JPH01151169A - Oxide superconducting member - Google Patents

Oxide superconducting member

Info

Publication number
JPH01151169A
JPH01151169A JP62308935A JP30893587A JPH01151169A JP H01151169 A JPH01151169 A JP H01151169A JP 62308935 A JP62308935 A JP 62308935A JP 30893587 A JP30893587 A JP 30893587A JP H01151169 A JPH01151169 A JP H01151169A
Authority
JP
Japan
Prior art keywords
oxide superconductor
powder
oxide
superconducting member
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308935A
Other languages
Japanese (ja)
Inventor
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62308935A priority Critical patent/JPH01151169A/en
Publication of JPH01151169A publication Critical patent/JPH01151169A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent cracks caused by the difference of the thermal expansion coefficient by connecting the current terminal of a low-melting point ductile metal such as In and Sn to a perovskite type oxide superconductor or the like containing rare earth elements directly or via a thin film made of another conducting metal. CONSTITUTION:Y2O2 powder 0.5mol%, BaCo3 powder 2mol% and CuO powder 3mol% are thoroughly mixed and burnt for 8hr at 900 deg.C in the atmosphere and crushed to form oxide superconductor powder. This powder is press-molded to the size of 30X50X5mm then burnt for 24hr at 950 deg.C and gradually cooled at the rate of 1 deg.C/min from 650 deg.C and below to form a bulk. Rectangular ring- shaped molded object with a load of 4.0ugf/cm<2> and made of In are coupled on outer peripheries on both ends of this bulk to form a current terminal with the width of 5mm and the thickness of 1mm. Cracks, peeling or deterioration caused by the difference of the thermal expansion coefficient can be thereby suppressed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、酸化物超電導体を用いた導電材料に係り、特
に電流端子を有する酸化物超電導部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a conductive material using an oxide superconductor, and particularly to an oxide superconducting member having a current terminal.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
の酸化物が高い臨界温度を有する可能性のあることが発
表されて以来、各所で酸化物超電導体の研究が行われて
いる(1.Phys、B Condensed Mat
ter64、189−193(1986))。その中で
もY−Ba−Cu−0系で代表される酸素欠陥を有する
欠陥ペロブスカイト型(LnBa2Cu3O.δ型)(
δは酸素欠陥を表わし通常1以下、Lnは、Y、 La
、 Sc、 Nd、、Sm、 Eu、 Gd。
(Prior Art) In recent years, it has been announced that layered perovskite-type oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been carried out in various places. (1. Phys, B Condensed Mat
ter64, 189-193 (1986)). Among them, defective perovskite type (LnBa2Cu3O.δ type) with oxygen defects represented by Y-Ba-Cu-0 system (
δ represents oxygen defect and is usually 1 or less, Ln is Y, La
, Sc, Nd, , Sm, Eu, Gd.

Dy1Ho、 Er、 Tm、 YbおよびLuから選
ばれた少なくとも1種の元素、Baの一部はSr等で置
換可能)の酸化物超電導体は、臨界温度が90に以上と
液体窒素以上の高い温度を示すため非常に有望な材料と
して注目されている(Phys、Rev、Lett、V
ol、58No、 9.908−910 )。
The oxide superconductor of at least one element selected from Dy1Ho, Er, Tm, Yb, and Lu (a part of Ba can be replaced with Sr, etc.) has a critical temperature of 90 or higher, which is higher than liquid nitrogen. Phys, Rev, Lett, V
ol, 58 No. 9.908-910).

しかしながら、この酸化物超電導体の線膨脹率は、その
組成にもよるが概ね15X 10−6/ Kであり、銅
、銀等の常電導金属の線膨脹率に比べて小さい。
However, the coefficient of linear expansion of this oxide superconductor is approximately 15×10 −6 /K, although it depends on its composition, which is smaller than that of normal conductive metals such as copper and silver.

