added content is preferably about 1% or less. Furthermore, Cu
TI, V, Cr, Mn, Pe, Co, Ni.

Zn等で置換して臨界電流密度を向上することもできる
。置換は少量でその効果を発揮するが、0.01lll
o1%以上の添加でその効果が顕著となる。置換量は超
電導特性を低下させない程度の範囲で適宜設定可能であ
るが、あまり多量の置換は超電導特性を低下してしまう
ため8011101%以下、さらに実用上は20mo1
%以下程度の添加含有量が好ましい。
The critical current density can also be improved by substituting with Zn or the like. Replacement exerts its effect with a small amount, but 0.01lll
The effect becomes remarkable when O1% or more is added. The amount of substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it should be less than 8011101%, and more practically 20 mo1.
% or less is preferable.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例−1 原子比でY;Ba:Cu−1: 2 : 3となるよう
に、Y  O、BaC0、CuOを秤量した原料を十分
混合した後900℃で仮焼した後、粉砕した。
Example 1 After sufficiently mixing Y2O, BaC0, and CuO, weighed raw materials were calcined at 900°C so that the atomic ratio was Y;Ba:Cu-1:2:3, and then pulverized.

この混合原料を960℃、12H1酸素中の条件で焼成
した。次いでSiF4をイオン源としてFイオンの注入
を行なった。次いで860℃、 log、酸素中の条件
で加熱処理を施した。
This mixed raw material was fired at 960° C. in 12H1 oxygen. Next, F ions were implanted using SiF4 as an ion source. Next, heat treatment was performed at 860° C., log temperature, and in oxygen.

得られた酸化物超電導体の超電導特性を調べたところ、
臨界温度Tcは一60℃と優れたものであった。
When we investigated the superconducting properties of the obtained oxide superconductor, we found that
The critical temperature Tc was excellent at -60°C.

実施例−2 YをYbに変え、実施例−1と同様にして酸化物超電導
体を製造した。
Example 2 An oxide superconductor was produced in the same manner as in Example 1 except that Y was replaced with Yb.

この酸化物超電導体の超電導特性を調べたところ、Tc
−−55℃と非常に優れたものであった。
When we investigated the superconducting properties of this oxide superconductor, we found that Tc
--55°C, which was very excellent.

比較例−1 Fイオンの注入をすることなく、実施例−1と同様にし
て酸化物超電導体を製造した。
Comparative Example-1 An oxide superconductor was manufactured in the same manner as in Example-1 without implanting F ions.

得られた酸化物超電導体の超電導特性を調べたところ、
臨界温度はT c−−180℃と低いものであった。
When we investigated the superconducting properties of the obtained oxide superconductor, we found that
The critical temperature was as low as T c -180°C.

[発明の効果コ 以上説明したように本発明によれば臨界温度の高い酸化
物超電導体を得ることができる。従って工業上寄与する
こと大である。
[Effects of the Invention] As explained above, according to the present invention, an oxide superconductor having a high critical temperature can be obtained. Therefore, it will make a great contribution to industry.

Claims (4)

【特許請求の範囲】[Claims] (1)Ln元素(LnはY、La、Sc、Nd、Sm、
Eu、Gd、Dy、Ho、Er、Tm、Yb、Luの少
なくとも一種)、AE元素(Ba、Ca及びSrの少な
くとも一種)及びCuを含有するペロブスカイト構造の
酸化物超電導体の製造方法に於いて、弗素イオンを注入
することにより酸素の一部を弗素で置換することを特徴
とする酸化物超電導体の製造方法。
(1) Ln element (Ln is Y, La, Sc, Nd, Sm,
In a method for producing an oxide superconductor with a perovskite structure containing at least one of Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu), an AE element (at least one of Ba, Ca, and Sr), and Cu. , a method for producing an oxide superconductor, characterized in that part of oxygen is replaced with fluorine by implanting fluorine ions.
(2)酸化物超電導体はLn、AE、Cuを原子比で実
質的に1:2:3の比率で含有することを特徴とする特
許請求の範囲第1項記載の酸化物超電導体の製造方法。
(2) Production of an oxide superconductor according to claim 1, wherein the oxide superconductor contains Ln, AE, and Cu in an atomic ratio of substantially 1:2:3. Method.
(3)酸化物超電導体はLnBa_2Cu_3O_7_
−_δ(δは酸素欠陥を表わす)で表わされる酸素欠陥
型ペロブスカイト構造を有することを特徴とする特許請
求の範囲第1項記載の酸化物超電導体の製造方法。
(3) The oxide superconductor is LnBa_2Cu_3O_7_
2. The method for producing an oxide superconductor according to claim 1, wherein the oxide superconductor has an oxygen-deficient perovskite structure represented by -_δ (δ represents an oxygen defect).
(4)弗素の置換量は酸素の90原子%以下であること
を特徴とする特許請求の範囲第1項記載の酸化物超電導
体の製造方法。
(4) The method for producing an oxide superconductor according to claim 1, wherein the amount of fluorine substituted is 90 atomic % or less of oxygen.
JP62133955A 1987-05-29 1987-05-29 Production of oxide superconductor Pending JPS63297217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62133955A JPS63297217A (en) 1987-05-29 1987-05-29 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62133955A JPS63297217A (en) 1987-05-29 1987-05-29 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPS63297217A true JPS63297217A (en) 1988-12-05

Family

ID=15116984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62133955A Pending JPS63297217A (en) 1987-05-29 1987-05-29 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPS63297217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193424A (en) * 1987-08-25 1989-04-12 American Teleph & Telegr Co <Att> Manufacture of structure having superconductive thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193424A (en) * 1987-08-25 1989-04-12 American Teleph & Telegr Co <Att> Manufacture of structure having superconductive thin film

Similar Documents

Publication Publication Date Title
JPS63291817A (en) Oxide superconductor
JPS63297217A (en) Production of oxide superconductor
JP2593475B2 (en) Oxide superconductor
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
CA1335327C (en) Oxide superconductor and manufacturing method thereof
JPS63270317A (en) Oxide superconductor
JP2588200B2 (en) Manufacturing method of oxide superconductor
JP2752969B2 (en) Oxide superconductor
JPS63297216A (en) Production of oxide superconductor
JPS63297214A (en) Production of oxide superconductor
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPS63297215A (en) Production of oxide superconductor
JPS63297213A (en) Production of oxide superconductor
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63307110A (en) Oxide superconductor
JPS63291818A (en) Oxide superconductor
JPH01153518A (en) Oxide superconductor and production thereof
JPH01179722A (en) Production of oxide superconductor
JPH01192758A (en) Superconducting ceramic
JPH01122922A (en) Oxide superconductor
CN1793002A (en) High temperature superconductor material of bscco system and starting composition therefore
JPH01126260A (en) Oxide superconductor
JPH01151169A (en) Oxide superconducting member
JPS63270309A (en) Oxide superconductor
JPS63291377A (en) Connecting method for oxide superconductor