JPH01153518A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH01153518A
JPH01153518A JP62308632A JP30863287A JPH01153518A JP H01153518 A JPH01153518 A JP H01153518A JP 62308632 A JP62308632 A JP 62308632A JP 30863287 A JP30863287 A JP 30863287A JP H01153518 A JPH01153518 A JP H01153518A
Authority
JP
Japan
Prior art keywords
oxide superconductor
nitrogen
producing
oxide
superconductor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308632A
Other languages
Japanese (ja)
Inventor
Tadashi Numata
沼田 正
Minoru Sone
曽根 稔
Takeshi Ando
健 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62308632A priority Critical patent/JPH01153518A/en
Publication of JPH01153518A publication Critical patent/JPH01153518A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the title superconductor having the high critical temperature by partially substituting oxygen with nitrogen in an oxide superconductor consisting essentially of an Ln element, alkaline earth element and Cu. CONSTITUTION:Respective oxides or precursors capable of providing the oxides by calcining are collected so as to provide an Ln element (Ln is at least one kind of rare earth element, such as Y, La, Sc, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb or Lu), an AE element (AE is alkaline earth element and at least one kind of Ba, Ca and Sr) and Cu at 1:2+ or -0.6:3+ or -0.2 atomic ratio of Ln/AE/Cu and at least part of the raw material substances in a nitrogen-containing compound [e.g., Ba(N3)2 or anhydrous nitrate of Cu] in an amount so as to provide <=4 ratio based on 1 Ln element are added, mixed, calcined, pulverized, formed into a desired shape, calcined in an O2-containing atmosphere at 930-1,000 deg.C and then heat-treated at 600-960 deg.C in O2 to afford the title superconductor having an oxygen-deficient type perovskite structure expressed by the formula LnAE2Cu3O7-delta (delta indicates oxygen deficiency) in the form of O elements partially substituted by N elements.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は酸化物超電導体に係り、特に臨界温度の高い酸
化物超電導体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an oxide superconductor, and particularly to an oxide superconductor having a high critical temperature and a method for producing the same.

(従来の技術) 近年、Ba−La−Cu−0系の層状ペロブスカイト型
酸化物が高い臨界温度を有する可能性のあることが発表
されて以来、各所で酸化物超電導体の研究が行な”われ
ている(Z、Phys、B Condensed Ma
tter 84゜p、189−193(198B))。
(Prior art) In recent years, it has been announced that layered perovskite oxides based on Ba-La-Cu-0 may have a high critical temperature, and since then, research on oxide superconductors has been conducted in various places. Condensed Ma
tter 84°p, 189-193 (198B)).

その中でもY−Ba−Cu−0系に代表される酸素欠陥
を有する欠陥ペロブスカイト型(AB  CO型)の酸
化物超電導体は、Tc287−δ が90に以上と液体窒素以上の高い温度を示すため非常
に有望な材料である(Phys、Rev、Lett、v
ol、58No、9.p908−910(1987))
Among these, defective perovskite type (AB CO type) oxide superconductors with oxygen vacancies, such as the Y-Ba-Cu-0 system, exhibit a Tc287-δ of 90 or higher, which is higher than liquid nitrogen. It is a very promising material (Phys, Rev, Lett, v
ol, 58 No. 9. p908-910 (1987))
.

(発明が解決しようとする問題点) この様にペロブスカイト型の酸化物超電導体は前述の如
く非常に有望な材料であるが、より高い臨界温度(Te
)への要求は大なるものである。
(Problems to be solved by the invention) As mentioned above, perovskite-type oxide superconductors are very promising materials, but they have a higher critical temperature (Te
) is in great demand.

本発明はこの様な問題点を解決するためになされたもの
であり、臨界温度が高い酸化物超電導体を得ることを目
的としてなされたものである。
The present invention has been made to solve these problems, and has been made for the purpose of obtaining an oxide superconductor with a high critical temperature.

[発明の構成] (問題点を解決するための手段及び作用)本発明は、L
n元素(LnはY 、 La 、 9a 、 Nd 、
 Sm 、 Eu 、 Gd 。
[Structure of the invention] (Means and effects for solving the problems) The present invention is based on L
n element (Ln is Y, La, 9a, Nd,
Sm, Eu, Gd.