このため、電流端子として上記常電導金属を用いた従来
の酸化物超電導部材を液体窒素温度下等で′用いた場合
には、接合界面において熱膨脹率の差に基づくクラック
の発生や剥離劣化をまねき、所望の電流密度を得ること
が困難であるという問題があった。
For this reason, when conventional oxide superconducting members using the above-mentioned normal conducting metals as current terminals are used at liquid nitrogen temperatures, cracks may occur at the bonding interface due to the difference in coefficient of thermal expansion, and deterioration due to peeling may occur. However, there was a problem in that it was difficult to obtain a desired current density.

(発明が解決しようとする問題点) このように、電流端子として銅、銀等の常電導金属を用
いた従来の酸化物超電導部材では、冷却時に接合界面に
おいて熱膨脹率の差に基づくクラックの発生や剥離劣化
を生じるため、所望の電流密度を得ることが困難である
という問題があった。
(Problems to be Solved by the Invention) As described above, in conventional oxide superconducting members that use normally conducting metals such as copper and silver as current terminals, cracks occur at the joint interface due to the difference in coefficient of thermal expansion during cooling. There is a problem in that it is difficult to obtain a desired current density due to the occurrence of peeling and deterioration.

本発明はかかる従来の難点を解決すべくなされたもので
、酸化物超電導体と電流端子との接合界面におけるクラ
ックの発生や剥離劣化の発生が少ない酸化物超電導部材
を提供することを目的としている。
The present invention has been made to solve these conventional problems, and aims to provide an oxide superconducting member that is less prone to cracking and peeling deterioration at the bonding interface between the oxide superconductor and the current terminal. .

[発明の構成] (問題点を解決するための手段) すなわち、本発明の酸化物超電導部材は、酸化物超電導
体に直接または他の導電性金属による薄膜を介して、低
融点延性金属からなる電薩端子を接続したことを特徴と
している。
[Structure of the Invention] (Means for Solving the Problems) That is, the oxide superconducting member of the present invention is made of a low melting point ductile metal that is formed on an oxide superconductor directly or through a thin film of another conductive metal. It is characterized by the connection of Densatsu terminals.

本発明には各種の酸化物超電導体を用いることができる
が、臨界温度の高い、希土類元素含有のペロブスカイト
型の酸化物超電導体を用いた場合に特に実用的効果が大
きい。
Although various oxide superconductors can be used in the present invention, the use of a perovskite-type oxide superconductor containing a rare earth element, which has a high critical temperature, has a particularly large practical effect.

上記の希土類元素を含有しペロブスカイト型構造を有す
る酸化物超電導体は、超電導状態を実現できるものであ
ればよく、[nBa2Cu3O7−δ系(δは酸素欠陥
を表し通常1以下の数、Lnは、y、La、 Sc、 
Nd55m、 Eu、 Gd、 Dy、 Ho、Er、
 Tm、 Ybおよび[Uから選ばれた少なくとも1種
の元素、Baの一部はSr等で置換可能)等の酸素欠陥
を有する欠陥ペロブスカイト型、5r−La−CO−0
系等の層状ペロブスカイト型等の広義にペロブスカイト
型を有する酸化物が例示される。また希土類元素も広義
の定義とし、Sc、  YおよびLa系を含むものとす
る。
The above-mentioned oxide superconductor containing a rare earth element and having a perovskite structure may be any one as long as it can realize a superconducting state, [nBa2Cu3O7-δ system (δ represents an oxygen defect and is usually a number of 1 or less, Ln is a y, La, Sc,
Nd55m, Eu, Gd, Dy, Ho, Er,
Defect perovskite type having oxygen defects such as Tm, Yb and [at least one element selected from U, a part of Ba can be replaced with Sr etc.), 5r-La-CO-0
Examples include oxides having a perovskite type in a broad sense, such as a layered perovskite type. Rare earth elements are also broadly defined to include Sc, Y, and La elements.

代表的な系としてY−Ba−Cu−0系のほかに、Yを
ELI。
In addition to the Y-Ba-Cu-0 system as a typical system, Y is ELI.

Dy、 Ho、Er、 Tm1YbSLu等の希土類で
置換した系、5C−Ba−C0−0系、5r−La−C
u−0系、さらにsrをBa、 Caで置換した系等が
挙げられる。
Dy, Ho, Er, system substituted with rare earth elements such as Tm1YbSLu, 5C-Ba-C0-0 system, 5r-La-C
Examples include the u-0 system and systems in which sr is replaced with Ba or Ca.

本発明に用いる酸化物超電導体は、たとえば以下に示す
製造方法により得ることができる。
The oxide superconductor used in the present invention can be obtained, for example, by the manufacturing method shown below.

まず、Y、 Ba5Cu等のペロブスカイト型酸化物超
電導体の構成元素を充分混合する。混合の際には、Y2
O3、CuO等の酸化物を原料として用いることができ
る。また、これらの酸化物のほかに、焼成後酸化物に転
化する炭酸塩、硝酸塩、水酸化物等の化合物を用いても
よい。さらには、共沈法等で得たシュウ酸塩等を用いて
もよい。ペロブスカイト型酸化物超電導体を構成する元
素は、基本的に化学量論比の組成となるように混合する
が、多少製造条件等との関係でずれていても差支えない
。たとえば、Y−Ba−Cu−0系ではY 1 mol
に対しBa 2 mol、Cu 3 molが標準組成
であるが、実用上はY 11101に対して、Ba Z
±0.6 mol、 Cu 3±0.2 mol程度の
ずれは問題ない。
First, the constituent elements of the perovskite oxide superconductor, such as Y and Ba5Cu, are thoroughly mixed. When mixing, Y2
Oxides such as O3 and CuO can be used as raw materials. In addition to these oxides, compounds such as carbonates, nitrates, and hydroxides that are converted into oxides after firing may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there is no problem even if the composition deviates slightly depending on the manufacturing conditions. For example, in the Y-Ba-Cu-0 system, Y 1 mol
The standard composition is Ba 2 mol and Cu 3 mol for Y 11101, but in practice, Ba Z
A deviation of approximately ±0.6 mol and Cu 3 ±0.2 mol is not a problem.

前述の原料を混合した後、、仮焼、粉砕し所望の形状に
した後、850〜980℃程度で焼成する。仮焼は必ず
しも必要ではない。仮焼および焼成は充分な酸素が供給
できるような酸素含有雰囲気中で行うことが好ましい。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Preferably, calcination and firing are performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied.

所望の形状に焼成した後、酸素含有雰囲気中で熱処理し
て超電導特性を付与する。上記熱処理は、通常650℃
以下で徐冷しながら行うようにする。
After firing into a desired shape, it is heat-treated in an oxygen-containing atmosphere to impart superconducting properties. The above heat treatment is usually 650℃
Do the following while slowly cooling.

このようにして得られた酸化物超電導体は、酸素欠陥δ
を有する酸素欠陥型ペロブスカイト構造(LnBa  
Cu  O(δは通常ig、下))となる。
The oxide superconductor thus obtained has oxygen defects δ
Oxygen-deficient perovskite structure (LnBa
CuO (δ is usually ig, bottom)).

2 3 7−δ なお、BaをSr、 Caの少なくとも1種で置換する
こともでき、ざらにCuの一部をTi5V、 Cr、 
Hn、 Fe1CO1N1、zn等で置換することもで
きる。
2 3 7-δ Note that Ba can also be replaced with at least one of Sr and Ca, and roughly a part of Cu can be replaced with Ti5V, Cr,
It can also be replaced with Hn, Fe1CO1N1, zn, etc.

この置換量は、超電導特性を低下させない程度の範囲で
適宜設定可能であるが、あまりに多量の置換は超電導特
性を低下させてしまうので80mo 1 %以下、さら
に実用上は20mo1%以下程度までとする。
The amount of this substitution can be set as appropriate within a range that does not reduce the superconducting properties, but too much substitution will reduce the superconducting properties, so it should be kept at 80 mo 1% or less, and in practical terms, 20 mo 1% or less. .