Dy、Ho、Er、Tm、Yb、Lu等の希土類元素の
少なくとも一種)、AE元素(Ba、Ca及びSrの少
なくとも一種)及びCuを主成分とする酸化物超電導体
において、構成成分として窒素を含有する酸化物超電導
体である。すなわち本発明は従来より研究されているL
n−AE−Cu−0系の酸化物超電導体の構成元素であ
る酸素の一部を窒素で置換したことを特徴とするもので
ある。
In an oxide superconductor whose main components are at least one of rare earth elements such as Dy, Ho, Er, Tm, Yb, and Lu), an AE element (at least one of Ba, Ca, and Sr), and Cu, nitrogen is used as a constituent component. It is an oxide superconductor containing. That is, the present invention is based on L
It is characterized in that a part of oxygen, which is a constituent element of the n-AE-Cu-0-based oxide superconductor, is replaced with nitrogen.

本発明の酸化物超電導体は、例えば以下に示す製造方法
により得ることができる。
The oxide superconductor of the present invention can be obtained, for example, by the manufacturing method shown below.

Y、Cu、Ba等の酸化物超電導体の構成元素を十分混
合する。混合の際にはY  O、Bad、Cu0等の酸
化物を原料として用いることができる。
Constituent elements of the oxide superconductor, such as Y, Cu, and Ba, are thoroughly mixed. At the time of mixing, oxides such as Y 2 O, Bad, Cu0, etc. can be used as raw materials.

また、これらの酸化物のほかに、焼成後酸化物に転化す
る炭酸塩、水酸化物等の化合物を用いてもよい。さらに
は共沈法等で得たしゅう酸塩等を用いても良い。ペロブ
スカイト型酸化物超電導体を構成する元素は、基本的に
化学量論比の組成となるように混合するが、多少ずれて
いても構わない。
In addition to these oxides, compounds such as carbonates and hydroxides that are converted into oxides after firing may be used. Furthermore, oxalate obtained by a coprecipitation method or the like may also be used. The elements constituting the perovskite-type oxide superconductor are basically mixed so as to have a stoichiometric composition, but there may be a slight deviation.

例えばY−Ba−Cu−0系ではYlmolに対しBa
2 mol、Cu3 molが標準組成であるが、実用
上は、Y 1molに対し、Ba2±0.8 mol 
、 Cu3±0.2 mol程度のずれは問題ない。ま
た製造上の問題、例えば焼結性等を考慮して、原料とし
ては上記範囲を更゛に越える比率での混合(例えばCu
を3±0.4 mol等)も構わない。これは主相とし
てこの様ないわゆるl:2:3の組成の物が生じていれ
ば良いためであり、超電導特性が得られる限り、異相の
存在をさまたげるものではないからである。
For example, in the Y-Ba-Cu-0 system, Ba
The standard composition is 2 mol, Cu3 mol, but in practice, Ba2 ± 0.8 mol is used for 1 mol of Y.
, A deviation of about Cu3±0.2 mol is not a problem. In addition, in consideration of manufacturing problems such as sinterability, the raw materials are mixed at a ratio that exceeds the above range (for example, Cu
(3±0.4 mol, etc.) is also acceptable. This is because it is sufficient that the main phase has such a so-called l:2:3 composition, and as long as superconducting properties are obtained, the existence of a different phase is not hindered.

前述の原料を混合した後、仮焼・粉砕し所望の形状に成
形した後、930−1000℃程度で焼成する。
After mixing the above raw materials, they are calcined and pulverized to form a desired shape, and then fired at about 930-1000°C.

仮焼は必ずしも必要ではない。焼成・仮焼は十分な酸素
が供給できるような酸素含有雰囲気、例えば大気フロー
中等で行なうことが好ましい。
Calcining is not necessarily necessary. Firing and calcination are preferably carried out in an oxygen-containing atmosphere where sufficient oxygen can be supplied, such as in an atmospheric flow.

本発明の特徴は窒素の添加・含有であるが、例えば窒素
ガス中焼結等の手段では、焼結体に窒素を導入してTc
を向上するという効果をあげることは困難である。本発
明では酸化物超電導体中に窒素を導入する方法として、
少なくとも原料の一部を窒素含有化合物の形態で添加す
る。例えばLn元素の窒化物、硝酸銅(無水硝酸銅が好
ましい)、アジ化バリウム等のアジ化合物等が窒素含有
化合物としてあげることができる。この中でアジ化バリ
ウムなどのアジ化合物は特に有効である。
A feature of the present invention is the addition/containment of nitrogen. For example, by means such as sintering in nitrogen gas, nitrogen is introduced into the sintered body and Tc
It is difficult to achieve the effect of improving In the present invention, as a method for introducing nitrogen into an oxide superconductor,
At least a portion of the raw material is added in the form of a nitrogen-containing compound. Examples of nitrogen-containing compounds include nitrides of the Ln element, copper nitrate (anhydrous copper nitrate is preferred), and azide compounds such as barium azide. Among these, azide compounds such as barium azide are particularly effective.

これらの窒素含を化合物は、従来用いていた酸化物の一
部を置換する形で秤量して混合する。例えばY:Ba:
Cu=l:2:3の標準組成比で混合する場合を想定す
る。通常、Y  O、Bad、CuOをそれぞれ、0.
5mol、2mo I、3mol用意するわけであるが
、Yl(原子比)に対し2の窒素というときには、Ba
Oの1/3molをBa(N3)2で置換し、結局、B
aOを5/3mol、B a (N 3) 2を1/3
mo1とし、Y2O3を0.5mo1%Cu Oを30
101用意することになる。
These nitrogen-containing compounds are weighed and mixed in such a manner that they replace a portion of the oxides conventionally used. For example, Y:Ba:
Assume that Cu is mixed at a standard composition ratio of 2:3. Usually, YO, Bad, and CuO are each 0.
5 mol, 2 mo I, and 3 mol are prepared, but when 2 moles of nitrogen are used for Yl (atomic ratio), Ba
1/3 mol of O was replaced with Ba(N3)2, and eventually B
5/3 mol of aO, 1/3 of B a (N 3) 2
mo1, Y2O3 is 0.5mo1%CuO is 30
101 will be prepared.

この様な原料を焼結することにより、Tcが向上した酸
化物超電導体を得ることができる。
By sintering such raw materials, an oxide superconductor with improved Tc can be obtained.

なお、このような窒素含有化合物の混合量は、LnAE
2Cu3NxO7−6−x(δは酸素欠陥を表わす)で
表わしたとき、X≦4の窒素を含有するように、酸化物
又は焼成により酸化物となる化合物と窒素含有化合物を
混合することが望ましい。
In addition, the mixing amount of such a nitrogen-containing compound is LnAE
It is desirable to mix an oxide or a compound that becomes an oxide upon firing with a nitrogen-containing compound so that when expressed as 2Cu3NxO7-6-x (δ represents an oxygen defect), X≦4 nitrogen is contained.

僅かの混合で窒素添加の効果は生じるが、X≧1でTc
向上の効果が顕著となる。また多量の混合はTc向上の
効果が得られず、実用上は1≦x≦3程度が好ましい。
The effect of nitrogen addition occurs with a small amount of mixing, but when X≧1, Tc
The improvement effect becomes noticeable. In addition, if a large amount is mixed, the effect of improving Tc cannot be obtained, and practically, it is preferable that about 1≦x≦3.

焼結は前述のような方法で行なえば良い。しかしながら
、200−400℃の間は例えば40℃/H以下程度以
下部速度でゆっくり昇温することが望ましい。
Sintering may be performed by the method described above. However, between 200 and 400°C, it is desirable to slowly raise the temperature at a rate of, for example, 40°C/H or less.

この様な昇温はTcの向上に有効である。Such a temperature increase is effective in improving Tc.

所望の形状に焼成した後、酸素中で加熱処理することに
より、超電導特性を向上することができる。この加熱処
理は通常、800−980℃程度である。
After firing into a desired shape, the superconducting properties can be improved by heat-treating in oxygen. This heat treatment is usually about 800-980°C.

これは焼結後の徐冷工程で実施しても良い。またプラズ
マ酸化法を用いれば、例えば200℃以下程度の低温で
の処理でも、十分な酸素の供給を行なうことができる。
This may be carried out in the slow cooling step after sintering. Furthermore, if a plasma oxidation method is used, sufficient oxygen can be supplied even during processing at a low temperature of about 200° C. or lower, for example.

この様にして得られた酸化物超電導体は酸素欠陥δを有
するLnBa  Cu30.、(δは通常1以下)の酸
素欠陥型ペロブスカイト構造となり、N元素は0元素を
置換したかたちで存在していると考えられる。
The oxide superconductor thus obtained is LnBa Cu30. , (δ is usually 1 or less), and an oxygen-deficient perovskite structure is formed, and it is thought that the N element exists in the form of substituting 0 element.