また、本発明に用いる低融点延性金属としては、In(
インジウム)、Sn(スズ)、Ga(ガリウム)、Pb
(鉛)等の純金属が例示される。
In addition, as the low melting point ductile metal used in the present invention, In(
Indium), Sn (tin), Ga (gallium), Pb
(Lead) and other pure metals are exemplified.

本発明の酸化物超電導部材は、焼成および酸素導入のた
めの処理を施した酸化物超電導体からなる線材、薄膜、
バルク等の端子とずべき部位に、スパッタリング、イオ
ンブレーティング等の物理蒸着法や、機械的圧着法、半
田付は法もしくは超音波溶接法等により低融点延性金属
層を設けるが、低融点延性金属の成形物を密接させるこ
とにより得ることができる。あるいは、酸化物超電導体
と他の導電部材とを電気的に接続するに際して、半田材
料、溶接材料として低融点延性金属を用いることにより
得ることができる。
The oxide superconducting member of the present invention includes a wire, a thin film,
A low melting point ductile metal layer is provided on the bulk terminal and other parts by physical vapor deposition methods such as sputtering or ion blating, mechanical crimping methods, soldering methods, or ultrasonic welding methods. It can be obtained by bringing metal moldings close together. Alternatively, it can be obtained by using a low melting point ductile metal as a solder material or welding material when electrically connecting the oxide superconductor and another conductive member.

(作 用) 本発明の酸化物超電導部材は、酸化物超電導体に直接ま
たは他の導電性金属による薄膜を介して、低融点延性金
属からなる電流端子が接続されている。
(Function) In the oxide superconducting member of the present invention, a current terminal made of a low melting point ductile metal is connected to the oxide superconductor directly or via a thin film made of another conductive metal.

したがって、本発明の酸化物超電導部材を冷却下で用い
た場合では、電流端子と酸化物超電導体との接合界面に
生じる熱応力を低融点延性金属により吸収して、酸化物
超電導体に働く残留応力を緩和させることができる。こ
れにより、電流端子材料と酸化物超電導体との熱膨脹率
の違いに起因する接合界面におけるクラックの発生や剥
離劣化の発生を抑止することができる。
Therefore, when the oxide superconducting member of the present invention is used under cooling, the thermal stress generated at the bonding interface between the current terminal and the oxide superconductor is absorbed by the low melting point ductile metal, and the residual stress acting on the oxide superconductor is absorbed. Stress can be alleviated. Thereby, it is possible to suppress the occurrence of cracks and peeling deterioration at the bonding interface due to the difference in coefficient of thermal expansion between the current terminal material and the oxide superconductor.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例 まず、酸化物超電導体の出発原料として、Y O粉末0
.5+++o1%、BaCO3粉末2m01%、Cu0
粉末3m01%を用い、これらを充分混合して大気中9
00℃で8時間焼成した後ボールミルを用いて粉砕して
、酸化物超電導体粉末とした。次いで、得られた酸化物
超電導体粉末を加圧プレスを用いて3OX 50X 5
i+mの大きさに圧縮成形した後、酸素含有雰囲気中9
50℃で24時間焼成し、650℃以下を1℃/分の割
合で徐冷して酸化物超電導体のバルクを得た。
Example First, as a starting material for an oxide superconductor, YO powder 0
.. 5+++o1%, BaCO3 powder 2m01%, Cu0
Using 3m01% of powder, mix these thoroughly and
After firing at 00°C for 8 hours, the mixture was ground using a ball mill to obtain oxide superconductor powder. Next, the obtained oxide superconductor powder was processed into 3OX 50X 5 using a pressure press.
After compression molding to a size of i + m, 9 in an oxygen-containing atmosphere.
It was fired at 50°C for 24 hours, and then slowly cooled to below 650°C at a rate of 1°C/min to obtain a bulk oxide superconductor.