また上述の粉末焼結に限らず、蒸着法、スパッタリング
法、CVD法などの方法による膜状の酸化物超電導体を
形成することもできる。更に酸化物超電導体ペーストを
用いたスクリーン印刷法、ゾル・ゲル法等を用いての製
造もできる。更に金属管等のシース材を用いての線材化
、溶湯急冷法を用いての線材化等も可能である。
In addition to the powder sintering described above, a film-like oxide superconductor can also be formed by a method such as a vapor deposition method, a sputtering method, or a CVD method. Furthermore, it can also be manufactured using a screen printing method using an oxide superconductor paste, a sol-gel method, or the like. Furthermore, it is also possible to make a wire using a sheath material such as a metal tube, or to make a wire using a molten metal quenching method.

なお本発明酸化物超電導体ではBaをSr、Caの少な
くとも一種で置換することができ、この様な置換によっ
ても臨界電流密度を向上することができる。この効果は
0.01mo1%以上で顕著となるが、実用上は80s
+o1%以下、さらには20IIlo1%以下程度が好
ましい。またCu元素の一部を更にTI 、V、Cr、
Fe+Go。
In the oxide superconductor of the present invention, Ba can be replaced with at least one of Sr and Ca, and such substitution can also improve the critical current density. This effect becomes noticeable at 0.01 mo1% or more, but in practical use
+o1% or less, more preferably about 20IIlo1% or less. In addition, a part of the Cu element is further added to TI, V, Cr,
Fe+Go.

旧4n等で置換しても良い。この置換も超電導特性を損
なわない程度で、実用上は2Dmo1%以下程度までで
ある。またLn元素を二種以上含有するのも、臨界電流
密度の向上には有効である。更にFの添加など、主体と
なる超電導体の基本的性質をかえない範囲での諸元素の
添加は超電導特性を低下せしめないかぎり構わない。
It may be replaced with the old 4n or the like. This substitution is also to the extent that it does not impair the superconducting properties, and in practice it is limited to about 2Dmo1% or less. Furthermore, containing two or more types of Ln elements is also effective in improving the critical current density. Furthermore, addition of various elements, such as the addition of F, within a range that does not change the basic properties of the main superconductor may be added as long as it does not deteriorate the superconducting properties.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

実施例−1 Y  O、B a O,B a (Na ) 2及びC
uOを、それぞれ、11.29g、31.58g、7.
a8g、23.86g (モル比で0.5:5/3:1
/3:3)用意し、十分混合した。この混合原料を成形
した後、200−400℃を6時間かけて昇温し、次い
で1 、511をかけて970℃に昇温し、9−10時
間焼結した。
Example-1 Y O, B a O, B a (Na) 2 and C
uO, 11.29 g, 31.58 g, 7.
a8g, 23.86g (molar ratio 0.5:5/3:1
/3:3) was prepared and thoroughly mixed. After molding this mixed raw material, the temperature was raised to 200-400°C over 6 hours, then heated to 970°C over 1,511°C, and sintered for 9-10 hours.

この酸化物超電導体の超電導特性を調べたところ、臨界
温度はTc=149にと非常に優れたものであった。な
お第1図に、電気抵抗−温度特性曲線図を示す。また液
体窒素温度でのマイスナー効果も確認された。
When the superconducting properties of this oxide superconductor were investigated, it was found that the critical temperature was extremely excellent at Tc=149. Note that FIG. 1 shows an electrical resistance-temperature characteristic curve diagram. The Meissner effect was also confirmed at liquid nitrogen temperature.

またBa(N3)2による置換量を変化させLnAE2
Cus Nx07−δ−。
In addition, by changing the amount of substitution with Ba(N3)2, LnAE2
Cus Nx07-δ-.

(δは酸素欠陥を表わす) で表わしたときのXをふったところ、xm2近傍ををピ
ーク(前述の実施例の場合に相当)にしてTc向上の効
果が見られた。
(δ represents an oxygen defect) When X was subtracted, an effect of improving Tc was observed with a peak near xm2 (corresponding to the case of the above-mentioned example).

なおこの効果はアジ化合物を用いた場合に顕著であり、
無水硝酸銅を用いた場合アジ化合物はど顕著な効果は見
られなかった。なお、BaOを用いたほうが、B a 
COaを用いた場合より、良好の様である。
This effect is remarkable when using an azide compound,
When anhydrous copper nitrate was used, no significant effect was observed with the azide compound. Note that it is better to use BaO because Ba
This seems to be better than when COa is used.

この実施例ではLn元素としてY、AE元素としてBa
を用いた場合のみを示したが、他の元素でも同様の効果
が認められた。
In this example, Y is used as the Ln element, and Ba is used as the AE element.
Although only the case where 2 was used was shown, similar effects were observed with other elements as well.

[発明の効果] 以上説明したように本発明によれば、臨界温度が高いY
−13a−Cu−0系等の酸化物超電導体を得ることが
でき、工業上寄与すること大である。
[Effects of the Invention] As explained above, according to the present invention, Y having a high critical temperature
It is possible to obtain oxide superconductors such as -13a-Cu-0, which will greatly contribute to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電気抵抗−温度特性曲線図。 代理人 弁理士 則 近 憲 佑 FIG. 1 is an electrical resistance-temperature characteristic curve diagram. Agent: Patent Attorney Noriyuki Chika

Claims (16)

【特許請求の範囲】[Claims] (1)Ln元素(Lnは希土類元素の少なくとも一種)
、AE元素(Ba,Ca及びSrの少なくとも一種)及
びCuを主成分とする酸化物超電導体において、構成成
分として窒素を含有したことを特徴とする酸化物超電導
体。
(1) Ln element (Ln is at least one rare earth element)
, an oxide superconductor containing nitrogen as a constituent component, the oxide superconductor containing an AE element (at least one of Ba, Ca, and Sr) and Cu as main components.
(2)Ln元素、AE元素及びCuを原子比で実質的に
1:2:3の割合で含有することを特徴とする特許請求
の範囲第1項記載の酸化物超電導体。
(2) The oxide superconductor according to claim 1, which contains Ln element, AE element, and Cu in an atomic ratio of substantially 1:2:3.
(3)Ln元素がY、AE元素がBaであることを特徴
とする特許請求の範囲第1項乃至第2項記載の酸化物超
電導体。
(3) The oxide superconductor according to claim 1 or 2, wherein the Ln element is Y and the AE element is Ba.
(4)LnAE_2Cu_3O_7_−_δ(δは酸素
欠陥を表わす)で表わされる酸素欠陥型ペロブスカイト
構造を有することを特徴とする特許請求の範囲第1項乃
至第3項記載の酸化物超電導体。
(4) The oxide superconductor according to claims 1 to 3, which has an oxygen-deficient perovskite structure represented by LnAE_2Cu_3O_7_-_δ (δ represents an oxygen defect).
(5)窒素含有量が、原子比でLn元素1に対し4以下
であり、酸素の一部を置換した形で存在することを特徴
とする特許請求の範囲第1項乃至第4項記載の酸化物超
電導体。
(5) The nitrogen content according to claims 1 to 4 is characterized in that the atomic ratio of nitrogen is 4 or less per 1 of the Ln element, and the nitrogen content is present in a form in which oxygen is partially substituted. Oxide superconductor.
(6)Ln元素(Lnは希土類元素の少なくとも一種)
、AE元素(Ba,Ca及びSrの少なくとも一種)及
びCuを主成分とする酸化物超電導体の製造方法におい
て、原料の少なくとも一部を窒素含有化合物としたこと
を特徴とする酸化物超電導体の製造方法。
(6) Ln element (Ln is at least one kind of rare earth element)
, a method for producing an oxide superconductor containing AE elements (at least one of Ba, Ca and Sr) and Cu as main components, characterized in that at least a part of the raw material is a nitrogen-containing compound. Production method.
(7)前記窒素含有化合物としてアジ化合物を用いたこ
とを特徴とする特許請求の範囲第6項記載の酸化物超電
導体の製造方法。
(7) The method for producing an oxide superconductor according to claim 6, characterized in that an azide compound is used as the nitrogen-containing compound.
(8)前記窒素含有化合物としてAE元素のアジ化合物
を用いたことを特徴とする特許請求の範囲第7項記載の
酸化物超電導体の製造方法。
(8) The method for producing an oxide superconductor according to claim 7, wherein an azide compound of an AE element is used as the nitrogen-containing compound.
(9)前記窒素含有化合物としてBa(N_3)_2を
用いたことを特徴とする特許請求の範囲第8項記載の酸
化物超電導体の製造方法。
(9) The method for producing an oxide superconductor according to claim 8, characterized in that Ba(N_3)_2 is used as the nitrogen-containing compound.
(10)前記窒素含有化合物としてCuの無水硝酸塩を
用いたことを特徴とする特許請求の範囲第6項記載の酸
化物超電導体の製造方法。
(10) The method for manufacturing an oxide superconductor according to claim 6, characterized in that an anhydrous nitrate of Cu is used as the nitrogen-containing compound.
(11)Ln元素、AE元素及びCuの酸化物又は焼成
により酸化物となる化合物及び窒素含有化合物を混合・
成形した後、焼結することを特徴とした特許請求の範囲
第6項乃至第10項記載の酸化物超電導体の製造方法。
(11) Mixing oxides of Ln elements, AE elements, and Cu, or compounds that become oxides by firing, and nitrogen-containing compounds.
The method for manufacturing an oxide superconductor according to any one of claims 6 to 10, characterized in that the oxide superconductor is sintered after being molded.
(12)Ln元素、AE元素及びCuの酸化物又は焼成
により酸化物となる化合物及び窒素含有化合物を混合・
成形した後、少なくとも200−400℃の間を40℃
/以下の昇温速度で加熱した後、焼結することを特徴と
した特許請求の範囲第6項乃至第11項記載の酸化物超
電導体の製造方法。
(12) Mixing oxides of Ln element, AE element, and Cu, or compounds that become oxides by firing, and nitrogen-containing compounds.
After molding, at least 40℃ between 200-400℃
12. The method for producing an oxide superconductor according to claims 6 to 11, wherein the oxide superconductor is heated at a temperature increase rate of / or less and then sintered.
(13)前記焼結は940−1000℃の温度範囲で行
なうことを特徴とした特許請求の範囲第6項乃至第12
項記載の酸化物超電導体の製造方法。
(13) Claims 6 to 12, characterized in that the sintering is performed at a temperature range of 940-1000°C.
A method for producing an oxide superconductor as described in Section 1.
(14)LnAE_2Cu_3N_xO_7_δ_−_
x(δは酸素欠陥を表わす)で表わしたとき、x≦4の
窒素を含有するように、酸化物又は焼成により酸化物と
なる化合物と窒素含有化合物を混合することを特徴とし
た特許請求の範囲第6項乃至第13項記載の酸化物超電
導体の製造方法。
(14) LnAE_2Cu_3N_xO_7_δ_-_
A patent claim characterized in that an oxide or a compound that becomes an oxide upon calcination and a nitrogen-containing compound are mixed so that x≦4 nitrogen is contained when expressed by x (δ represents an oxygen defect). A method for producing an oxide superconductor according to items 6 to 13.
(15)1≦x≦3であることを特徴とした特許請求の
範囲第14項記載の酸化物超電導体の製造方法。
(15) The method for producing an oxide superconductor according to claim 14, characterized in that 1≦x≦3.
(16)Ln元素がY、AE元素がBaであることを特
徴とする特許請求の範囲第6項乃至第15項記載の酸化
物超電導体の製造方法。
(16) The method for producing an oxide superconductor according to claims 6 to 15, wherein the Ln element is Y and the AE element is Ba.
JP62308632A 1987-12-08 1987-12-08 Oxide superconductor and production thereof Pending JPH01153518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308632A JPH01153518A (en) 1987-12-08 1987-12-08 Oxide superconductor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308632A JPH01153518A (en) 1987-12-08 1987-12-08 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH01153518A true JPH01153518A (en) 1989-06-15