次ぎに、このバルクの両端の外周に、荷重4.0kg[
/CIiでInからなる矩形リング状の成形物を嵌着し
て、幅5IllIn1厚さ1mn+の電流端子を形成し
た。
Next, a load of 4.0 kg [
/CIi was fitted with a rectangular ring-shaped molded product made of In to form a current terminal having a width of 5IllIn1 and a thickness of 1mm+.

このようにして得た酸化物超電導部材の90Kにおける
臨界電流密度は、2000 A/ ciであった。また
、室温と77にと間の加熱、冷却を5回繰返した後の9
0における臨界電流密度は1950A/ciであり、超
電導特性の低下は僅かであった。
The critical current density at 90K of the oxide superconducting member thus obtained was 2000 A/ci. In addition, after repeating heating and cooling five times between room temperature and 77.
The critical current density at 0 was 1950 A/ci, and the deterioration of superconducting properties was slight.

なお、電流端子と酸化物超電導体との接合界面を観察し
たところ、クラックおよび剥離の発生は確認されなかっ
た。さらに、電流端子としてSn、−〇 − GaおよびPbを用いた場合でも、同様の結果が得られ
た。
Note that when the bonding interface between the current terminal and the oxide superconductor was observed, no cracking or peeling was observed. Furthermore, similar results were obtained when Sn, -0-Ga, and Pb were used as the current terminals.

比較例 実施例と同様にして得た酸化物超電導体のバルクに、I
n−Ga合金からなる電流端子を超音波溶接法により実
施例と同形状に密着させて酸化物超電導部材を得た。
Comparative Example Into the bulk of an oxide superconductor obtained in the same manner as in Example, I
An oxide superconducting member was obtained by closely adhering current terminals made of n-Ga alloy in the same shape as in the example by ultrasonic welding.

この酸化物超電導部材の90 Kにおける臨界電流密度
は、1100^/ aJであった。また、室温と77に
と間の加熱、冷却を5回繰返した後の90における臨界
電流密度は、120A/C#iであり、超電導特性の大
幅な低下が確認された。
The critical current density of this oxide superconducting member at 90 K was 1100^/aJ. Furthermore, after heating and cooling between room temperature and 77 was repeated five times, the critical current density at 90 was 120 A/C#i, confirming a significant decrease in superconducting properties.

なお、電流端子と酸化物超電導体との接合界面を観察し
たところ、クラックおよび剥離の発生が確認された。さ
らに、電流端子としてPb−8n合金およびPb−3n
−Zn合金を用いた場合でも、同様の結果が得られた。
Note that when the bonding interface between the current terminal and the oxide superconductor was observed, it was confirmed that cracks and peeling occurred. Additionally, Pb-8n alloy and Pb-3n alloy are used as current terminals.
Similar results were obtained when -Zn alloy was used.

[発明の効果] 以上説明したように、本発明の酸化物超電導部材は、電
流端子材料と酸化物超電導体との熱膨張率の違いに起因
する接合界面におけるクラックの発生や剥離劣化の発生
を抑止して、超電導特性の低下を抑制することができる
[Effects of the Invention] As explained above, the oxide superconducting member of the present invention prevents the occurrence of cracks and peeling deterioration at the bonding interface caused by the difference in thermal expansion coefficient between the current terminal material and the oxide superconductor. This can suppress the deterioration of superconducting properties.

したがって、酸化物超電導体を用いた超電導線材の用途
を広げることが可能となる。
Therefore, it becomes possible to expand the uses of superconducting wires using oxide superconductors.

出願人     株式会社 東芝 代理人弁理士  須 山 佐 −Applicant: Toshiba Corporation Representative Patent Attorney Su Yamasa -

Claims (5)