Family

ID=17983387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308632A Pending JPH01153518A (en) 1987-12-08 1987-12-08 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH01153518A (en)

Similar Documents

Publication Publication Date Title
JPS63291817A (en) Oxide superconductor
EP0398503A2 (en) Rare-earth barium copper oxide superconducting materials
US5140000A (en) Metal oxide 247 superconducting materials
JP2558695B2 (en) Method for manufacturing oxide superconducting wire
JPH01153518A (en) Oxide superconductor and production thereof
JP2593475B2 (en) Oxide superconductor
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2588200B2 (en) Manufacturing method of oxide superconductor
JPS63270317A (en) Oxide superconductor
JPS63307110A (en) Oxide superconductor
JP2752969B2 (en) Oxide superconductor
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63291818A (en) Oxide superconductor
Prabhakaran et al. Synthesis of Bi-2223 phase using different precursors through different routes and their characterisation
JPS63297217A (en) Production of oxide superconductor
JPH01179722A (en) Production of oxide superconductor
JPS63297216A (en) Production of oxide superconductor
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPS63297214A (en) Production of oxide superconductor
JP2748943B2 (en) Oxide superconductor
JPS63297215A (en) Production of oxide superconductor
JP2597578B2 (en) Superconductor manufacturing method
JPH01126260A (en) Oxide superconductor
JPH01122922A (en) Oxide superconductor
JPH01164762A (en) Compound oxide type superconducting sintered body