【特許請求の範囲】[Claims] (1)酸化物超電導体に直接または他の導電性金属によ
る薄膜を介して、低融点延性金属からなる電流端子を接
続したことを特徴とする酸化物超電導部材。
(1) An oxide superconducting member characterized in that a current terminal made of a low melting point ductile metal is connected to the oxide superconductor directly or through a thin film made of another conductive metal.
(2)低融点延性金属は、In、Sn、GaまたはPb
であることを特徴とする特許請求の範囲第1項記載の酸
化物超電導部材。
(2) Low melting point ductile metal is In, Sn, Ga or Pb
The oxide superconducting member according to claim 1, characterized in that:
(3)酸化物超電導体は、希土類元素を含有するペロブ
スカイト型の酸化物超電導体であることを特徴とする特
許請求の範囲第1項または第2項記載の酸化物超電導部
材。
(3) The oxide superconducting member according to claim 1 or 2, wherein the oxide superconductor is a perovskite-type oxide superconductor containing a rare earth element.
(4)酸化物超電導体は、Ln元素(Lnは、希土類元
素から選ばれた少なくとも1種の元素)、BaおよびC
uを原子比で実質的に1:2:3の割合で含有すること
を特徴とする特許請求の範囲第1項ないし第3項のいず
れか1項記載の酸化物超電導部材。
(4) The oxide superconductor contains Ln element (Ln is at least one element selected from rare earth elements), Ba and C
The oxide superconducting member according to any one of claims 1 to 3, characterized in that it contains u in an atomic ratio of substantially 1:2:3.
(5)酸化物超電導体は、LnBa_2Cu_3O_7
_−_δ(δは酸素欠陥を表わす)で表わされる酸素欠
陥型ペロブスカイト構造を有することを特徴とする特許
請求の範囲第1項ないし第4項のいずれか1項記載の酸
化物超電導部材。
(5) The oxide superconductor is LnBa_2Cu_3O_7
The oxide superconducting member according to any one of claims 1 to 4, characterized in that it has an oxygen-deficient perovskite structure represented by _-_δ (δ represents an oxygen defect).
JP62308935A 1987-12-07 1987-12-07 Oxide superconducting member Pending JPH01151169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308935A JPH01151169A (en) 1987-12-07 1987-12-07 Oxide superconducting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308935A JPH01151169A (en) 1987-12-07 1987-12-07 Oxide superconducting member

Publications (1)

Publication Number Publication Date
JPH01151169A true JPH01151169A (en) 1989-06-13

Family

ID=17987040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308935A Pending JPH01151169A (en) 1987-12-07 1987-12-07 Oxide superconducting member

Country Status (1)

Country Link
JP (1) JPH01151169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101938A (en) * 1999-10-01 2001-04-13 Sumitomo Electric Ind Ltd Method of connecting oxide superconducting wire and superconducting equipment
JP2006329601A (en) * 2005-05-30 2006-12-07 Mayekawa Mfg Co Ltd Cooler and operation method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101938A (en) * 1999-10-01 2001-04-13 Sumitomo Electric Ind Ltd Method of connecting oxide superconducting wire and superconducting equipment
JP2006329601A (en) * 2005-05-30 2006-12-07 Mayekawa Mfg Co Ltd Cooler and operation method therefor

Similar Documents

Publication Publication Date Title
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
JPH0818836B2 (en) Oxide superconductor, its manufacturing method and applied products
JPH01151169A (en) Oxide superconducting member
JP3034255B2 (en) Superconductor, superconductor wire, and method of manufacturing superconducting wire
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JP2554659B2 (en) Composite oxide superconductor wire connection
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JP2509642B2 (en) Superconducting power lead manufacturing method
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2554658B2 (en) How to connect complex oxide superconductors
JP2703227B2 (en) Superconductor device
JPS63270317A (en) Oxide superconductor
JP2597579B2 (en) Superconductor manufacturing method
JP2590242B2 (en) Manufacturing method of oxide superconductor
JPH01162310A (en) Manufacture of oxide superconducting power lead wire
JP2597578B2 (en) Superconductor manufacturing method
JP2838312B2 (en) Oxide superconducting material
JPS63303851A (en) Sintered body of superconducting ceramic
JPS63307110A (en) Oxide superconductor
JPS63291377A (en) Connecting method for oxide superconductor
JPH01163978A (en) Oxide superconducting member
JPH01161613A (en) Oxide superconducting wire
JPH01203256A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100919

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10